New Approaches in CAR-T Cell Immunotherapy for Breast Cancer

  • Jinghua Wang
  • Penghui ZhouEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1026)


Despite significant advances in surgery, chemotherapy, radiotherapy, endocrine therapy, and molecular-targeted therapy, breast cancer remains the leading cause of death from malignant tumors among women. Immunotherapy has recently become a critical component of breast cancer treatment with encouraging activity and mild safety profiles. CAR-T therapy using genetically modifying T cells with chimeric antigen receptors (CAR) is the most commonly used approach to generate tumor-specific T cells. It has shown good curative effect for a variety of malignant diseases, especially for hematological malignancies. In this review, we briefly introduce the history and the present state of CAR research. Then we discuss the barriers of solid tumors for CARs application and possible strategies to improve therapeutic response with a focus on breast cancer. At last, we outlook the future directions of CAR-T therapy including managing toxicities and developing universal CAR-T cells.


Breast cancer Immunotherapy T cells Chimeric antigen receptor 


  1. 1.
    Siegel RL, Miller KD, Jemal A (2017) Cancer statistics, 2017. CA Cancer J Clin 67(1):7–30PubMedCrossRefGoogle Scholar
  2. 2.
    Chen W et al (2016) Cancer statistics in China, 2015. CA Cancer J Clin 66(2):115–132PubMedCrossRefGoogle Scholar
  3. 3.
    Brahmer JR et al (2012) Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med 366(26):2455–2465PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Topalian SL et al (2012) Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 366(26):2443–2454PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Zhou J, Zhong Y (2004) Breast cancer immunotherapy. Cell Mol Immunol 1(4):247–255PubMedGoogle Scholar
  6. 6.
    Galon J et al (2006) Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313(5795):1960–1964PubMedCrossRefGoogle Scholar
  7. 7.
    Hamanishi J et al (2007) Programmed cell death 1 ligand 1 and tumor-infiltrating CD8+ T lymphocytes are prognostic factors of human ovarian cancer. Proc Natl Acad Sci U S A 104(9):3360–3365PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Mahmoud SM et al (2011) Tumor-infiltrating CD8+ lymphocytes predict clinical outcome in breast cancer. J Clin Oncol 29(15):1949–1955PubMedCrossRefGoogle Scholar
  9. 9.
    Bindea G et al (2013) Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer. Immunity 39(4):782–795PubMedCrossRefGoogle Scholar
  10. 10.
    Matsushita H et al (2012) Cancer exome analysis reveals a T-cell-dependent mechanism of cancer immunoediting. Nature 482(7385):400–404PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Oble DA et al (2009) Focus on TILs: prognostic significance of tumor infiltrating lymphocytes in human melanoma. Cancer Immun 9:3PubMedPubMedCentralGoogle Scholar
  12. 12.
    DuPage M et al (2012) Expression of tumour-specific antigens underlies cancer immunoediting. Nature 482(7385):405–409PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Pages F et al (2009) In situ cytotoxic and memory T cells predict outcome in patients with early-stage colorectal cancer. J Clin Oncol 27(35):5944–5951PubMedCrossRefGoogle Scholar
  14. 14.
    Rusakiewicz S et al (2013) Immune infiltrates are prognostic factors in localized gastrointestinal stromal tumors. Cancer Res 73(12):3499–3510PubMedCrossRefGoogle Scholar
  15. 15.
    Stumpf M et al (2009) Intraepithelial CD8-positive T lymphocytes predict survival for patients with serous stage III ovarian carcinomas: relevance of clonal selection of T lymphocytes. Br J Cancer 101(9):1513–1521PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Dotti G et al (2001) Adenovector-induced expression of human-CD40-ligand (hCD40L) by multiple myeloma cells. A model for immunotherapy. Exp Hematol 29(8):952–961PubMedCrossRefGoogle Scholar
  17. 17.
    Cheadle EJ et al (2014) CAR T cells: driving the road from the laboratory to the clinic. Immunol Rev 257(1):91–106PubMedCrossRefGoogle Scholar
  18. 18.
