Advertisement

Tumor Associated Macrophages as Therapeutic Targets for Breast Cancer

  • Liyan Lao
  • Siting Fan
  • Erwei SongEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1026)

Abstract

Tumor-associated macrophages (TAMs) are the most abundant inflammatory infiltrates in the tumor stroma. TAMs promote tumor growth by suppressing immunocompetent cells, including neovascularization and supporting cancer stem cells. In the chapter, we discuss recent efforts in reprogramming or inhibiting tumor-protecting properties of TAMs, and developing potential strategies to increase the efficacy of breast cancer treatment.

Keywords

Tumor-associated Macrophages Breast Cancer Polarization Immunosuppression Metastasis Resistance Therapeutic target 

References

  1. 1.
    Lavin Y, Mortha A, Rahman A, Merad M (2015) Regulation of macrophage development and function in peripheral tissues. Nat Rev Immunol 15(12):731–744. doi: 10.1038/nri3920 PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Perdiguero EG, Geissmann F (2016) The development and maintenance of resident macrophages. Nat Immunol 17(1):2–8. doi: 10.1038/ni.3341 PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Wynn TA, Chawla A, Pollard JW (2013) Macrophage biology in development, homeostasis and disease. Nature 496(7446):445–455. doi: 10.1038/nature12034 PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Hagerling C, Casbon AJ, Werb Z (2015) Balancing the innate immune system in tumor development. Trends Cell Biol 25(4):214–220. doi: 10.1016/j.tcb.2014.11.001 PubMedCrossRefGoogle Scholar
  5. 5.
    Glass CK, Natoli G (2016) Molecular control of activation and priming in macrophages. Nat Immunol 17(1):26–33. doi: 10.1038/ni.3306 PubMedCrossRefGoogle Scholar
  6. 6.
    Balkwill F, Mantovani A (2001) Inflammation and cancer: back to Virchow? Lancet 357(9255):539–545. doi: 10.1016/s0140-6736(00)04046-0 PubMedCrossRefGoogle Scholar
  7. 7.
    Grivennikov SI, Greten FR, Karin M (2010) Immunity, inflammation, and cancer. Cell 140(6):883–899. doi: 10.1016/j.cell.2010.01.025 PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Balkwill FR, Mantovani A (2012) Cancer-related inflammation: common themes and therapeutic opportunities. Semin Cancer Biol 22(1):33–40. doi: 10.1016/j.semcancer.2011.12.005 PubMedCrossRefGoogle Scholar
  9. 9.
    Evans R, Alexander P (1970) Cooperation of immune lymphoid cells with macrophages in tumour immunity. Nature 228(5272):620–622PubMedCrossRefGoogle Scholar
  10. 10.
    Mantovani A (1978) Effects on in vitro tumor growth of murine macrophages isolated from sarcoma lines differing in immunogenicity and metastasizing capacity. Int J Cancer 22(6):741–746PubMedCrossRefGoogle Scholar
  11. 11.
    Dvorak HF (1986) Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med 315(26):1650–1659. doi: 10.1056/nejm198612253152606 PubMedCrossRefGoogle Scholar
  12. 12.
    Paget S (1989) The distribution of secondary growths in cancer of the breast. 1889. Cancer Metastasis Rev 8(2):98–101PubMedGoogle Scholar
  13. 13.
    Joyce JA, Pollard JW (2009) Microenvironmental regulation of metastasis. Nat Rev Cancer 9(4):239–252. doi: 10.1038/nrc2618 PubMedCrossRefGoogle Scholar
  14. 14.
    Mantovani A, Marchesi F, Malesci A, Laghi L, Allavena P (2017) Tumour-associated macrophages as treatment targets in oncology. Nat Rev Clin Oncol. doi: 10.1038/nrclinonc.2016.217
  15. 15.
    Williams CB, Yeh ES, Soloff AC (2016) Tumor-associated macrophages: unwitting accomplices in breast cancer malignancy NPJ Breast Cancer:2. doi: 10.1038/npjbcancer.2015.25
  16. 16.
    Lewis CE, Harney AS, Pollard JW (2016) The multifaceted role of perivascular macrophages in tumors. Cancer Cell 30(1):18–25. doi: 10.1016/j.ccell.2016.05.017 PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Ginhoux F, Schultze JL, Murray PJ, Ochando J, Biswas SK (2016) New insights into the multidimensional concept of macrophage ontogeny, activation and function. Nat Immunol 17(1):34–40. doi: 10.1038/ni.3324 PubMedCrossRefGoogle Scholar
  18. 18.
    Hashimoto D, Chow A, Noizat C, Teo P, Beasley MB, Leboeuf M, Becker CD, See P, Price J, Lucas D, Greter M, Mortha A, Boyer SW, Forsberg EC, Tanaka M, van Rooijen N, Garcia-Sastre A, Stanley ER, Ginhoux F, Frenette PS, Merad M (2013) Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes. Immunity 38(4):792–804. doi: 10.1016/j.immuni.2013.04.004 PubMedCrossRefGoogle Scholar
  19. 19.
    Ginhoux F, Jung S (2014) Monocytes and macrophages: developmental pathways and tissue homeostasis. Nat Rev Immunol 14(6):392–404. doi: 10.1038/nri3671 PubMedCrossRefGoogle Scholar
  20. 20.
    Franklin RA, Liao W, Sarkar A, Kim MV, Bivona MR, Liu K, Pamer EG, Li MO (2014) The cellular and molecular origin of tumor-associated macrophages. Science 344(6186):921–925. doi: 10.1126/science.1252510 PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Franklin RA, Li MO (2016) Ontogeny of tumor-associated macrophages and its implication in cancer regulation. Trends in Cancer 2(1):20–34. doi: 10.1016/j.trecan.2015.11.004 PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    van de Laar L, Saelens W, De Prijck S, Martens L, Scott CL, Van Isterdael G, Hoffmann E, Beyaert R, Saeys Y, Lambrecht BN, Guilliams M (2016) Yolk sac macrophages, fetal liver, and adult monocytes can colonize an empty niche and develop into functional tissue-resident macrophages. Immunity 44(4):755–768. doi: 10.1016/j.immuni.2016.02.017 PubMedCrossRefGoogle Scholar
  23. 23.
    Gabrilovich DI, Nagaraj S (2009) Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 9(3):162–174. doi: 10.1038/nri2506 PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Bronte V, Brandau S, Chen SH, Colombo MP, Frey AB, Greten TF, Mandruzzato S, Murray PJ, Ochoa A, Ostrand-Rosenberg S, Rodriguez PC, Sica A, Umansky V, Vonderheide RH, Gabrilovich DI (2016) Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nat Commun 7:12150. doi: 10.1038/ncomms12150 PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Kumar V, Cheng P, Condamine T, Mony S, Languino LR, McCaffrey JC, Hockstein N, Guarino M, Masters G, Penman E, Denstman F, Xu X, Altieri DC, Du H, Yan C, Gabrilovich DI (2016) CD45 phosphatase inhibits STAT3 transcription factor activity in myeloid cells and promotes tumor-associated macrophage differentiation. Immunity 44(2):303–315. doi: 10.1016/j.immuni.2016.01.014 PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Hanna RN, Cekic C, Sag D, Tacke R, Thomas GD, Nowyhed H, Herrley E, Rasquinha N, McArdle S, Wu R, Peluso E, Metzger D, Ichinose H, Shaked I, Chodaczek G, Biswas SK, Hedrick CC (2015) Patrolling monocytes control tumor metastasis to the lung. Science 350(6263):985–990. doi: 10.1126/science.aac9407 PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Tymoszuk P, Evens H, Marzola V, Wachowicz K, Wasmer MH, Datta S, Muller-Holzner E, Fiegl H, Bock G, van Rooijen N, Theurl I, Doppler W (2014) In situ proliferation contributes to accumulation of tumor-associated macrophages in spontaneous mammary tumors. Eur J Immunol 44(8):2247–2262. doi: 10.1002/eji.201344304 PubMedCrossRefGoogle Scholar
  28. 28.
    Lin EY, Nguyen AV, Russell RG, Pollard JW (2001) Colony-stimulating factor 1 promotes progression of mammary tumors to malignancy. J Exp Med 193(6):727–740PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Qian BZ, Pollard JW (2010) Macrophage diversity enhances tumor progression and metastasis. Cell 141(1):39–51. doi: 10.1016/j.cell.2010.03.014 PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Lin EY, Jf L, Bricard G, Wang W, Deng Y, Sellers R, Porcelli SA, Pollard JW (2007) Vascular endothelial growth factor restores delayed tumor progression in tumors depleted of macrophages. Mol Oncol 1(3):288–302. doi: 10.1016/j.molonc.2007.10.003 PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Ueno T, Toi M, Saji H, Muta M, Bando H, Kuroi K, Koike M, Inadera H, Matsushima K (2000) Significance of macrophage chemoattractant protein-1 in macrophage recruitment, angiogenesis, and survival in human breast cancer. Clinical cancer research : an official journal of the American Association for Cancer Research 6(8):3282–3289Google Scholar
  32. 32.
    Qian BZ, Li J, Zhang H, Kitamura T, Zhang J, Campion LR, Kaiser EA, Snyder LA, Pollard JW (2011) CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature 475(7355):222–225. doi: 10.1038/nature10138 PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Hughes R, Qian BZ, Rowan C, Muthana M, Keklikoglou I, Olson OC, Tazzyman S, Danson S, Addison C, Clemons M, Gonzalez-Angulo AM, Joyce JA, De Palma M, Pollard JW, Lewis CE (2015) Perivascular M2 macrophages stimulate tumor relapse after chemotherapy. Cancer Res 75(17):3479–3491. doi: 10.1158/0008-5472.CAN-14-3587 PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Kozin SV, Kamoun WS, Huang Y, Dawson MR, Jain RK, Duda DG (2010) Recruitment of myeloid but not endothelial precursor cells facilitates tumor regrowth after local irradiation. Cancer Res 70(14):5679–5685. doi: 10.1158/0008-5472.can-09-4446 PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Acharyya S, Oskarsson T, Vanharanta S, Malladi S, Kim J, Morris PG, Manova-Todorova K, Leversha M, Hogg N, Seshan VE, Norton L, Brogi E, Massagué J (2012a) A CXCL1 paracrine network links cancer chemoresistance and metastasis. Cell 150(1):165–178. doi: 10.1016/j.cell.2012.04.042 PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Casazza A, Laoui D, Wenes M, Rizzolio S, Bassani N, Mambretti M, Deschoemaeker S, VanGinderachter J, Tamagnone L, Mazzone M (2013) Impeding macrophage entry into hypoxic tumor areas by Sema3A/Nrp1 signaling blockade inhibits angiogenesis and restores antitumor immunity. Cancer Cell 24(6):695–709. doi: 10.1016/j.ccr.2013.11.007 PubMedCrossRefGoogle Scholar
  37. 37.
    Stein M, Keshav S, Harris N, Gordon S (1992) Interleukin 4 potently enhances murine macrophage mannose receptor activity: a marker of alternative immunologic macrophage activation. J Exp Med 176(1):287–292PubMedCrossRefGoogle Scholar
  38. 38.
    Mills CD (2012) M1 and M2 macrophages: oracles of health and disease. Crit Rev Immunol 32(6):463–488PubMedCrossRefGoogle Scholar
  39. 39.
    Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M (2004) The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 25(12):677–686. doi: 10.1016/j.it.2004.09.015 PubMedCrossRefGoogle Scholar
  40. 40.
    Mantovani A, Allavena P (2015) The interaction of anticancer therapies with tumor-associated macrophages. J Exp Med 212(4):435–445. doi: 10.1084/jem.20150295 PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Ostuni R, Kratochvill F, Murray PJ, Natoli G (2015) Macrophages and cancer: from mechanisms to therapeutic implications. Trends Immunol 36(4):229–239. doi: 10.1016/j.it.2015.02.004 PubMedCrossRefGoogle Scholar
  42. 42.
    Grugan KD, McCabe FL, Kinder M, Greenplate AR, Harman BC, Ekert JE, Van Rooijen N, Anderson GM, Nemeth JA, Strohl WR, Jordan RE, Brezski RJ (2012) Tumor-associated macrophages promote invasion while retaining fc-dependent anti-tumor function. J Immunol 189(11):5457–5466. doi: 10.4049/jimmunol.1201889 PubMedCrossRefGoogle Scholar
  43. 43.
    Gautier EL, Shay T, Miller J, Greter M, Jakubzick C, Ivanov S, Helft J, Chow A, Elpek KG, Gordonov S, Mazloom AR, Ma’ayan A, Chua WJ, Hansen TH, Turley SJ, Merad M, Randolph GJ (2012) Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages. Nat Immunol 13(11):1118–1128. doi: 10.1038/ni.2419 PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Xue J, Schmidt SV, Sander J, Draffehn A, Krebs W, Quester I, De Nardo D, Gohel TD, Emde M, Schmidleithner L, Ganesan H, Nino-Castro A, Mallmann MR, Labzin L, Theis H, Kraut M, Beyer M, Latz E, Freeman TC, Ulas T, Schultze JL (2014) Transcriptome-based network analysis reveals a spectrum model of human macrophage activation. Immunity 40(2):274–288. doi: 10.1016/j.immuni.2014.01.006 PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Shalek AK, Satija R, Shuga J, Trombetta JJ, Gennert D, Lu D, Chen P, Gertner RS, Gaublomme JT, Yosef N, Schwartz S, Fowler B, Weaver S, Wang J, Wang X, Ding R, Raychowdhury R, Friedman N, Hacohen N, Park H, May AP, Regev A (2014) Single-cell RNA-seq reveals dynamic paracrine control of cellular variation. Nature 510(7505):363–369. doi: 10.1038/nature13437 PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Ruffell B, Affara NI, Coussens LM (2012) Differential macrophage programming in the tumor microenvironment. Trends Immunol 33(3):119–126. doi: 10.1016/j.it.2011.12.001 PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    DeNardo DG, Barreto JB, Andreu P, Vasquez L, Tawfik D, Kolhatkar N, Coussens LM (2009) CD4(+) T cells regulate pulmonary metastasis of mammary carcinomas by enhancing protumor properties of macrophages. Cancer Cell 16(2):91–102. doi: 10.1016/j.ccr.2009.06.018 PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Shiao SL, Ruffell B, De Nardo DG, Faddegon BA, Park CC, Coussens LM (2015a) Th2-polarized CD4+ T cells and macrophages limit efficacy of radiation therapy. Cancer Immunol Res 3(5):518–525. doi: 10.1158/2326-6066.CIR-14-0232 PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Pedroza-Gonzalez A, Xu K, Wu TC, Aspord C, Tindle S, Marches F, Gallegos M, Burton EC, Savino D, Hori T, Tanaka Y, Zurawski S, Zurawski G, Bover L, Liu YJ, Banchereau J, Palucka AK (2011) Thymic stromal lymphopoietin fosters human breast tumor growth by promoting type 2 inflammation. J Exp Med 208(3):479–490. doi: 10.1084/jem.20102131 PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Zelenay S, van der Veen AG, Bottcher JP, Snelgrove KJ, Rogers N, Acton SE, Chakravarty P, Girotti MR, Marais R, Quezada SA, Sahai E, Reis e Sousa C (2015) Cyclooxygenase-dependent tumor growth through evasion of immunity. Cell 162(6):1257–1270. doi: 10.1016/j.cell.2015.08.015 PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Van Overmeire E, Stijlemans B, Heymann F, Keirsse J, Morias Y, Elkrim Y, Brys L, Abels C, Lahmar Q, Ergen C, Vereecke L, Tacke F, De Baetselier P, Van Ginderachter JA, Laoui D (2016) M-CSF and GM-CSF receptor signaling differentially regulate monocyte maturation and macrophage polarization in the tumor microenvironment. Cancer Res 76(1):35–42. doi: 10.1158/0008-5472.CAN-15-0869 PubMedCrossRefGoogle Scholar
  52. 52.
    Semenza GL (2016) The hypoxic tumor microenvironment: a driving force for breast cancer progression. BBA-Mol Cell Res 1863(3):382–391. doi: 10.1016/j.bbamcr.2015.05.036 Google Scholar
  53. 53.
    Zhang Y, Choksi S, Chen K, Pobezinskaya Y, Linnoila I, Liu ZG (2013a) ROS play a critical role in the differentiation of alternatively activated macrophages and the occurrence of tumor-associated macrophages. Cell Res 23(7):898–914. doi: 10.1038/cr.2013.75 PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Doedens AL, Stockmann C, Rubinstein MP, Liao D, Zhang N, DeNardo DG, Coussens LM, Karin M, Goldrath AW, Johnson RS (2010a) Macrophage expression of hypoxia-inducible factor-1 alpha suppresses T-cell function and promotes tumor progression. Cancer Res 70(19):7465–7475. doi: 10.1158/0008-5472.can-10-1439 PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Murray PJ, Allen JE, Biswas SK, Fisher EA, Gilroy DW, Goerdt S, Gordon S, Hamilton JA, Ivashkiv LB, Lawrence T, Locati M, Mantovani A, Martinez FO, Mege JL, Mosser DM, Natoli G, Saeij JP, Schultze JL, Shirey KA, Sica A, Suttles J, Udalova I, van Ginderachter JA, Vogel SN, Wynn TA (2014) Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 41(1):14–20. doi: 10.1016/j.immuni.2014.06.008 PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Cook RS, Jacobsen KM, Wofford AM, DeRyckere D, Stanford J, Prieto AL, Redente E, Sandahl M, Hunter DM, Strunk KE, Graham DK, Earp HS 3rd (2013) MerTK inhibition in tumor leukocytes decreases tumor growth and metastasis. J Clin Invest 123(8):3231–3242. doi: 10.1172/JCI67655 PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Krausgruber T, Blazek K, Smallie T, Alzabin S, Lockstone H, Sahgal N, Hussell T, Feldmann M, Udalova IA (2011) IRF5 promotes inflammatory macrophage polarization and TH1-TH17 responses. Nat Immunol 12(3):231–238. doi: 10.1038/ni.1990 PubMedCrossRefGoogle Scholar
  58. 58.
    Lu G, Zhang R, Geng S, Peng L, Jayaraman P, Chen C, Xu F, Yang J, Li Q, Zheng H, Shen K, Wang J, Liu X, Wang W, Zheng Z, Qi CF, Si C, He JC, Liu K, Lira SA, Sikora AG, Li L, Xiong H (2015) Myeloid cell-derived inducible nitric oxide synthase suppresses M1 macrophage polarization. Nat Commun 6:6676. doi: 10.1038/ncomms7676 PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Kimura T, Nada S, Takegahara N, Okuno T, Nojima S, Kang S, Ito D, Morimoto K, Hosokawa T, Hayama Y, Mitsui Y, Sakurai N, Sarashina-Kida H, Nishide M, Maeda Y, Takamatsu H, Okuzaki D, Yamada M, Okada M, Kumanogoh A (2016) Polarization of M2 macrophages requires Lamtor1 that integrates cytokine and amino-acid signals. Nat Commun 7:13130. doi: 10.1038/ncomms13130 PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Kaneda MM, Messer KS, Ralainirina N, Li H, Leem CJ, Gorjestani S, Woo G, Nguyen AV, Figueiredo CC, Foubert P, Schmid MC, Pink M, Winkler DG, Rausch M, Palombella VJ, Kutok J, McGovern K, Frazer KA, Wu X, Karin M, Sasik R, Cohen EE, Varner JA (2016) PI3Kgamma is a molecular switch that controls immune suppression. Nature 539(7629):437–442. doi: 10.1038/nature19834 PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Smale ST, Tarakhovsky A, Natoli G (2014) Chromatin contributions to the regulation of innate immunity. Annu Rev Immunol 32:489–511. doi: 10.1146/annurev-immunol-031210-101303 PubMedCrossRefGoogle Scholar
  62. 62.
    Li Z, Chao TC, Chang KY, Lin N, Patil VS, Shimizu C, Head SR, Burns JC, Rana TM (2014a) The long noncoding RNA THRIL regulates TNFalpha expression through its interaction with hnRNPL. Proc Natl Acad Sci U S A 111(3):1002–1007. doi: 10.1073/pnas.1313768111 PubMedCrossRefGoogle Scholar
  63. 63.
    Saeed S, Quintin J, Kerstens HH, Rao NA, Aghajanirefah A, Matarese F, Cheng SC, Ratter J, Berentsen K, van der Ent MA, Sharifi N, Janssen-Megens EM, Ter Huurne M, Mandoli A, van Schaik T, Ng A, Burden F, Downes K, Frontini M, Kumar V, Giamarellos-Bourboulis EJ, Ouwehand WH, van der Meer JW, Joosten LA, Wijmenga C, Martens JH, Xavier RJ, Logie C, Netea MG, Stunnenberg HG (2014) Epigenetic programming of monocyte-to-macrophage differentiation and trained innate immunity. Science 345(6204):1251086. doi: 10.1126/science.1251086 PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Amit I, Winter DR, Jung S (2016) The role of the local environment and epigenetics in shaping macrophage identity and their effect on tissue homeostasis. Nat Immunol 17(1):18–25. doi: 10.1038/ni.3325 PubMedCrossRefGoogle Scholar
  65. 65.
    Li Y, Zhao L, Shi B, Ma S, Xu Z, Ge Y, Liu Y, Zheng D, Shi J (2015a) Functions of miR-146a and miR-222 in tumor-associated macrophages in breast cancer. Sci Rep 5:18648. doi: 10.1038/srep18648 PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Yang J, Zhang Z, Chen C, Liu Y, Si Q, Chuang TH, Li N, Gomez-Cabrero A, Reisfeld RA, Xiang R, Luo Y (2014) MicroRNA-19a-3p inhibits breast cancer progression and metastasis by inducing macrophage polarization through downregulated expression of Fra-1 proto-oncogene. Oncogene 33(23):3014–3023. doi: 10.1038/onc.2013.258 PubMedCrossRefGoogle Scholar
  67. 67.
    Noy R, Pollard JW (2014) Tumor-associated macrophages: from mechanisms to therapy. Immunity 41(1):49–61. doi: 10.1016/j.immuni.2014.06.010 PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Joyce JA, Fearon DT (2015) T cell exclusion, immune privilege, and the tumor microenvironment. Science 348(6230):74–80. doi: 10.1126/science.aaa6204 PubMedCrossRefGoogle Scholar
  69. 69.
    Ojalvo LS, King W, Cox D, Pollard JW (2009) High-density gene expression analysis of tumor-associated macrophages from mouse mammary tumors. Am J Pathol 174(3):1048–1064. doi: 10.2353/ajpath.2009.080676 PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Pollard JW (2004) Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer 4(1):71–78PubMedCrossRefGoogle Scholar
  71. 71.
    Chen W, Ten Dijke P (2016) Immunoregulation by members of the TGFbeta superfamily. Nat Rev Immunol 16(12):723–740. doi: 10.1038/nri.2016.112 PubMedCrossRefGoogle Scholar
  72. 72.
    Ng TH, Britton GJ, Hill EV, Verhagen J, Burton BR, Wraith DC (2013) Regulation of adaptive immunity; the role of interleukin-10. Front Immunol 4:129. doi: 10.3389/fimmu.2013.00129 PubMedPubMedCentralGoogle Scholar
  73. 73.
    Ruffell B, Chang-Strachan D, Chan V, Rosenbusch A, Ho CM, Pryer N, Daniel D, Hwang ES, Rugo HS, Coussens LM (2014) Macrophage IL-10 blocks CD8+ T cell-dependent responses to chemotherapy by suppressing IL-12 expression in intratumoral dendritic cells. Cancer Cell 26(5):623–637. doi: 10.1016/j.ccell.2014.09.006 PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Li HZ, Yang B, Huang J, Lin Y, Xiang TX, Wan JY, Li HY, Chouaib S, Ren GS (2015b) Cyclooxygenase-2 in tumor-associated macrophages promotes breast cancer cell survival by triggering a positive-feedback loop between macrophages and cancer cells. Oncotarget 6(30):29637–29650PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Tian J, Hachim MY, Hachim IY, Dai M, Lo C, Raffa FA, Ali S, Lebrun JJ (2017) Cyclooxygenase-2 regulates TGFbeta-induced cancer stemness in triple-negative breast cancer. Sci Rep 7:40258. doi: 10.1038/srep40258 PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Adams JL, Smothers J, Srinivasan R, Hoos A (2015) Big opportunities for small molecules in immuno-oncology. Nat Rev Drug Discov 14(9):603–622. doi: 10.1038/nrd4596 PubMedCrossRefGoogle Scholar
  77. 77.
    DeNardo DG, Brennan DJ, Rexhepaj E, Ruffell B, Shiao SL, Madden SF, Gallagher WM, Wadhwani N, Keil SD, Junaid SA, Rugo HS, Shelley Hwang E, Jirström K, West BL, Coussens LM (2011) Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy. Cancer Discov 1(1):54–67. doi: 10.1158/2159-8274.CD-10-0028 PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Lau J, Cheung J, Navarro A, Lianoglou S, Haley B, Totpal K, Sanders L, Koeppen H, Caplazi P, McBride J, Chiu H, Hong R, Grogan J, Javinal V, Yauch R, Irving B, Belvin M, Mellman I, Kim JM, Schmidt M (2017) Tumour and host cell PD-L1 is required to mediate suppression of anti-tumour immunity in mice. Nat Commun 8:14572. doi: 10.1038/ncomms14572 PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Wherry EJ (2011) T cell exhaustion. Nat Immunol 131(6):492–499. doi: 10.1038/ni.2035 CrossRefGoogle Scholar
  80. 80.