    Pittet MJ et al (2001) Expansion and functional maturation of human tumor antigen-specific CD8+ T cells after vaccination with antigenic peptide. Clin Cancer Res 7(3 Suppl): 796s–803sGoogle Scholar
  19. 19.
    Valmori D et al (2000) Naturally occurring human lymphocyte antigen-A2 restricted CD8+ T-cell response to the cancer testis antigen NY-ESO-1 in melanoma patients. Cancer Res 60(16):4499–4506PubMedGoogle Scholar
  20. 20.
    Jakobsen MK et al (1995) Defective major histocompatibility complex class I expression in a sarcomatoid renal cell carcinoma cell line. J Immunother Emphasis Tumor Immunol 17(4):222–228PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Lou Y et al (2008) Combining the antigen processing components TAP and Tapasin elicits enhanced tumor-free survival. Clin Cancer Res 14(5):1494–1501PubMedCrossRefGoogle Scholar
  22. 22.
    Singh R, Paterson Y (2007) Immunoediting sculpts tumor epitopes during immunotherapy. Cancer Res 67(5):1887–1892PubMedCrossRefGoogle Scholar
  23. 23.
    Sun M et al (2014) Construction and evaluation of a novel humanized HER2-specific chimeric receptor. Breast Cancer Res 16(3):R61PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Grupp SA et al (2013) Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med 368(16):1509–1518PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Eshhar Z et al (2001) Functional expression of chimeric receptor genes in human T cells. J Immunol Methods 248(1–2):67–76PubMedCrossRefGoogle Scholar
  26. 26.
    Lenschow DJ, Walunas TL, Bluestone JA (1996) CD28/B7 system of T cell costimulation. Annu Rev Immunol 14:233–258PubMedCrossRefGoogle Scholar
  27. 27.
    Carpenito C et al (2009) Control of large, established tumor xenografts with genetically retargeted human T cells containing CD28 and CD137 domains. Proc Natl Acad Sci U S A 106(9):3360–3365PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Song DG et al (2012) CD27 costimulation augments the survival and antitumor activity of redirected human T cells in vivo. Blood 119(3):696–706PubMedCrossRefGoogle Scholar
  29. 29.
    Chmielewski M et al (2011) IL-12 release by engineered T cells expressing chimeric antigen receptors can effectively muster an antigen-independent macrophage response on tumor cells that have shut down tumor antigen expression. Cancer Res 71(17):5697–5706PubMedCrossRefGoogle Scholar
  30. 30.
    Zhang L et al (2011) Improving adoptive T cell therapy by targeting and controlling IL-12 expression to the tumor environment. Mol Ther 19(4):751–759PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Hunter CA (2005) New IL-12-family members: IL-23 and IL-27, cytokines with divergent functions. Nat Rev Immunol 5(7):521–531PubMedCrossRefGoogle Scholar
  32. 32.
    Tamzalit F et al (2014) IL-15.IL-15Ralpha complex shedding following trans-presentation is essential for the survival of IL-15 responding NK and T cells. Proc Natl Acad Sci U S A 111(23):8565–8570PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Kochenderfer JN et al (2012) B-cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19 chimeric-antigen-receptor-transduced T cells. Blood 119(12):2709–2720PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Brentjens RJ et al (2011) Safety and persistence of adoptively transferred autologous CD19-targeted T cells in patients with relapsed or chemotherapy refractory B-cell leukemias. Blood 118(18):4817–4828PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Porter DL et al (2011) Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med 365(8):725–733PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Kalos M et al (2011) T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci Transl Med 3(95): 95ra73Google Scholar
  37. 37.
    Brentjens RJ et al (2013) CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci Transl Med 5(177):177ra38Google Scholar
  38. 38.