    Noman MZ, Desantis G, Janji B, Hasmim M, Karray S, Dessen P, Bronte V, Chouaib S (2014) PD-L1 is a novel direct target of HIF-1alpha, and its blockade under hypoxia enhanced MDSC-mediated T cell activation. J Exp Med 211(5):781–790. doi: 10.1084/jem.20131916 PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Beatson R, Tajadura-Ortega V, Achkova D, Picco G, Tsourouktsoglou TD, Klausing S, Hillier M, Maher J, Noll T, Crocker PR, Taylor-Papadimitriou J, Burchell JM (2016) The mucin MUC1 modulates the tumor immunological microenvironment through engagement of the lectin Siglec-9. Nat Immunol 17(11):1273–1281. doi: 10.1038/ni.3552 PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Pello OM, De Pizzol M, Mirolo M, Soucek L, Zammataro L, Amabile A, Doni A, Nebuloni M, Swigart LB, Evan GI, Mantovani A, Locati M (2012) Role of c-MYC in alternative activation of human macrophages and tumor-associated macrophage biology. Blood 119(2):411–421. doi: 10.1182/blood-2011-02-339911 PubMedCrossRefGoogle Scholar
  83. 83.
    Casey SC, Tong L, Li Y, Do R, Walz S, Fitzgerald KN, Gouw AM, Baylot V, Gutgemann I, Eilers M, Felsher DW (2016) MYC regulates the antitumor immune response through CD47 and PD-L1. Science 352(6282):227–231. doi: 10.1126/science.aac9935 PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Speiser DE, Ho PC, Verdeil G (2016) Regulatory circuits of T cell function in cancer. Nat Rev Immunol 16(10):599–611. doi: 10.1038/nri.2016.80 PubMedCrossRefGoogle Scholar
  85. 85.
    de Boniface J, Mao Y, Schmidt-Mende J, Kiessling R, Poschke I (2012) Expression patterns of the immunomodulatory enzyme arginase 1 in blood, lymph nodes and tumor tissue of early-stage breast cancer patients. OncoImmunology 1(8):1305–1312. doi: 10.4161/onci.21678 PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Movahedi K, Laoui D, Gysemans C, Baeten M, Stange G, Van den Bossche J, Mack M, Pipeleers D, In’t Veld P, De Baetselier P, Van Ginderachter JA (2010) Different tumor microenvironments contain functionally distinct subsets of macrophages derived from Ly6C(high) monocytes. Cancer Res 70(14):5728–5739. doi: 10.1158/0008-5472.can-09-4672 PubMedCrossRefGoogle Scholar
  87. 87.
    Murray PJ (2016) Amino acid auxotrophy as a system of immunological control nodes. Nat Immunol 17(2):132–139. doi: 10.1038/ni.3323 PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Qiu F, Chen YR, Liu X, Chu CY, Shen LJ, Xu J, Gaur S, Forman HJ, Zhang H, Zheng S, Yen Y, Huang J, Kung HJ, Ann DK (2014) Arginine starvation impairs mitochondrial respiratory function in ASS1-deficient breast cancer cells. Sci Signal 7(319):ra31. doi: 10.1126/scisignal.2004761
  89. 89.
    Rodriguez PC, Ochoa AC, Al-Khami AA (2017) Arginine metabolism in myeloid cells shapes innate and adaptive immunity. Front Immunol 8:93. doi: 10.3389/fimmu.2017.00093 PubMedPubMedCentralGoogle Scholar
  90. 90.
    Lu T, Ramakrishnan R, Altiok S, Youn JI, Cheng P, Celis E, Pisarev V, Sherman S, Sporn MB, Gabrilovich D (2011) Tumor-infiltrating myeloid cells induce tumor cell resistance to cytotoxic T cells in mice. J Clin Invest 121(10):4015–4029. doi: 10.1172/jci45862 PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Granados-Principal S, Liu Y, Guevara ML, Blanco E, Choi DS, Qian W, Patel T, Rodriguez AA, Cusimano J, Weiss HL, Zhao H, Landis MD, Dave B, Gross SS, Chang JC (2015) Inhibition of iNOS as a novel effective targeted therapy against triple-negative breast cancer. Breast cancer research : BCR 17:25. doi: 10.1186/s13058-015-0527-x PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Savas P, Salgado R, Denkert C, Sotiriou C, Darcy PK, Smyth MJ, Loi S (2016) Clinical relevance of host immunity in breast cancer: from TILs to the clinic. Nat Rev Clin Oncol 13(4):228–241. doi: 10.1038/nrclinonc.2015.215 PubMedCrossRefGoogle Scholar
  93. 93.
    Uyttenhove C, Pilotte L, Theate I, Stroobant V, Colau D, Parmentier N, Boon T, Van den Eynde BJ (2003) Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nat Med 9(10):1269–1274. doi: 10.1038/nm934 PubMedCrossRefGoogle Scholar
  94. 94.
    Muller AJ, DuHadaway JB, Donover PS, Sutanto-Ward E, Prendergast GC (2005) Inhibition of indoleamine 2,3-dioxygenase, an immunoregulatory target of the cancer suppression gene Bin1, potentiates cancer chemotherapy. Nat Med 11(3):312–319. doi: 10.1038/nm1196 PubMedCrossRefGoogle Scholar
  95. 95.
    Weichhart T, Hengstschlager M, Linke M (2015) Regulation of innate immune cell function by mTOR. Nat Rev Immunol 15(10):599–614. doi: 10.1038/nri3901 PubMedCrossRefGoogle Scholar
  96. 96.
    Faget J, Biota C, Bachelot T, Gobert M, Treilleux I, Goutagny N, Durand I, Leon-Goddard S, Blay JY, Caux C, Menetrier-Caux C (2011) Early detection of tumor cells by innate immune cells leads to T(reg) recruitment through CCL22 production by tumor cells. Cancer Res 71(19):6143–6152. doi: 10.1158/0008-5472.CAN-11-0573 PubMedCrossRefGoogle Scholar
  97. 97.
    Su S, Liao J, Liu J, Huang D, He C, Chen F, Yang L, Wu W, Chen J, Lin L, Zeng Y, Ouyang N, Cui X, Yao H, Su F, Huang JD, Lieberman J, Liu Q, Song E (2017) Blocking the recruitment of naive CD4+ T cells reverses immunosuppression in breast cancer. Cell Res. doi: 10.1038/cr.2017.34
  98. 98.
    Sakaguchi S, Yamaguchi T, Nomura T, Ono M (2008) Regulatory T cells and immune tolerance. Cell 133(5):775–787. doi: 10.1016/j.cell.2008.05.009 PubMedCrossRefGoogle Scholar
  99. 99.
    Tanaka A, Sakaguchi S (2017) Regulatory T cells in cancer immunotherapy. Cell Res 27(1):109–118. doi: 10.1038/cr.2016.151 PubMedCrossRefGoogle Scholar
  100. 100.
    Parker KH, Sinha P, Horn LA, Clements VK, Yang H, Li J, Tracey KJ, Ostrand-Rosenberg S (2014) HMGB1 enhances immune suppression by facilitating the differentiation and suppressive activity of myeloid-derived suppressor cells. Cancer Res 74(20):5723–5733. doi: 10.1158/0008-5472.can-13-2347 PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674. doi: 10.1016/j.cell.2011.02.013 PubMedCrossRefGoogle Scholar
  102. 102.
    Biswas SK, Allavena P, Mantovani A (2013) Tumor-associated macrophages: functional diversity, clinical significance, and open questions. Semin Immunopathol 35(5):585–600. doi: 10.1007/s00281-013-0367-7 PubMedCrossRefGoogle Scholar
  103. 103.
    Lin EY, Pollard JW (2007) Tumor-associated macrophages press the angiogenic switch in breast cancer. Cancer Res 67(11):5064–5066. doi: 10.1158/0008-5472.CAN-07-0912 PubMedCrossRefGoogle Scholar
  104. 104.
    Rivera LB, Bergers G (2015) Intertwined regulation of angiogenesis and immunity by myeloid cells. Trends Immunol 36(4):240–249. doi: 10.1016/j.it.2015.02.005 PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Murdoch C, Muthana M, Coffelt SB, Lewis CE (2008) The role of myeloid cells in the promotion of tumour angiogenesis. Nat Rev Cancer 8(8):618–631. doi: 10.1038/nrc2444 PubMedCrossRefGoogle Scholar
  106. 106.
    Kim S, Choi JH, Lim HI, Lee SK, Kim WW, Cho S, Kim JS, Kim JH, Choe JH, Nam SJ, Lee JE, Yang JH (2009) EGF-induced MMP-9 expression is mediated by the JAK3/ERK pathway, but not by the JAK3/STAT-3 pathway in a SKBR3 breast cancer cell line. Cell Signal 21(6):892–898PubMedCrossRefGoogle Scholar
  107. 107.
    Kessenbrock K, Plaks V, Werb Z (2010) Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 141(1):52–67. doi: 10.1016/j.cell.2010.03.015 PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Deryugina EI, Quigley JP (2015) Tumor angiogenesis: MMP-mediated induction of intravasation- and metastasis-sustaining neovasculature. Matrix Biol 44-46:94–112. doi: 10.1016/j.matbio.2015.04.004 PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Yeo EJ, Cassetta L, Qian BZ, Lewkowich I, Li JF, Stefater Iii JA, Smith AN, Wiechmann LS, Wang Y, Pollard JW, Lang RA (2014) Myeloid wnt7b mediates the angiogenic switch and metastasis in breast cancer. Cancer Res 74(11):2962–2973. doi: 10.1158/0008-5472.CAN-13-2421 PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Bonapace L, Coissieux MM, Wyckoff J, Mertz KD, Varga Z, Junt T, Bentires-Alj M (2014) Cessation of CCL2 inhibition accelerates breast cancer metastasis by promoting angiogenesis. Nature 515(7525):130–133. doi: 10.1038/nature13862 PubMedCrossRefGoogle Scholar
  111. 111.
    Lee S, Jilani SM, Nikolova GV, Carpizo D, Iruela-Arispe ML (2005) Processing of VEGF-A by matrix metalloproteinases regulates bioavailability and vascular patterning in tumors. J Cell Biol 169(4):681–691. doi: 10.1083/jcb.200409115 PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Jung M, Ören B, Mora J, Mertens C, Dziumbla S, Popp R, Weigert A, Grossmann N, Fleming I, Brüne B (2016) Lipocalin 2 from macrophages stimulated by tumor cell-derived sphingosine-1-phosphate promotes lymphangiogenesis and tumor metastasis. Sci Signal 9(434). doi: 10.1126/scisignal.aaf3241
  113. 113.
    Wyckoff JB, Wang Y, Lin EY, Li JF, Goswami S, Stanley ER, Segall JE, Pollard JW, Condeelis J (2007) Direct visualization of macrophage-assisted tumor cell intravasation in mammary tumors. Cancer Res 67(6):2649–2656. doi: 10.1158/0008-5472.CAN-06-1823 PubMedCrossRefGoogle Scholar
  114. 114.
    De Palma M, Venneri MA, Galli R, Sergi LS, Politi LS, Sampaolesi M, Naldini L (2005) Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. Cancer Cell 8(3):211–226. doi: 10.1016/j.ccr.2005.08.002 PubMedCrossRefGoogle Scholar
  115. 115.
    Mazzieri R, Pucci F, Moi D, Zonari E, Ranghetti A, Berti A, Politi Letterio S, Gentner B, Brown Jeffrey L, Naldini L, De Palma M (2011) Targeting the ANG2/TIE2 Axis inhibits tumor growth and metastasis by impairing angiogenesis and disabling rebounds of Proangiogenic myeloid cells. Cancer Cell 19 (4):512–526. doi:http://dx.doi.org/10.1016/j.ccr.2011.02.005Google Scholar
  116. 116.
    Kim OH, Kang GH, Noh H, Cha JY, Lee HJ, Yoon JH, Mamura M, Nam JS, Lee DH, Kim YA, Park YJ, Kim H, Oh BC (2013) Proangiogenic TIE2(+)/CD31 (+) macrophages are the predominant population of tumor-associated macrophages infiltrating metastatic lymph nodes. Mol Cells 36(5):432–438. doi: 10.1007/s10059-013-0194-7 PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Bron S, Henry L, Faes-Van’t Hull E, Turrini R, Vanhecke D, Guex N, Ifticene-Treboux A, Marina Iancu E, Semilietof A, Rufer N, Lehr HA, Xenarios I, Coukos G, Delaloye JF, Doucey MA (2016) TIE-2-expressing monocytes are lymphangiogenic and associate specifically with lymphatics of human breast cancer. OncoImmunology 5(2):e1073882. doi: 10.1080/2162402x.2015.1073882 PubMedCrossRefGoogle Scholar
  118. 118.
    Rehman J, Li J, Orschell CM, March KL (2003) Peripheral blood “endothelial progenitor cells” are derived from monocyte/macrophages and secrete angiogenic growth factors. Circulation 107(8):1164–1169PubMedCrossRefGoogle Scholar
  119. 119.