    Savoldo B et al (2007) Epstein Barr virus specific cytotoxic T lymphocytes expressing the anti-CD30zeta artificial chimeric T-cell receptor for immunotherapy of Hodgkin disease. Blood 110(7):2620–2630PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Ramos CA et al (2016) Clinical responses with T lymphocytes targeting malignancy-associated kappa light chains. J Clin Invest 126(7):2588–2596PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Morgan RA et al (2010) Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol Ther 18(4):843–851PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Schlimper C et al (2012) Improved activation toward primary colorectal cancer cells by antigen-specific targeting autologous cytokine-induced killer cells. Clin Dev Immunol 2012:238924PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Kandalaft LE, Powell DJ, Coukos G (2012) A phase I clinical trial of adoptive transfer of folate receptor-alpha redirected autologous T cells for recurrent ovarian cancer. J Transl Med 10:157PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Kloss CC et al (2013) Combinatorial antigen recognition with balanced signaling promotes selective tumor eradication by engineered T cells. Nat Biotechnol 31(1):71–75PubMedCrossRefGoogle Scholar
  44. 44.
    Lamers CH et al (2013) Treatment of metastatic renal cell carcinoma with CAIX CAR-engineered T cells: clinical evaluation and management of on-target toxicity. Mol Ther 21(4):904–912PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Davies DM et al (2012) Flexible targeting of ErbB dimers that drive tumorigenesis by using genetically engineered T cells. Mol Med 18:565–576PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Zhao Y et al (2009) A herceptin-based chimeric antigen receptor with modified signaling domains leads to enhanced survival of transduced T lymphocytes and antitumor activity. J Immunol 183(9):5563–5574PubMedCrossRefGoogle Scholar
  47. 47.
    Teng MW et al (2004) Immunotherapy of cancer using systemically delivered gene-modified human T lymphocytes. Hum Gene Ther 15(7):699–708PubMedCrossRefGoogle Scholar
  48. 48.
    Stancovski I et al (1993) Targeting of T lymphocytes to Neu/HER2-expressing cells using chimeric single chain Fv receptors. J Immunol 151(11):6577–6582PubMedGoogle Scholar
  49. 49.
    Moritz D et al (1994) Cytotoxic T lymphocytes with a grafted recognition specificity for ERBB2-expressing tumor cells. Proc Natl Acad Sci U S A 91(10):4318–4322PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Altenschmidt U et al (1996) Cytolysis of tumor cells expressing the Neu/erbB-2, erbB-3, and erbB-4 receptors by genetically targeted naive T lymphocytes. Clin Cancer Res 2(6):1001–1008PubMedGoogle Scholar
  51. 51.
    Lanitis E et al (2012) Redirected antitumor activity of primary human lymphocytes transduced with a fully human anti-mesothelin chimeric receptor. Mol Ther 20(3):633–643PubMedCrossRefGoogle Scholar
  52. 52.
    Westwood JA et al (2005) Adoptive transfer of T cells modified with a humanized chimeric receptor gene inhibits growth of Lewis-Y-expressing tumors in mice. Proc Natl Acad Sci U S A 102(52):19051–19056PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Mezzanzanica D et al (1998) Transfer of chimeric receptor gene made of variable regions of tumor-specific antibody confers anticarbohydrate specificity on T cells. Cancer Gene Ther 5(6):401–407PubMedGoogle Scholar
  54. 54.
    Moon EK et al (2011) Expression of a functional CCR2 receptor enhances tumor localization and tumor eradication by retargeted human T cells expressing a mesothelin-specific chimeric antibody receptor. Clin Cancer Res 17(14):4719–4730PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Wilkie S et al (2008) Retargeting of human T cells to tumor-associated MUC1: the evolution of a chimeric antigen receptor. J Immunol 180(7):4901–4909PubMedCrossRefGoogle Scholar
  56. 56.
    O’Shaughnessy JA (2006) Molecular signatures predict outcomes of breast cancer. N Engl J Med 355(6):615–617PubMedCrossRefGoogle Scholar
  57. 57.
    Slamon DJ et al (2001) Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 344(11):783–792PubMedCrossRefGoogle Scholar
  58. 58.