    Bailey AS, Willenbring H, Jiang S, Anderson DA, Schroeder DA, Wong MH, Grompe M, Fleming WH (2006) Myeloid lineage progenitors give rise to vascular endothelium. Proc Natl Acad Sci U S A 103(35):13156–13161. doi: 10.1073/pnas.0604203103 PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Kumar AH, Martin K, Turner EC, Buneker CK, Dorgham K, Deterre P, Caplice NM (2013) Role of CX3CR1 receptor in monocyte/macrophage driven neovascularization. PLoS One 8(2):e57230. doi: 10.1371/journal.pone.0057230 PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Goswami S, Sahai E, Wyckoff JB, Cammer M, Cox D, Pixley FJ, Stanley ER, Segall JE, Condeelis JS (2005) Macrophages promote the invasion of breast carcinoma cells via a colony-stimulating factor-1/epidermal growth factor paracrine loop. Cancer Res 65(12):5278–5283. doi: 10.1158/0008-5472.can-04-1853 PubMedCrossRefGoogle Scholar
  122. 122.
    Wyckoff J, Wang WG, Lin EY, Wang YR, Pixley F, Stanley ER, Graf T, Pollard JW, Segall J, Condeelis J (2004) A paracrine loop between tumor cells and macrophages is required for tumor cell migration in mammary tumors. Cancer Res 64(19):7022–7029. doi: 10.1158/0008-5472.can-04-1449 PubMedCrossRefGoogle Scholar
  123. 123.
    Condeelis J, Pollard JW (2006) Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell 124(2):263–266. doi: 10.1016/j.cell.2006.01.007 PubMedCrossRefGoogle Scholar
  124. 124.
    Knutsdottir H, Condeelis JS, Palsson E (2016) 3-D individual cell based computational modeling of tumor cell-macrophage paracrine signaling mediated by EGF and CSF-1 gradients. Integrative biology : quantitative biosciences from nano to macro 8(1):104–119. doi: 10.1039/c5ib00201j CrossRefGoogle Scholar
  125. 125.
    Ishihara D, Dovas A, Hernandez L, Pozzuto M, Wyckoff J, Segall J, Condeelis J, Bresnick A, Cox D (2013) Wiskott-Aldrich syndrome protein regulates leukocyte-dependent breast cancer metastasis. Cell Rep 4(3):429–436. doi: 10.1016/j.celrep.2013.07.007 PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    O’Sullivan C, Lewis CE, Harris AL, McGee JO (1993) Secretion of epidermal growth factor by macrophages associated with breast carcinoma. Lancet 342(8864):148–149PubMedCrossRefGoogle Scholar
  127. 127.
    Wang S, Yuan Y, Liao L, Kuang SQ, Tien JC, O’Malley BW, Xu J (2009) Disruption of the SRC-1 gene in mice suppresses breast cancer metastasis without affecting primary tumor formation. Proc Natl Acad Sci U S A 106(1):151–156. doi: 10.1073/pnas.0808703105 PubMedCrossRefGoogle Scholar
  128. 128.
    Truong D, Puleo J, Llave A, Mouneimne G, Kamm RD, Nikkhah M (2016) Breast cancer cell invasion into a three dimensional tumor-Stroma microenvironment. Sci Rep 6:34094. doi: 10.1038/srep34094 PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Yang J, Liao D, Chen C, Liu Y, Chuang TH, Xiang R, Markowitz D, Reisfeld RA, Luo Y (2013) Tumor-associated macrophages regulate murine breast cancer stem cells through a novel paracrine EGFR/Stat3/sox-2 signaling pathway. Stem Cells 31(2):248–258. doi: 10.1002/stem.1281 PubMedCrossRefGoogle Scholar
  130. 130.
    Hernandez L, Smirnova T, Kedrin D, Wyckoff J, Zhu L, Stanley ER, Cox D, Muller WJ, Pollard JW, Van Rooijen N, Segall JE (2009) The EGF/CSF-1 paracrine invasion loop can be triggered by heregulin beta1 and CXCL12. Cancer Res 69(7):3221–3227. doi: 10.1158/0008-5472.can-08-2871 PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Lee HJ, Seo AN, Kim EJ, Jang MH, Kim YJ, Kim JH, Kim SW, Ryu HS, Park IA, Im SA, Gong G, Jung KH, Kim HJ, Park SY (2015) Prognostic and predictive values of EGFR overexpression and EGFR copy number alteration in HER2-positive breast cancer. Br J Cancer 112(1):103–111. doi: 10.1038/bjc.2014.556 PubMedCrossRefGoogle Scholar
  132. 132.
    Chen J, Yao Y, Gong C, Yu F, Su S, Chen J, Liu B, Deng H, Wang F, Lin L, Yao H, Su F, Anderson KS, Liu Q, Ewen ME, Yao X, Song E (2011a) CCL18 from tumor-associated macrophages promotes breast cancer metastasis via PITPNM3. Cancer Cell 19(4):541–555. doi: 10.1016/j.ccr.2011.02.006 PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Li HY, Cui XY, Wu W, Yu FY, Yao HR, Liu Q, Song EW, Chen JQ (2014b) Pyk2 and Src mediate signaling to CCL18-induced breast cancer metastasis. J Cell Biochem 115(3):596–603. doi: 10.1002/jcb.24697 PubMedCrossRefGoogle Scholar
  134. 134.
    Zhang B, Yin C, Li H, Shi L, Liu N, Sun Y, Lu S, Liu Y, Sun L, Li X, Chen W, Qi Y (2013b) Nir1 promotes invasion of breast cancer cells by binding to chemokine (C-C motif) ligand 18 through the PI3K/Akt/GSK3beta/snail signalling pathway. European journal of cancer (Oxford, England : 1990) 49(18):3900–3913. doi: 10.1016/j.ejca.2013.07.146 CrossRefGoogle Scholar
  135. 135.
    Mouw JK, Ou G, Weaver VM (2014) Extracellular matrix assembly: a multiscale deconstruction. Nat Rev Mol Cell Biol 15(12):771–785. doi: 10.1038/nrm3902 PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Kai F, Laklai H, Weaver VM (2016) Force matters: biomechanical regulation of cell invasion and migration in disease. Trends Cell Biol 26(7):486–497. doi: 10.1016/j.tcb.2016.03.007 PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Lang NR, Skodzek K, Hurst S, Mainka A, Steinwachs J, Schneider J, Aifantis KE, Fabry B (2015) Biphasic response of cell invasion to matrix stiffness in three-dimensional biopolymer networks. Acta Biomater 13:61–67. doi: 10.1016/j.actbio.2014.11.003 PubMedCrossRefGoogle Scholar
  138. 138.
    Levental KR, Yu H, Kass L, Lakins JN, Egeblad M, Erler JT, Fong SF, Csiszar K, Giaccia A, Weninger W, Yamauchi M, Gasser DL, Weaver VM (2009) Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139(5):891–906. doi: 10.1016/j.cell.2009.10.027 PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Acerbi I, Cassereau L, Dean I, Shi Q, Au A, Park C, Chen YY, Liphardt J, Hwang ES, Weaver VM (2015) Human breast cancer invasion and aggression correlates with ECM stiffening and immune cell infiltration. Integrative biology : quantitative biosciences from nano to macro 7(10):1120–1134. doi: 10.1039/c5ib00040h CrossRefGoogle Scholar
  140. 140.
    Pickup MW, Laklai H, Acerbi I, Owens P, Gorska AE, Chytil A, Aakre M, Weaver VM, Moses HL (2013) Stromally derived lysyl oxidase promotes metastasis of transforming growth factor-beta-deficient mouse mammary carcinomas. Cancer Res 73(17):5336–5346. doi: 10.1158/0008-5472.can-13-0012 PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Sangaletti S, Di Carlo E, Gariboldi S, Miotti S, Cappetti B, Parenza M, Rumio C, Brekken RA, Chiodoni C, Colombo MP (2008) Macrophage-derived SPARC bridges tumor cell-extracellular matrix interactions toward metastasis. Cancer Res 68(21):9050–9059. doi: 10.1158/0008-5472.CAN-08-1327 PubMedCrossRefGoogle Scholar
  142. 142.
    Gocheva V, Wang HW, Gadea BB, Shree T, Hunter KE, Garfall AL, Berman T, Joyce JA (2010) IL-4 induces cathepsin protease activity in tumor-associated macrophages to promote cancer growth and invasion. Genes Dev 24(3):241–255. doi: 10.1101/gad.1874010 PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Olson OC, Joyce JA (2015) Cysteine cathepsin proteases: regulators of cancer progression and therapeutic response. Nat Rev Cancer 15(12):712–729. doi: 10.1038/nrc4027 PubMedCrossRefGoogle Scholar
  144. 144.
    Hynes RO (2009) The extracellular matrix: not just pretty fibrils. Science 326(5957):1216–1219. doi: 10.1126/science.1176009 PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Linder S, Wiesner C, Himmel M (2011) Degrading devices: invadosomes in proteolytic cell invasion. Annu Rev Cell Dev Biol 27:185–211. doi: 10.1146/annurev-cellbio-092910-154216 PubMedCrossRefGoogle Scholar
  146. 146.
    Hall A (2009) The cytoskeleton and cancer. Cancer Metastasis Rev 28(1–2):5–14. doi: 10.1007/s10555-008-9166-3 PubMedCrossRefGoogle Scholar
  147. 147.
    Giampieri S, Manning C, Hooper S, Jones L, Hill CS, Sahai E (2009) Localized and reversible TGFbeta signalling switches breast cancer cells from cohesive to single cell motility. Nat Cell Biol 11(11):1287–1296. doi: 10.1038/ncb1973 PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Friedl P, Gilmour D (2009) Collective cell migration in morphogenesis, regeneration and cancer. Nat Rev Mol Cell Biol 10(7):445–457. doi: 10.1038/nrm2720 PubMedCrossRefGoogle Scholar
  149. 149.
    Yamaguchi H, Lorenz M, Kempiak S, Sarmiento C, Coniglio S, Symons M, Segall J, Eddy R, Miki H, Takenawa T, Condeelis J (2005) Molecular mechanisms of invadopodium formation: the role of the N-WASP-Arp2/3 complex pathway and cofilin. J Cell Biol 168(3):441–452. doi: 10.1083/jcb.200407076 PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Yu X, Zech T, McDonald L, Gonzalez EG, Li A, Macpherson I, Schwarz JP, Spence H, Futo K, Timpson P, Nixon C, Ma Y, Anton IM, Visegrady B, Insall RH, Oien K, Blyth K, Norman JC, Machesky LM (2012) N-WASP coordinates the delivery and F-actin-mediated capture of MT1-MMP at invasive pseudopods. J Cell Biol 199(3):527–544. doi: 10.1083/jcb.201203025 PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Gligorijevic B, Wyckoff J, Yamaguchi H, Wang Y, Roussos ET, Condeelis J (2012) N-WASP-mediated invadopodium formation is involved in intravasation and lung metastasis of mammary tumors. J Cell Sci 125(Pt 3):724–734. doi: 10.1242/jcs.092726 PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Philippar U, Roussos ET, Oser M, Yamaguchi H, Kim HD, Giampieri S, Wang Y, Goswami S, Wyckoff JB, Lauffenburger DA, Sahai E, Condeelis JS, Gertler FB (2008) A Mena invasion isoform potentiates EGF-induced carcinoma cell invasion and metastasis. Dev Cell 15(6):813–828. doi: 10.1016/j.devcel.2008.09.003 PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Roh-Johnson M, Bravo-Cordero JJ, Patsialou A, Sharma VP, Guo P, Liu H, Hodgson L, Condeelis J (2014) Macrophage contact induces RhoA GTPase signaling to trigger tumor cell intravasation. Oncogene 33(33):4203–4212. doi: 10.1038/onc.2013.377 PubMedCrossRefGoogle Scholar
  154. 154.
    Allen SG, Chen YC, Madden JM, Fournier CL, Altemus MA, Hiziroglu AB, Cheng YH, Wu ZF, Bao L, Yates JA, Yoon E, Merajver SD (2016) Macrophages enhance migration in inflammatory breast cancer cells via RhoC GTPase signaling. Sci Rep 6:39190. doi: 10.1038/srep39190 PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Thiery JP, Acloque H, Huang RY, Nieto MA (2009) Epithelial-mesenchymal transitions in development and disease. Cell 139(5):871–890. doi: 10.1016/j.cell.2009.11.007 PubMedCrossRefGoogle Scholar
  156. 156.
    Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, Brooks M, Reinhard F, Zhang CC, Shipitsin M, Campbell LL, Polyak K, Brisken C, Yang J, Weinberg RA (2008) The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133(4):704–715. doi: 10.1016/j.cell.2008.03.027 PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Su S, Liu Q, Chen J, Chen J, Chen F, He C, Huang D, Wu W, Lin L, Huang W, Zhang J, Cui X, Zheng F, Li H, Yao H, Su F, Song E (2014a) A positive feedback loop between mesenchymal-like cancer cells and macrophages is essential to breast cancer metastasis. Cancer Cell 25(5):605–620. doi: 10.1016/j.ccr.2014.03.021 PubMedCrossRefGoogle Scholar
  158. 158.
    Su S, Wu W, He C, Liu Q, Song E (2014b) Breaking the vicious cycle between breast cancer cells and tumor-associated macrophages. OncoImmunology 3(8). doi: 10.4161/21624011.2014.953418
  159. 159.
    Lin X, Chen L, Yao Y, Zhao R, Cui X, Chen J, Hou K, Zhang M, Su F, Chen J, Song E (2015) CCL18-mediated down-regulation of miR98 and miR27b promotes breast cancer metastasis. Oncotarget 6(24):20485–20499PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Mak KK, Wu AT, Lee WH, Chang TC, Chiou JF, Wang LS, Wu CH, Huang CY, Shieh YS, Chao TY, Ho CT, Yen GC, Yeh CT (2013) Pterostilbene, a bioactive component of blueberries, suppresses the generation of breast cancer stem cells within tumor microenvironment and metastasis via modulating NF-kappaB/microRNA 448 circuit. Mol Nutr Food Res 57(7):1123–1134. doi: 10.1002/mnfr.201200549 PubMedCrossRefGoogle Scholar
  161. 161.
    Bonde AK, Tischler V, Kumar S, Soltermann A, Schwendener RA (2012) Intratumoral macrophages contribute to epithelial-mesenchymal transition in solid tumors. BMC Cancer 12. doi: 10.1186/1471-2407-12-35
  162. 162.
    Zhang J (2015) TGF-b–induced epithelial-to-mesenchymal transition proceeds through stepwise activation of multiple feedback loops. CELL BIOLOGYGoogle Scholar
  163. 163.
    Singh R, Shankar BS, Sainis KB (2014) TGF-beta1-ROS-ATM-CREB signaling axis in macrophage mediated migration of human breast cancer MCF7 cells. Cell Signal 26(7):1604–1615. doi: 10.1016/j.cellsig.2014.03.028 PubMedCrossRefGoogle Scholar
  164. 164.
    Xu J, Lamouille S, Derynck R (2009) TGF-beta-induced epithelial to mesenchymal transition. Cell Res 19(2):156–172. doi: 10.1038/cr.2009.5 PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    Deckers M (2006) The tumor suppressor Smad4 is required for transforming growth factor -induced epithelial to mesenchymal transition and bone metastasis of breast cancer cells. Cancer Res 66(4):2202–2209. doi: 10.1158/0008-5472.can-05-3560 PubMedCrossRefGoogle Scholar
  166. 166.
    De Craene B, Berx G (2013) Regulatory networks defining EMT during cancer initiation and progression. Nat Rev Cancer 13(2):97–110. doi: 10.1038/nrc3447 PubMedCrossRefGoogle Scholar
  167. 167.
    Romagnoli M, Belguise K, Yu Z, Wang X, Landesman-Bollag E, Seldin DC, Chalbos D, Barille-Nion S, Jezequel P, Seldin ML, Sonenshein GE (2012) Epithelial-to-mesenchymal transition induced by TGF- 1 is mediated by blimp-1-dependent repression of BMP-5. Cancer Res 72(23):6268–6278. doi: 10.1158/0008-5472.can-12-2270 PubMedPubMedCentralCrossRefGoogle Scholar
  168. 168.
    Zhang H, Meng F, Liu G, Zhang B, Zhu J, Wu F, Ethier SP, Miller F, Wu G (2011) Forkhead transcription factor Foxq1 promotes epithelial-mesenchymal transition and breast cancer metastasis. Cancer Res 71(4):1292–1301. doi: 10.1158/0008-5472.can-10-2825 PubMedPubMedCentralCrossRefGoogle Scholar
  169. 169.
    Lu H, Clauser KR, Tam WL, Fröse J, Ye X, Eaton EN, Reinhardt F, Donnenberg VS, Bhargava R, Carr SA, Weinberg RA (2014) A breast cancer stem cell niche supported by juxtacrine signalling from monocytes and macrophages. Nat Cell Biol 16(11):1105–1117. doi: 10.1038/ncb3041. http://www.nature.com/ncb/journal/v16/n11/abs/ncb3041.html#supplementary-information PubMedPubMedCentralCrossRefGoogle Scholar
  170. 170.
    Nguyen DX, Bos PD, Massague J (2009) Metastasis: from dissemination to organ-specific colonization. Nat Rev Cancer 9(4):274–284. doi: 10.1038/nrc2622 PubMedCrossRefGoogle Scholar
  171. 171.
    Lucci A, Hall CS, Lodhi AK, Bhattacharyya A, Anderson AE, Xiao L, Bedrosian I, Kuerer HM, Krishnamurthy S (2012) Circulating tumour cells in non-metastatic breast cancer: a prospective study. Lancet Oncol 13(7):688–695. doi: 10.1016/s1470-2045(12)70209-7 PubMedCrossRefGoogle Scholar
  172. 172.
    Krishnamurthy S, Cristofanilli M, Singh B, Reuben J, Gao H, Cohen EN, Andreopoulou E, Hall CS, Lodhi A, Jackson S, Lucci A (2010) Detection of minimal residual disease in blood and bone marrow in early stage breast cancer. Cancer 116(14):3330–3337. doi: 10.1002/cncr.25145 PubMedCrossRefGoogle Scholar
  173. 173.
    Kadioglu E, De Palma M (2015) Cancer metastasis: perivascular macrophages under watch. Cancer Discov 5(9):906–908. doi: 10.1158/2159-8290.cd-15-0819 PubMedCrossRefGoogle Scholar
  174. 174.
    Harney AS, Arwert EN, Entenberg D, Wang Y, Guo P, Qian BZ, Oktay MH, Pollard JW, Jones JG, Condeelis JS (2015) Real-time imaging reveals local, transient vascular permeability, and tumor cell Intravasation stimulated by TIE2hi macrophage-derived VEGFA. Cancer Discov 5(9):932–943. doi: 10.1158/2159-8290.cd-15-0012 PubMedPubMedCentralCrossRefGoogle Scholar
  175. 175.
    Pignatelli J, Bravo-Cordero JJ, Roh-Johnson M, Gandhi SJ, Wang Y, Chen X, Eddy RJ, Xue A, Singer RH, Hodgson L, Oktay MH, Condeelis JS (2016) Macrophage-dependent tumor cell transendothelial migration is mediated by Notch1/MenaINV-initiated invadopodium formation. Sci Rep 6:37874. doi: 10.1038/srep37874 PubMedPubMedCentralCrossRefGoogle Scholar
  176. 176.
    Rohan TE, Xue X, Lin HM, D’Alfonso TM, Ginter PS, Oktay MH, Robinson BD, Ginsberg M, Gertler FB, Glass AG, Sparano JA, Condeelis JS, Jones JG (2014) Tumor microenvironment of metastasis and risk of distant metastasis of breast cancer. J Natl Cancer Inst 106(8)Google Scholar
  177. 177.
    Robinson BD, Sica GL, Liu YF, Rohan TE, Gertler FB, Condeelis JS, Jones JG (2009) Tumor microenvironment of metastasis in human breast carcinoma: a potential prognostic marker linked to hematogenous dissemination. Clin Cancer Res 15(7):2433–2441. doi: 10.1158/1078-0432.ccr-08-2179 PubMedPubMedCentralCrossRefGoogle Scholar
  178. 178.
    Qian B, Deng Y, Im JH, Muschel RJ, Zou Y, Li J, Lang RA, Pollard JW (2009) A distinct macrophage population mediates metastatic breast cancer cell extravasation, establishment and growth. PLoS One 4(8). doi: 10.1371/journal.pone.0006562
  179. 179.
    Reymond N, d’Água BB, Ridley AJ (2013) Crossing the endothelial barrier during metastasis. Nat Rev Cancer 13(12):858–870. doi: 10.1038/nrc3628 PubMedCrossRefGoogle Scholar
  180. 180.
    AL-MEHDI AB (2000) Intravascular origin of metastasis from the proliferation of endothelium-attached tumor cells: a new model for metastasis. Nat MedGoogle Scholar
  181. 181.
    Ferjančič S, Gil-Bernabé AM, Hill SA, Allen PD, Richardson P, Sparey T, Savory E, McGuffog J, Muschel RJ (2013) VCAM-1 and VAP-1 recruit myeloid cells that promote pulmonary metastasis in mice. Blood 121(16):3289–3297. doi: 10.1182/blood-2012-08-449819 PubMedCrossRefGoogle Scholar
  182. 182.
    Kitamura T, Qian BZ, Soong D, Cassetta L, Noy R, Sugano G, Kato Y, Li J, Pollard JW (2015) CCL2-induced chemokine cascade promotes breast cancer metastasis by enhancing retention of metastasis-associated macrophages. J Exp Med 212(7):1043–1059. doi: 10.1084/jem.20141836 PubMedPubMedCentralCrossRefGoogle Scholar
  183. 183.
    Chen Q, Zhang XF, Massagué J (2011b) Macrophage binding to receptor VCAM-1 transmits survival signals in breast cancer cells that invade the lungs. Cancer Cell 20(4):538–549. doi: 10.1016/j.ccr.2011.08.025 PubMedPubMedCentralCrossRefGoogle Scholar
  184. 184.
    Leong HS, Robertson AE, Stoletov K, Leith SJ, Chin CA, Chien AE, Hague MN, Ablack A, Carmine-Simmen K, McPherson VA, Postenka CO, Turley EA, Courtneidge SA, Chambers AF, Lewis JD (2014) Invadopodia are required for cancer cell extravasation and are a therapeutic target for metastasis. Cell Rep 8(5):1558–1570. doi: 10.1016/j.celrep.2014.07.050 PubMedCrossRefGoogle Scholar
  185. 185.
    Chambers AF, Groom AC, MacDonald IC (2002) Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer 2(8):563–572. doi: 10.1038/nrc865 PubMedCrossRefGoogle Scholar
  186. 186.
    Hensel JA, Flaig TW, Theodorescu D (2013) Clinical opportunities and challenges in targeting tumour dormancy. Nat Rev Clin Oncol 10(1):41–51. doi: 10.1038/nrclinonc.2012.207 PubMedCrossRefGoogle Scholar
  187. 187.
    Wheeler SE, Clark AM, Taylor DP, Young CL, Pillai VC, Stolz DB, Venkataramanan R, Lauffenburger D, Griffith L, Wells A (2014) Spontaneous dormancy of metastatic breast cancer cells in an all human liver microphysiologic system. Br J Cancer 111(12):2342–2350. doi: 10.1038/bjc.2014.533 PubMedPubMedCentralCrossRefGoogle Scholar
  188. 188.
    Mou W, Xu Y, Ye Y, Chen S, Li X, Gong K, Liu Y, Chen Y, Li X, Tian Y, Xiang R, Li N (2015) Expression of Sox2 in breast cancer cells promotes the recruitment of M2 macrophages to tumor microenvironment. Cancer Lett 358(2):115–123. doi: 10.1016/j.canlet.2014.11.004 PubMedCrossRefGoogle Scholar
  189. 189.
    Zhang Q, Qin J, Zhong L, Gong L, Zhang B, Zhang Y, Gao WQ (2015) CCL5-mediated Th2 immune polarization promotes metastasis in luminal breast cancer. Cancer Res 75(20):4312–4321. doi: 10.1158/0008-5472.CAN-14-3590 PubMedCrossRefGoogle Scholar
  190. 190.
    Song KH, Park MS, Nandu TS, Gadad S, Kim SC, Kim MY (2016) GALNT14 promotes lung-specific breast cancer metastasis by modulating self-renewal and interaction with the lung microenvironment. Nat Commun 7:13796. doi: 10.1038/ncomms13796 PubMedPubMedCentralCrossRefGoogle Scholar
  191. 191.
    Palus S, Schur R, Akashi YJ, Bockmeyer B, Datta R, Halem H, Dong J, Culler MD, Adams V, Anker SD, Springer J (2011) Ghrelin and its analogues, BIM-28131 and BIM-28125, improve body weight and regulate the expression of MuRF-1 and MAFbx in a rat heart failure model. PLoS One 6(11):e26865. doi: 10.1371/journal.pone.0026865 PubMedPubMedCentralCrossRefGoogle Scholar
  192. 192.
    Gao D, Joshi N, Choi H, Ryu S, Hahn M, Catena R, Sadik H, Argani P, Wagner P, Vahdat LT, Port JL, Stiles B, Sukumar S, Altorki NK, Rafii S, Mittal V (2012) Myeloid progenitor cells in the premetastatic lung promote metastases by inducing mesenchymal to epithelial transition. Cancer Res 72(6):1384–1394. doi: 10.1158/0008-5472.CAN-11-2905 PubMedCrossRefGoogle Scholar
  193. 193.
    Mathsyaraja H, Thies K, Taffany DA, Deighan C, Liu T, Yu L, Fernandez SA, Shapiro C, Otero J, Timmers C, Lustberg MB, Chalmers J, Leone G, Ostrowski MC (2015) CSF1-ETS2-induced microRNA in myeloid cells promote metastatic tumor growth. Oncogene 34(28):3651–3661. doi: 10.1038/onc.2014.294 PubMedCrossRefGoogle Scholar
  194. 194.