    Baselga J et al (2012) Pertuzumab plus trastuzumab plus docetaxel for metastatic breast cancer. N Engl J Med 366(2):109–119PubMedCrossRefGoogle Scholar
  59. 59.
    Lipowska-Bhalla G et al (2012) Targeted immunotherapy of cancer with CAR T cells: achievements and challenges. Cancer Immunol Immunother 61(7):953–962PubMedCrossRefGoogle Scholar
  60. 60.
    Gilham DE et al (2012) CAR-T cells and solid tumors: tuning T cells to challenge an inveterate foe. Trends Mol Med 18(7):377–384PubMedCrossRefGoogle Scholar
  61. 61.
    Lamers CH et al (2006) Treatment of metastatic renal cell carcinoma with autologous T-lymphocytes genetically retargeted against carbonic anhydrase IX: first clinical experience. J Clin Oncol 24(13):e20–e22PubMedCrossRefGoogle Scholar
  62. 62.
    Park JR et al (2007) Adoptive transfer of chimeric antigen receptor re-directed cytolytic T lymphocyte clones in patients with neuroblastoma. Mol Ther 15(4):825–833PubMedCrossRefGoogle Scholar
  63. 63.
    Han EQ et al (2013) Chimeric antigen receptor-engineered T cells for cancer immunotherapy: progress and challenges. J Hematol Oncol 6:47PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Kakarla S, Gottschalk S (2014) CAR T cells for solid tumors: armed and ready to go? Cancer J 20(2):151–155PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Wilkie S et al (2012) Dual targeting of ErbB2 and MUC1 in breast cancer using chimeric antigen receptors engineered to provide complementary signaling. J Clin Immunol 32(5):1059–1070PubMedCrossRefGoogle Scholar
  66. 66.
    Lanitis E et al (2013) Chimeric antigen receptor T cells with dissociated signaling domains exhibit focused antitumor activity with reduced potential for toxicity in vivo. Cancer Immunol Res 1(1):43–53PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Grada Z et al (2013) TanCAR: a novel Bispecific chimeric antigen receptor for cancer immunotherapy. Mol Ther Nucleic Acids 2:e105PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Urbanska K et al (2012) A universal strategy for adoptive immunotherapy of cancer through use of a novel T-cell antigen receptor. Cancer Res 72(7):1844–1852PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Tamada K et al (2012) Redirecting gene-modified T cells toward various cancer types using tagged antibodies. Clin Cancer Res 18(23):6436–6445PubMedCrossRefGoogle Scholar
  70. 70.
    Janssen A, Medema RH (2013) Genetic instability: tipping the balance. Oncogene 32(38):4459–4470PubMedCrossRefGoogle Scholar
  71. 71.
    Rabinovich GA, Gabrilovich D, Sotomayor EM (2007) Immunosuppressive strategies that are mediated by tumor cells. Annu Rev Immunol 25:267–296PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Kakarla S et al (2013) Antitumor effects of chimeric receptor engineered human T cells directed to tumor stroma. Mol Ther 21(8):1611–1620PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Roberts EW et al (2013) Depletion of stromal cells expressing fibroblast activation protein-alpha from skeletal muscle and bone marrow results in cachexia and anemia. J Exp Med 210(6):1137–1151PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Niederman TM et al (2002) Antitumor activity of cytotoxic T lymphocytes engineered to target vascular endothelial growth factor receptors. Proc Natl Acad Sci U S A 99(10):7009–7014PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Tran E et al (2013) Immune targeting of fibroblast activation protein triggers recognition of multipotent bone marrow stromal cells and cachexia. J Exp Med 210(6):1125–1135PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Kershaw MH et al (2006) A phase I study on adoptive immunotherapy using gene-modified T cells for ovarian cancer. Clin Cancer Res 12(20 Pt 1):6106–6115PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Brentjens R et al (2010) Treatment of chronic lymphocytic leukemia with genetically targeted autologous T cells: case report of an unforeseen adverse event in a phase I clinical trial. Mol Ther 18(4):666–668PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Savoldo B et al (2011) CD28 costimulation improves expansion and persistence of chimeric antigen receptor-modified T cells in lymphoma patients. J Clin Invest 121(5):1822–1826PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Li XC et al (2001) IL-15 and IL-2: a matter of life and death for T cells in vivo. Nat Med 7(1):114–118PubMedCrossRefGoogle Scholar
  80. 80.