    Zhang XH, Wang Q, Gerald W, Hudis CA, Norton L, Smid M, Foekens JA, Massague J (2009) Latent bone metastasis in breast cancer tied to Src-dependent survival signals. Cancer Cell 16(1):67–78. doi: 10.1016/j.ccr.2009.05.017 PubMedPubMedCentralCrossRefGoogle Scholar
  195. 195.
    Oskarsson T, Acharyya S, Zhang XHF, Vanharanta S, Tavazoie SF, Morris PG, Downey RJ, Manova-Todorova K, Brogi E, Massague J (2011) Breast cancer cells produce tenascin C as a metastatic niche component to colonize the lungs. Nat Med 17(7):867–874. doi:http://www.nature.com/nm/journal/v17/n7/abs/nm.2379.html#supplementary-informationGoogle Scholar
  196. 196.
    Mantovani A, Polentarutti N, Luini W, Peri G, Spreafico F (1979) Role of host defense merchanisms in the antitumor activity of adriamycin and daunomycin in mice. J Natl Cancer Inst 63(1):61–66PubMedGoogle Scholar
  197. 197.
    Mohammed ZM, Going JJ, Edwards J, Elsberger B, McMillan DC (2013) The relationship between lymphocyte subsets and clinico-pathological determinants of survival in patients with primary operable invasive ductal breast cancer. Br J Cancer 109(6):1676–1684. doi: 10.1038/bjc.2013.493 PubMedPubMedCentralCrossRefGoogle Scholar
  198. 198.
    Kodumudi KN, Woan K, Gilvary DL, Sahakian E, Wei S, Djeu JY (2010) A novel Chemoimmunomodulating property of Docetaxel: suppression of myeloid-derived suppressor cells in tumor bearers. Clin Cancer Res 16(18):4583–4594. doi: 10.1158/1078-0432.ccr-10-0733 PubMedCrossRefGoogle Scholar
  199. 199.
    Alizadeh D, Trad M, Hanke NT, Larmonier CB, Janikashvili N, Bonnotte B, Katsanis E, Larmonier N (2014) Doxorubicin eliminates myeloid-derived suppressor cells and enhances the efficacy of adoptive T-cell transfer in breast cancer. Cancer Res 74(1):104–118. doi: 10.1158/0008-5472.CAN-13-1545 PubMedCrossRefGoogle Scholar
  200. 200.
    Hannesdottir L, Tymoszuk P, Parajuli N, Wasmer MH, Philipp S, Daschil N, Datta S, Koller JB, Tripp CH, Stoitzner P, Muller-Holzner E, Wiegers GJ, Sexl V, Villunger A, Doppler W (2013) Lapatinib and doxorubicin enhance the Stat1-dependent antitumor immune response. Eur J Immunol 43(10):2718–2729. doi: 10.1002/eji.201242505 PubMedCrossRefGoogle Scholar
  201. 201.
    Kroemer G, Galluzzi L, Kepp O, Zitvogel L (2013a) Immunogenic cell death in cancer therapy. Annu Rev Immunol 31. doi: 10.1146/annurev-immunol-032712-100008
  202. 202.
    Paulus P, Stanley ER, Schafer R, Abraham D, Aharinejad S (2006) Colony-stimulating factor-1 antibody reverses chemoresistance in human MCF-7 breast cancer xenografts. Cancer Res 66(8):4349–4356. doi: 10.1158/0008-5472.can-05-3523 PubMedCrossRefGoogle Scholar
  203. 203.
    Shree T, Olson OC, Elie BT, Kester JC, Garfall AL, Simpson K, Bell-McGuinn KM, Zabor EC, Brogi E, Joyce JA (2011) Macrophages and cathepsin proteases blunt chemotherapeutic response in breast cancer. Genes Dev 25(23):2465–2479. doi: 10.1101/gad.180331.111 PubMedPubMedCentralCrossRefGoogle Scholar
  204. 204.
    Nakasone ES, Askautrud HA, Kees T, Park JH, Plaks V, Ewald AJ, Fein M, Rasch MG, Tan YX, Qiu J, Park J, Sinha P, Bissell MJ, Frengen E, Werb Z, Egeblad M (2012) Imaging tumor-stroma interactions during chemotherapy reveals contributions of the microenvironment to resistance. Cancer Cell 21(4):488–503. doi: 10.1016/j.ccr.2012.02.017 PubMedPubMedCentralCrossRefGoogle Scholar
  205. 205.
    Barker HE, Paget JT, Khan AA, Harrington KJ (2015) The tumour microenvironment after radiotherapy: mechanisms of resistance and recurrence. Nat Rev Cancer 15(7):409–425. doi: 10.1038/nrc3958 PubMedPubMedCentralCrossRefGoogle Scholar
  206. 206.
    Shiao SL, Coussens LM (2010) The tumor-immune microenvironment and response to radiation therapy. J Mammary Gland Biol Neoplasia 15(4):411–421. doi: 10.1007/s10911-010-9194-9 PubMedPubMedCentralCrossRefGoogle Scholar
  207. 207.
    Kroemer G, Galluzzi L, Kepp O, Zitvogel L (2013b) Immunogenic cell death in cancer therapy. Annu Rev Immunol 31:51–72. doi: 10.1146/annurev-immunol-032712-100008 PubMedCrossRefGoogle Scholar
  208. 208.
    Sun X, Gao D, Gao L, Zhang C, Yu X, Jia B, Wang F, Liu Z (2015) Molecular imaging of tumor-infiltrating macrophages in a preclinical mouse model of breast cancer. Theranostics 5(6):597–608. doi: 10.7150/thno.11546 PubMedPubMedCentralCrossRefGoogle Scholar
  209. 209.
    Meijer TW, Kaanders JH, Span PN, Bussink J (2012) Targeting hypoxia, HIF-1, and tumor glucose metabolism to improve radiotherapy efficacy. Clinical cancer research : an official journal of the American Association for Cancer Research 18(20):5585–5594. doi: 10.1158/1078-0432.ccr-12-0858 CrossRefGoogle Scholar
  210. 210.
    Russell JS, Brown JM (2013) The irradiated tumor microenvironment: role of tumor-associated macrophages in vascular recovery. Front Physiol 4:157. doi: 10.3389/fphys.2013.00157 PubMedPubMedCentralCrossRefGoogle Scholar
  211. 211.
    Ahn GO, Brown JM (2008) Matrix metalloproteinase-9 is required for tumor vasculogenesis but not for angiogenesis: role of bone marrow-derived myelomonocytic cells. Cancer Cell 13(3):193–205. doi: 10.1016/j.ccr.2007.11.032 PubMedPubMedCentralCrossRefGoogle Scholar
  212. 212.
    Ager EI, Kozin SV, Kirkpatrick ND, Seano G, Kodack DP, Askoxylakis V, Huang Y, Goel S, Snuderl M, Muzikansky A, Finkelstein DM, Dransfield DT, Devy L, Boucher Y, Fukumura D, Jain RK (2015) Blockade of MMP14 activity in murine breast carcinomas: implications for macrophages, vessels, and radiotherapy. J Natl Cancer Inst 107(4). doi: 10.1093/jnci/djv017
  213. 213.
    Bergers G, Hanahan D (2008) Modes of resistance to anti-angiogenic therapy. Nat Rev Cancer 8(8):592–603. doi: 10.1038/nrc2442 PubMedPubMedCentralCrossRefGoogle Scholar
  214. 214.
    Zhang C, Gao L, Cai Y, Liu H, Gao D, Lai J, Jia B, Wang F, Liu Z (2016a) Inhibition of tumor growth and metastasis by photoimmunotherapy targeting tumor-associated macrophage in a sorafenib-resistant tumor model. Biomaterials 84:1–12. doi: 10.1016/j.biomaterials.2016.01.027 PubMedCrossRefGoogle Scholar
  215. 215.
    Welford AF, Biziato D, Coffelt SB, Nucera S, Fisher M, Pucci F, Di Serio C, Naldini L, De Palma M, Tozer GM, Lewis CE (2011) TIE2-expressing macrophages limit the therapeutic efficacy of the vascular-disrupting agent combretastatin A4 phosphate in mice. J Clin Invest 121(5):1969–1973. doi: 10.1172/jci44562 PubMedPubMedCentralCrossRefGoogle Scholar
  216. 216.
    Jain Rakesh K (2014) Antiangiogenesis strategies revisited: from starving tumors to alleviating hypoxia. Cancer Cell 26(5):605–622. doi: 10.1016/j.ccell.2014.10.006 PubMedPubMedCentralCrossRefGoogle Scholar
  217. 217.
    Daly C, Eichten A, Castanaro C, Pasnikowski E, Adler A, Lalani AS, Papadopoulos N, Kyle AH, Minchinton AI, Yancopoulos GD, Thurston G (2013) Angiopoietin-2 functions as a Tie2 agonist in tumor models, where it limits the effects of VEGF inhibition. Cancer Res 73(1):108–118. doi: 10.1158/0008-5472.CAN-12-2064 PubMedCrossRefGoogle Scholar
  218. 218.
    Srivastava K, Hu J, Korn C, Savant S, Teichert M, Kapel SS, Jugold M, Besemfelder E, Thomas M, Pasparakis M, Augustin HG (2014) Postsurgical adjuvant tumor therapy by combining anti-angiopoietin-2 and metronomic chemotherapy limits metastatic growth. Cancer Cell 26(6):880–895. doi: 10.1016/j.ccell.2014.11.005 PubMedCrossRefGoogle Scholar
  219. 219.
    Park J-S, Kim I-K, Han S, Park I, Kim C, Bae J, Oh SJ, Lee S, Kim JH, Woo D-C, He Y, Augustin HG, Kim I, Lee D, Koh GY (2016) Normalization of tumor vessels by Tie2 activation and Ang2 inhibition enhances drug delivery and produces a favorable tumor microenvironment. Cancer Cell 30(6):953–967. doi: 10.1016/j.ccell.2016.10.018 PubMedCrossRefGoogle Scholar
  220. 220.
    Sliwkowski MX, Mellman I (2013) Antibody therapeutics in cancer. Science 341(6151):1192–1198. doi: 10.1126/science.1241145 PubMedCrossRefGoogle Scholar
  221. 221.
    Furness AJS, Vargas FA, Peggs KS, Quezada SA (2014) Impact of tumour microenvironment and fc receptors on the activity of immunomodulatory antibodies. Trends Immunol 35(7):290–298. doi: 10.1016/j.it.2014.05.002 PubMedCrossRefGoogle Scholar
  222. 222.
    Mellor JD, Brown MP, Irving HR, Zalcberg JR, Dobrovic A (2013) A critical review of the role of Fc gamma receptor polymorphisms in the response to monoclonal antibodies in cancer. J Hematol Oncol 6(1). doi: 10.1186/1756-8722-6-1
  223. 223.
    Tamura K, Shimizu C, Hojo T, Akashi-Tanaka S, Kinoshita T, Yonemori K, Kouno T, Katsumata N, Ando M, Aogi K, Koizumi F, Nishio K, Fujiwara Y (2011) FcgammaR2A and 3A polymorphisms predict clinical outcome of trastuzumab in both neoadjuvant and metastatic settings in patients with HER2-positive breast cancer. Ann Oncol 22(6):1302–1307. doi: 10.1093/annonc/mdq585 PubMedCrossRefGoogle Scholar
  224. 224.
    Clynes RA, Towers TL, Presta LG, Ravetch JV (2000) Inhibitory fc receptors modulate in vivo cytoxicity against tumor targets. Nat Med 6(4):443–446. doi: 10.1038/74704 PubMedCrossRefGoogle Scholar
  225. 225.
    Park S, Jiang Z, Mortenson ED, Deng L, Radkevich-Brown O, Yang X, Sattar H, Wang Y, Brown NK, Greene M, Liu Y, Tang J, Wang S, Fu YX (2010) The therapeutic effect of anti-HER2/neu antibody depends on both innate and adaptive immunity. Cancer Cell 18(2):160–170. doi: 10.1016/j.ccr.2010.06.014 PubMedPubMedCentralCrossRefGoogle Scholar
  226. 226.
    Cai Z, Fu T, Nagai Y, Lam L, Yee M, Zhu Z, Zhang H (2013) scFv-based “grababody” as a general strategy to improve recruitment of immune effector cells to antibody-targeted tumors. Cancer Res 73(8):2619–2627. doi: 10.1158/0008-5472.CAN-12-3920 PubMedPubMedCentralCrossRefGoogle Scholar
  227. 227.
    Pardoll DM (2012) The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 12(4):252–264. doi: 10.1038/nrc3239 PubMedPubMedCentralCrossRefGoogle Scholar
  228. 228.
    Makkouk A, Weiner GJ (2015) Cancer immunotherapy and breaking immune tolerance: new approaches to an old challenge. Cancer Res 75(1):5–10. doi: 10.1158/0008-5472.CAN-14-2538 PubMedCrossRefGoogle Scholar
  229. 229.
    Lu X, Kang Y (2009) Chemokine (C-C motif) ligand 2 engages CCR2+ stromal cells of monocytic origin to promote breast cancer metastasis to lung and bone. J Biol Chem 284(42):29087–29096. doi: 10.1074/jbc.M109.035899 PubMedPubMedCentralCrossRefGoogle Scholar
  230. 230.
    Sandhu SK, Papadopoulos K, Fong PC, Patnaik A, Messiou C, Olmos D, Wang G, Tromp BJ, Puchalski TA, Balkwill F, Berns B, Seetharam S, De Bono JS, Tolcher AW (2013) A first-in-human, first-in-class, phase i study of carlumab (CNTO 888), a human monoclonal antibody against CC-chemokine ligand 2 in patients with solid tumors. Cancer Chemother Pharmacol 71(4):1041–1050. doi: 10.1007/s00280-013-2099-8 PubMedCrossRefGoogle Scholar
  231. 231.
    Brana I, Calles A, LoRusso PM, Yee LK, Puchalski TA, Seetharam S, Zhong B, de Boer CJ, Tabernero J, Calvo E (2015) Carlumab, an anti-C-C chemokine ligand 2 monoclonal antibody, in combination with four chemotherapy regimens for the treatment of patients with solid tumors: an open-label, multicenter phase 1b study. Target Oncol 10(1):111–123. doi: 10.1007/s11523-014-0320-2 PubMedCrossRefGoogle Scholar
  232. 232.
    Nywening TM, Wang-Gillam A, Sanford DE, Belt BA, Panni RZ, Cusworth BM, Toriola AT, Nieman RK, Worley LA, Yano M, Fowler KJ, Lockhart AC, Suresh R, Tan BR, Lim KH, Fields RC, Strasberg SM, Hawkins WG, DeNardo DG, Goedegebuure SP, Linehan DC (2016) Targeting tumour-associated macrophages with CCR2 inhibition in combination with FOLFIRINOX in patients with borderline resectable and locally advanced pancreatic cancer: a single-centre, open-label, dose-finding, non-randomised, phase 1b trial. Lancet Oncol 17(5):651–662. doi: 10.1016/s1470-2045(16)00078-4 PubMedPubMedCentralCrossRefGoogle Scholar
  233. 233.
    Gouwy M, Struyf S, Noppen S, Schutyser E, Springael JY, Parmentier M, Proost P, Van Damme J (2008) Synergy between coproduced CC and CXC chemokines in monocyte chemotaxis through receptor-mediated events. Mol Pharmacol 74(2):485–495. doi: 10.1124/mol.108.045146 PubMedCrossRefGoogle Scholar
  234. 234.
    Gouwy M, Struyf S, Berghmans N, Vanormelingen C, Schols D, Van Damme J (2011) CXCR4 and CCR5 ligands cooperate in monocyte and lymphocyte migration and in inhibition of dual-tropic (R5/X4) HIV-1 infection. Eur J Immunol 41(4):963–973. doi: 10.1002/eji.201041178 PubMedCrossRefGoogle Scholar
  235. 235.
    DiPersio JF, Micallef IN, Stiff PJ, Bolwell BJ, Maziarz RT, Jacobsen E, Nademanee A, McCarty J, Bridger G, Calandra G (2009) Phase III prospective randomized double-blind placebo-controlled trial of Plerixafor plus granulocyte Colony-stimulating factor compared with placebo plus granulocyte Colony-stimulating factor for autologous stem-cell mobilization and transplantation for patients with non-Hodgkin’s lymphoma. J Clin Oncol 27(28):4767–4773. doi: 10.1200/JCO.2008.20.7209 PubMedCrossRefGoogle Scholar
  236. 236.
    Pollard JW (2009) Trophic macrophages in development and disease. Nat Rev Immunol 9(4):259–270PubMedPubMedCentralCrossRefGoogle Scholar
  237. 237.
    Strachan DC, Ruffell B, Oei Y, Bissell MJ, Coussens LM, Pryer N, Daniel D (2013) CSF1R inhibition delays cervical and mammary tumor growth in murine models by attenuating the turnover of tumor-associated macrophages and enhancing infiltration by CD8+ T cells. OncoImmunology 2(12):e26968. doi: 10.4161/onci.26968 PubMedPubMedCentralCrossRefGoogle Scholar
  238. 238.
    Sharma N, Wesolowski R, Reebel L, Rodal MB, Peck A, West B, Karlin DA, Dowlati A, Le MH, Coussens LM, Rugo HS (2014) A phase 1b study to assess the safety of PLX3397, a CSF-1 receptor inhibitor, and paclitaxel in patients with advanced solid tumors. J Clin Oncol 32(15_suppl):TPS3127–TPS3127. doi: 10.1200/jco.2014.32.15_suppl.tps3127
  239. 239.
    Ries CH, Cannarile MA, Hoves S, Benz J, Wartha K, Runza V, Rey-Giraud F, Pradel LP, Feuerhake F, Klaman I, Jones T, Jucknischke U, Scheiblich S, Kaluza K, Gorr IH, Walz A, Abiraj K, Cassier PA, Sica A, Gomez-Roca C, de Visser KE, Italiano A, Le Tourneau C, Delord JP, Levitsky H, Blay JY, Ruttinger D (2014) Targeting tumor-associated macrophages with anti-CSF-1R antibody reveals a strategy for cancer therapy. Cancer Cell 25(6):846–859. doi: 10.1016/j.ccr.2014.05.016 PubMedCrossRefGoogle Scholar
  240. 240.
    Papadopoulos K, Gluck L, Martin LP, Olszanski AJ, Ngarmchamnanrith G, Rasmussen E, Amore B, Nagorsen D, Hill JS, Stephenson J (2016) Abstract CT137: first-in-human study of AMG 820, a monoclonal anti-CSF-1R (c-fms) antibody, in patients (pts) with advanced solid tumors. Cancer Res 76(14 Supplement):CT137CrossRefGoogle Scholar
  241. 241.
    Tap WD, Wainberg ZA, Anthony SP, Ibrahim PN, Zhang C, Healey JH, Chmielowski B, Staddon AP, Cohn AL, Shapiro GI, Keedy VL, Singh AS, Puzanov I, Kwak EL, Wagner AJ, Von Hoff DD, Weiss GJ, Ramanathan RK, Zhang J, Habets G, Zhang Y, Burton EA, Visor G, Sanftner L, Severson P, Nguyen H, Kim MJ, Marimuthu A, Tsang G, Shellooe R, Gee C, West BL, Hirth P, Nolop K, van de Rijn M, Hsu HH, Peterfy C, Lin PS, Tong-Starksen S, Bollag G (2015) Structure-guided blockade of CSF1R kinase in Tenosynovial Giant-cell tumor. N Engl J Med 373(5):428–437. doi: 10.1056/NEJMoa1411366 PubMedCrossRefGoogle Scholar
  242. 242.
    Swierczak A, Cook AD, Lenzo JC, Restall CM, Doherty JP, Anderson RL, Hamilton JA (2014) The promotion of breast cancer metastasis caused by inhibition of CSF-1R/CSF-1 signaling is blocked by targeting the G-CSF receptor. Cancer Immunol Res 2(8):765–776. doi: 10.1158/2326-6066.cir-13-0190 PubMedCrossRefGoogle Scholar
  243. 243.
    Quail DF, Bowman RL, Akkari L, Quick ML, Schuhmacher AJ, Huse JT, Holland EC, Sutton JC, Joyce JA (2016) The tumor microenvironment underlies acquired resistance to CSF-1R inhibition in gliomas. Science 352(6288):aad3018. doi: 10.1126/science.aad3018
  244. 244.
    Zhang M, Zhang H, Tang F, Wang Y, Mo Z, Lei X, Tang S (2016b) Doxorubicin resistance mediated by cytoplasmic macrophage colony-stimulating factor is associated with switch from apoptosis to autophagic cell death in MCF-7 breast cancer cells. Experimental biology and medicine. Maywood, NJ. doi: 10.1177/1535370216660399 Google Scholar
  245. 245.
    Ma Y, Galluzzi L, Zitvogel L, Kroemer G (2013) Autophagy and cellular immune responses. Immunity 39(2):211–227. doi: 10.1016/j.immuni.2013.07.017 PubMedCrossRefGoogle Scholar
  246. 246.
    Mundy GR (2002) Metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev Cancer 2(8):584–593. doi: 10.1038/nrc867 PubMedCrossRefGoogle Scholar
  247. 247.
    Van Acker HH, Anguille S, Willemen Y, Smits EL, Van Tendeloo VF (2016) Bisphosphonates for cancer treatment: mechanisms of action and lessons from clinical trials. Pharmacol Ther 158:24–40. doi: 10.1016/j.pharmthera.2015.11.008 PubMedCrossRefGoogle Scholar
  248. 248.
    Moreau MF, Guillet C, Massin P, Chevalier S, Gascan H, Basle MF, Chappard D (2007) Comparative effects of five bisphosphonates on apoptosis of macrophage cells in vitro. Biochem Pharmacol 73(5):718–723. doi: 10.1016/j.bcp.2006.09.031 PubMedCrossRefGoogle Scholar
  249. 249.
    Diel IJ, Solomayer EF, Costa SD, Gollan C, Goerner R, Wallwiener D, Kaufmann M, Bastert G (1998) Reduction in new metastases in breast cancer with adjuvant clodronate treatment. N Engl J Med 339(6):357–363. doi: 10.1056/nejm199808063390601 PubMedCrossRefGoogle Scholar
  250. 250.
    Melani C, Sangaletti S, Barazzetta FM, Werb Z, Colombo MP (2007) Amino-biphosphonate-mediated MMP-9 inhibition breaks the tumor-bone marrow axis responsible for myeloid-derived suppressor cell expansion and macrophage infiltration in tumor stroma. Cancer Res 67(23):11438–11446. doi: 10.1158/0008-5472.can-07-1882 PubMedPubMedCentralCrossRefGoogle Scholar
  251. 251.
    Coscia M, Quaglino E, Iezzi M, Curcio C, Pantaleoni F, Riganti C, Holen I, Monkkonen H, Boccadoro M, Forni G, Musiani P, Bosia A, Cavallo F, Massaia M (2010) Zoledronic acid repolarizes tumour-associated macrophages and inhibits mammary carcinogenesis by targeting the mevalonate pathway. J Cell Mol Med 14(12):2803–2815. doi: 10.1111/j.1582-4934.2009.00926.x PubMedCrossRefGoogle Scholar
  252. 252.
    Junankar S, Shay G, Jurczyluk J, Ali N, Down J, Pocock N, Parker A, Nguyen A, Sun S, Kashemirov B, McKenna CE, Croucher PI, Swarbrick A, Weilbaecher K, Phan TG, Rogers MJ (2015) Real-time intravital imaging establishes tumor-associated macrophages as the extraskeletal target of bisphosphonate action in cancer. Cancer Discov 5(1):35–42. doi: 10.1158/2159-8290.cd-14-0621 PubMedCrossRefGoogle Scholar
  253. 253.
    Coleman R, Powles T, Paterson A, Gnant M, Anderson S, Diel I, Gralow J, von Minckwitz G, Moebus V, Bergh J, Pritchard KI, Bliss J, Cameron D, Evans V, Pan H, Peto R, Bradley R, Gray R (2015) Adjuvant bisphosphonate treatment in early breast cancer: meta-analyses of individual patient data from randomised trials. Lancet 386(10001):1353–1361. doi: 10.1016/s0140-6736(15)60908-4 CrossRefGoogle Scholar
  254. 254.
    Gnant M, Mlineritsch B, Schippinger W, Luschin-Ebengreuth G, Postlberger S, Menzel C, Jakesz R, Seifert M, Hubalek M, Bjelic-Radisic V, Samonigg H, Tausch C, Eidtmann H, Steger G, Kwasny W, Dubsky P, Fridrik M, Fitzal F, Stierer M, Rucklinger E, Greil R, Marth C (2009) Endocrine therapy plus zoledronic acid in premenopausal breast cancer. N Engl J Med 360(7):679–691. doi: 10.1056/NEJMoa0806285 PubMedCrossRefGoogle Scholar
  255. 255.
    Gnant M, Mlineritsch B, Stoeger H, Luschin-Ebengreuth G, Knauer M, Moik M, Jakesz R, Seifert M, Taucher S, Bjelic-Radisic V, Balic M, Eidtmann H, Eiermann W, Steger G, Kwasny W, Dubsky P, Selim U, Fitzal F, Hochreiner G, Wette V, Sevelda P, Ploner F, Bartsch R, Fesl C, Greil R (2015) Zoledronic acid combined with adjuvant endocrine therapy of tamoxifen versus anastrozol plus ovarian function suppression in premenopausal early breast cancer: final analysis of the Austrian breast and colorectal cancer study group trial 12. Ann Oncol 26(2):313–320. doi: 10.1093/annonc/mdu544 PubMedCrossRefGoogle Scholar
  256. 256.