    Mueller K, Schweier O, Pircher H (2008) Efficacy of IL-2- versus IL-15-stimulated CD8 T cells in adoptive immunotherapy. Eur J Immunol 38(10):2874–2885PubMedCrossRefGoogle Scholar
  81. 81.
    Ochoa MC et al (2013) Interleukin-15 in gene therapy of cancer. Curr Gene Ther 13(1):15–30PubMedCrossRefGoogle Scholar
  82. 82.
    Perna SK et al (2013) Interleukin 15 provides relief to CTLs from regulatory T cell-mediated inhibition: implications for adoptive T cell-based therapies for lymphoma. Clin Cancer Res 19(1):106–117PubMedCrossRefGoogle Scholar
  83. 83.
    Quintarelli C et al (2007) Co-expression of cytokine and suicide genes to enhance the activity and safety of tumor-specific cytotoxic T lymphocytes. Blood 110(8):2793–2802PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Hoyos V et al (2010) Engineering CD19-specific T lymphocytes with interleukin-15 and a suicide gene to enhance their anti-lymphoma/leukemia effects and safety. Leukemia 24(6):1160–1170PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Hsu C et al (2005) Primary human T lymphocytes engineered with a codon-optimized IL-15 gene resist cytokine withdrawal-induced apoptosis and persist long-term in the absence of exogenous cytokine. J Immunol 175(11):7226–7234PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Carrette F, Surh CD (2012) IL-7 signaling and CD127 receptor regulation in the control of T cell homeostasis. Semin Immunol 24(3):209–217PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Pegram HJ et al (2012) Tumor-targeted T cells modified to secrete IL-12 eradicate systemic tumors without need for prior conditioning. Blood 119(18):4133–4141PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Hodi FS et al (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363(8):711–723PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Flies DB et al (2014) Coinhibitory receptor PD-1H preferentially suppresses CD4(+) T cell-mediated immunity. J Clin Invest 124(5):1966–1975PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Wang X et al (2012) Phenotypic and functional attributes of lentivirus-modified CD19-specific human CD8+ central memory T cells manufactured at clinical scale. J Immunother 35(9):689–701PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Rooney CM et al (1998) Infusion of cytotoxic T cells for the prevention and treatment of Epstein-Barr virus-induced lymphoma in allogeneic transplant recipients. Blood 92(5):1549–1555PubMedGoogle Scholar
  92. 92.
    Heslop HE et al (2010) Long-term outcome of EBV-specific T-cell infusions to prevent or treat EBV-related lymphoproliferative disease in transplant recipients. Blood 115(5):925–935PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Hislop AD et al (2007) Cellular responses to viral infection in humans: lessons from Epstein-Barr virus. Annu Rev Immunol 25:587–617PubMedCrossRefGoogle Scholar
  94. 94.
    Gschweng E, De Oliveira S, Kohn DB (2014) Hematopoietic stem cells for cancer immunotherapy. Immunol Rev 257(1):237–249PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Cheadle EJ et al (2012) Ligation of the CD2 co-stimulatory receptor enhances IL-2 production from first-generation chimeric antigen receptor T cells. Gene Ther 19(11):1114–1120PubMedCrossRefGoogle Scholar
  96. 96.
    Bromley SK, Mempel TR, Luster AD (2008) Orchestrating the orchestrators: chemokines in control of T cell traffic. Nat Immunol 9(9):970–980PubMedCrossRefGoogle Scholar
  97. 97.
    Kershaw MH et al (2002) Redirecting migration of T cells to chemokine secreted from tumors by genetic modification with CXCR2. Hum Gene Ther 13(16):1971–1980PubMedCrossRefGoogle Scholar
  98. 98.
    Di Stasi A et al (2009) T lymphocytes coexpressing CCR4 and a chimeric antigen receptor targeting CD30 have improved homing and antitumor activity in a Hodgkin tumor model. Blood 113(25):6392–6402PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Craddock JA et al (2010) Enhanced tumor trafficking of GD2 chimeric antigen receptor T cells by expression of the chemokine receptor CCR2b. J Immunother 33(8):780–788PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Gajewski TF et al (2006) Immune resistance orchestrated by the tumor microenvironment. Immunol Rev 213:131–145PubMedCrossRefGoogle Scholar
  101. 101.
    Gabrilovich DI, Nagaraj S (2009) Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 9(3):162–174PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Shiao SL et al (2011) Immune microenvironments in solid tumors: new targets for therapy. Genes Dev 25(24):2559–2572PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Tanchot C et al (2013) Tumor-infiltrating regulatory T cells: phenotype, role, mechanism of expansion in situ and clinical significance. Cancer Microenviron 6(2):147–157PubMedCrossRefGoogle Scholar
  104. 104.
    Foster AE et al (2008) Antitumor activity of EBV-specific T lymphocytes transduced with a dominant negative TGF-beta receptor. J Immunother 31(5):500–505PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Dotti G et al (2005) Human cytotoxic T lymphocytes with reduced sensitivity to Fas-induced apoptosis. Blood 105(12):4677–4684PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Eaton D et al (2002) Retroviral transduction of human peripheral blood lymphocytes with Bcl-X(L) promotes in vitro lymphocyte survival in pro-apoptotic conditions. Gene Ther 9(8):527–535PubMedCrossRefGoogle Scholar
  107. 107.
    Sun J et al (2010) T cells expressing constitutively active Akt resist multiple tumor-associated inhibitory mechanisms. Mol Ther 18(11):2006–2017PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Zhao Y et al (2010) Multiple injections of electroporated autologous T cells expressing a chimeric antigen receptor mediate regression of human disseminated tumor. Cancer Res 70(22):9053–9061PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Barrett DM et al (2011) Treatment of advanced leukemia in mice with mRNA engineered T cells. Hum Gene Ther 22(12):1575–1586PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Almasbak H et al (2011) Transiently redirected T cells for adoptive transfer. Cytotherapy 13(5):629–640PubMedCrossRefGoogle Scholar
  111. 111.
    Straathof KC et al (2005) An inducible caspase 9 safety switch for T-cell therapy. Blood 105(11):4247–4254PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Di Stasi A et al (2011) Inducible apoptosis as a safety switch for adoptive cell therapy. N Engl J Med 365(18):1673–1683PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Arber C et al (2013) The immunogenicity of virus-derived 2A sequences in immunocompetent individuals. Gene Ther 20(9):958–962PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Liu X et al (2017) CRISPR-Cas9-mediated multiplex gene editing in CAR-T cells. Cell Res 27(1):154–157PubMedCrossRefGoogle Scholar
  115. 115.
    Torikai H et al (2012) A foundation for universal T-cell based immunotherapy: T cells engineered to express a CD19-specific chimeric-antigen-receptor and eliminate expression of endogenous TCR. Blood 119(24):5697–5705PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Riolobos L et al (2013) HLA engineering of human pluripotent stem cells. Mol Ther 21(6):1232–1241PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Chou J et al (2012) Epigenetic modulation to enable antigen-specific T-cell therapy of colorectal cancer. J Immunother 35(2):131–141PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Liu C et al (2013) BRAF inhibition increases tumor infiltration by T cells and enhances the antitumor activity of adoptive immunotherapy in mice. Clin Cancer Res 19(2):393–403PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Department of HematologyGuangdong General Hospital, Guangdong Academy of Medical SciencesGuangzhouChina
  2. 2.Sun Yat-sen University Cancer CenterState Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineGuangzhouChina

Personalised recommendations