    Paterson AH, Anderson SJ, Lembersky BC, Fehrenbacher L, Falkson CI, King KM, Weir LM, Brufsky AM, Dakhil S, Lad T, Baez-Diaz L, Gralow JR, Robidoux A, Perez EA, Zheng P, Geyer CE Jr, Swain SM, Costantino JP, Mamounas EP, Wolmark N (2012) Oral clodronate for adjuvant treatment of operable breast cancer (National Surgical Adjuvant Breast and bowel project protocol B-34): a multicentre, placebo-controlled, randomised trial. Lancet Oncol 13(7):734–742. doi: 10.1016/s1470-2045(12)70226-7 PubMedPubMedCentralCrossRefGoogle Scholar
  257. 257.
    Coleman RE, Marshall H, Cameron D, Dodwell D, Burkinshaw R, Keane M, Gil M, Houston SJ, Grieve RJ, Barrett-Lee PJ, Ritchie D, Pugh J, Gaunt C, Rea U, Peterson J, Davies C, Hiley V, Gregory W, Bell R (2011) Breast-cancer adjuvant therapy with zoledronic acid. N Engl J Med 365(15):1396–1405. doi: 10.1056/NEJMoa1105195 PubMedCrossRefGoogle Scholar
  258. 258.
    Dewan MZ, Vanpouille-Box C, Kawashima N, DiNapoli S, Babb JS, Formenti SC, Adams S, Demaria S (2012) Synergy of topical toll-like receptor 7 agonist with radiation and low-dose cyclophosphamide in a mouse model of cutaneous breast cancer. Clinical cancer research : an official journal of the American Association for Cancer Research 18(24):6668–6678. doi: 10.1158/1078-0432.ccr-12-0984 CrossRefGoogle Scholar
  259. 259.
    Adams S, Kozhaya L, Martiniuk F, Meng TC, Chiriboga L, Liebes L, Hochman T, Shuman N, Axelrod D, Speyer J, Novik Y, Tiersten A, Goldberg JD, Formenti SC, Bhardwaj N, Unutmaz D, Demaria S (2012) Topical TLR7 agonist imiquimod can induce immune-mediated rejection of skin metastases in patients with breast cancer. Clinical cancer research : an official journal of the American Association for Cancer Research 18(24):6748–6757. doi: 10.1158/1078-0432.ccr-12-1149 CrossRefGoogle Scholar
  260. 260.
    Henriques L, Palumbo M, Guay M-P, Bahoric B, Basik M, Kavan P, Batist G (2014) Imiquimod in the treatment of breast cancer skin metastasis. J Clin Oncol 32(8):e22–e25. doi: 10.1200/JCO.2012.46.4883 PubMedCrossRefGoogle Scholar
  261. 261.
    Salazar LG, Lu H, Reichow JL, Childs JS, Coveler AL, Higgins DM, Waisman J, Allison KH, Dang Y, Disis ML (2017) Topical Imiquimod plus nab-paclitaxel for breast cancer cutaneous metastases: a phase 2 clinical trial. JAMA Oncol. doi: 10.1001/jamaoncol.2016.6007
  262. 262.
    Weihrauch MR, Richly H, von Bergwelt-Baildon MS, Becker HJ, Schmidt M, Hacker UT, Shimabukuro-Vornhagen A, Holtick U, Nokay B, Schroff M, Wittig B, Scheulen ME (2015) Phase I clinical study of the toll-like receptor 9 agonist MGN1703 in patients with metastatic solid tumours. European journal of cancer (Oxford, England : 1990) 51(2):146–156. doi: 10.1016/j.ejca.2014.11.002 CrossRefGoogle Scholar
  263. 263.
    Barron TI, Flahavan EM, Sharp L, Bennett K, Visvanathan K (2014) Recent Prediagnostic aspirin use, lymph node involvement, and 5-year mortality in women with stage I–III breast cancer: a Nationwide population-based cohort study. Cancer Res 74(15):4065PubMedPubMedCentralCrossRefGoogle Scholar
  264. 264.
    Henry WS, Laszewski T, Tsang T, Beca F, Beck AH, McAllister SS, Toker A (2016) Aspirin suppresses growth in PI3K-mutant breast cancer by activating AMPK and inhibiting mTORC1 signaling. Cancer ResGoogle Scholar
  265. 265.
    De Palma M, Mazzieri R, Politi LS, Pucci F, Zonari E, Sitia G, Mazzoleni S, Moi D, Venneri MA, Indraccolo S, Falini A, Guidotti LG, Galli R, Naldini L (2008) Tumor-targeted interferon-alpha delivery by Tie2-expressing monocytes inhibits tumor growth and metastasis. Cancer Cell 14(4):299–311. doi: 10.1016/j.ccr.2008.09.004 PubMedCrossRefGoogle Scholar
  266. 266.
    Escobar G, Moi D, Ranghetti A, Ozkal-Baydin P, Squadrito ML, Kajaste-Rudnitski A, Bondanza A, Gentner B, De Palma M, Mazzieri R, Naldini L (2014) Genetic engineering of hematopoiesis for targeted IFN-α delivery inhibits breast cancer progression. Sci Transl Med 6(217). doi: 10.1126/scitranslmed.3006353
  267. 267.
    Rolny C, Mazzone M, Tugues S, Laoui D, Johansson I, Coulon C, Squadrito ML, Segura I, Li X, Knevels E, Costa S, Vinckier S, Dresselaer T, Åkerud P, De Mol M, Salomäki H, Phillipson M, Wyns S, Larsson E, Buysschaert I, Botling J, Himmelreich U, Van Ginderachter JA, De Palma M, Dewerchin M, Claesson-Welsh L, Carmeliet P (2011) HRG inhibits tumor growth and metastasis by inducing macrophage polarization and vessel normalization through downregulation of PlGF. Cancer Cell 19(1):31–44. doi: 10.1016/j.ccr.2010.11.009 PubMedCrossRefGoogle Scholar
  268. 268.
    Xu M, Liu M, Du X, Li S, Li H, Li X, Li Y, Wang Y, Qin Z, Fu YX, Wang S (2015) Intratumoral delivery of IL-21 overcomes anti-Her2/Neu resistance through shifting tumor-associated Macrophages from M2 to M1 phenotype. J Immunol 194(10):4997–5006. doi: 10.4049/jimmunol.1402603 PubMedCrossRefGoogle Scholar
  269. 269.
    Zhou J, Donatelli SS, Gilvary DL, Tejera MM, Eksioglu EA, Chen X, Coppola D, Wei S, Djeu JY (2016) Therapeutic targeting of myeloid-derived suppressor cells involves a novel mechanism mediated by clusterin. Sci Rep 6:29521. doi: 10.1038/srep29521 PubMedPubMedCentralCrossRefGoogle Scholar
  270. 270.
    Emens LA, Braiteh FS, Cassier P, Delord J-P, Eder JP, Fasso M, Xiao Y, Wang Y, Molinero L, Chen DS (2015a) Inhibition of PD-L1 by MPDL3280A leads to clinical activity in patients with metastatic triple-negative breast cancer (TNBC). AACR,Google Scholar
  271. 271.
    Nanda R, Chow LQM, Dees EC, Berger R, Gupta S, Geva R, Pusztai L, Pathiraja K, Aktan G, Cheng JD, Karantza V, Buisseret L (2016) Pembrolizumab in patients with advanced triple-negative breast cancer: phase Ib KEYNOTE-012 study. J Clin Oncol 34(21):2460–2467. doi: 10.1200/JCO.2015.64.8931 PubMedCrossRefGoogle Scholar
  272. 272.
    Nanda R, Specht J, Dees C, Berger R, Gupta S, Geva R, Pusztai L, Pathiraja K, Ray A, Karantza V, Buisseret L (2017) Abstract P6-10-03: KEYNOTE-012: long-lasting responses in a phase Ib study of pembrolizumab for metastatic triple-negative breast cancer (mTNBC). Cancer Res 77(Suppl 4):P6-10-03Google Scholar
  273. 273.
    Vonderheide RH, LoRusso PM, Khalil M, Gartner EM, Khaira D, Soulieres D, Dorazio P, Trosko JA, Rüter J, Mariani GL (2010) Tremelimumab in combination with exemestane in patients with advanced breast cancer and treatment-associated modulation of inducible costimulator expression on patient T cells. Clin Cancer Res 16(13):3485–3494PubMedCrossRefGoogle Scholar
  274. 274.
    De Henau O, Rausch M, Winkler D, Campesato LF, Liu C, Cymerman DH, Budhu S, Ghosh A, Pink M, Tchaicha J, Douglas M, Tibbitts T, Sharma S, Proctor J, Kosmider N, White K, Stern H, Soglia J, Adams J, Palombella VJ, McGovern K, Kutok JL, Wolchok JD, Merghoub T (2016) Overcoming resistance to checkpoint blockade therapy by targeting PI3Kgamma in myeloid cells. Nature 539(7629):443–447. doi: 10.1038/nature20554 PubMedPubMedCentralCrossRefGoogle Scholar
  275. 275.
    Soliman HH, Jackson E, Neuger T, Dees EC, Harvey RD, Han H, Ismailkhan R, Minton S, Vahanian NN, Link C (2014) A first in man phase I trial of the oral immunomodulator, indoximod, combined with docetaxel in patients with metastatic solid tumors. Oncotarget 5(18):8136–8146PubMedPubMedCentralCrossRefGoogle Scholar
  276. 276.
    Tang SC, Montero A, Munn D, Link C, Vahanian N, Kennedy E, Soliman H (2016) Abstract P2-11-09: a phase 2 randomized trial of the IDO pathway inhibitor indoximod in combination with taxane based chemotherapy for metastatic breast cancer: preliminary data. Cancer Res 76(Suppl 4):P2-11-09Google Scholar
  277. 277.
    Willingham SB (2012) The CD47-signal regulatory protein alpha (SIRPa) interaction is a therapeutic target for human solid tumors. PNASGoogle Scholar
  278. 278.
    Petrova PS, Viller NN, Wong M, Pang X, Lin GHY, Dodge K, Chai V, Chen H, Lee V, House V, Vigo NT, Jin D, Mutukura T, Charbonneau M, Truong T, Viau S, Johnson LD, Linderoth E, Sievers EL, Maleki Vareki S, Figueredo R, Pampillo M, Koropatnick J, Trudel S, Mbong N, Jin L, Wang JCY, Uger RA (2017) TTI-621 (SIRPαFc): a CD47-blocking innate immune checkpoint inhibitor with broad antitumor activity and minimal erythrocyte binding. Clin Cancer Res 23(4):1068–1079. doi: 10.1158/1078-0432.ccr-16-1700 PubMedCrossRefGoogle Scholar
  279. 279.
    Arpel A, Gamper C, Spenle C, Fernandez A, Jacob L, Baumlin N, Laquerriere P, Orend G, Cremel G, Bagnard D (2016) Inhibition of primary breast tumor growth and metastasis using a neuropilin-1 transmembrane domain interfering peptide. Oncotarget 7(34):54723–54732. doi:10.18632/oncotarget.10101
  280. 280.
    Weekes CD, Beeram M, Tolcher AW, Papadopoulos KP, Gore L, Hegde P, Xin Y, Yu R, Shih LM, Xiang H, Brachmann RK, Patnaik A (2014) A phase I study of the human monoclonal anti-NRP1 antibody MNRP1685A in patients with advanced solid tumors. Investig New Drugs 32(4):653–660. doi: 10.1007/s10637-014-0071-z CrossRefGoogle Scholar
  281. 281.
    Papadopoulos KP, Graham DM, Tolcher AW, Razak ARA, Patnaik A, Bedard PL, Rasco DW, Amaya A, Moore KN, Konner JA, Matei D, Martin LP, Adriaens L, Brownstein CM, Lowy I, Gao B, Kostic A, DiCioccio AT, Trail P, Siu LL (2014) A phase 1b study of combined angiogenesis blockade with nesvacumab, a selective monoclonal antibody (MAb) to angiopoietin-2 (Ang2) and ziv-aflibercept in patients with advanced solid malignancies. J Clin Oncol 32(15_Suppl):2522–2522. doi: 10.1200/jco.2014.32.15_suppl.2522
  282. 282.
    Emens LA, Braiteh FS, Cassier P, Delord J-P, Eder JP, Fasso M, Xiao Y, Wang Y, Molinero L, Chen DS, Krop I (2015b) Abstract 2859: inhibition of PD-L1 by MPDL3280A leads to clinical activity in patients with metastatic triple-negative breast cancer (TNBC). Cancer Res 75(15 Supplement):2859CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Sun Yat-Sen Memorial HospitalSun Yat-Sen UniversityGuangzhouPeople’s Republic of China
  2. 2.Breast Tumor Center, Sun Yat-Sen Memorial HospitalSun Yat-Sen UniversityGuangzhouChina
  3. 3.Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial HospitalSun Yat-Sen UniversityGuangzhouChina
  4. 4.Sun Yat-Sen Memorial HospitalSun Yat-Sen UniversityGuangzhou, GuangdongChina

Personalised recommendations