Advertisement

BRCA Gene Mutations and Poly(ADP-Ribose) Polymerase Inhibitors in Triple-Negative Breast Cancer

  • Hitomi Sumiyoshi Okuma
  • Kan YonemoriEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1026)

Abstract

Breast cancer is the most common cancer in women worldwide. Treatment is chosen according to its hormone receptor status and human epidermal growth factor receptor 2 (HER2) status. Among the four main clinically set subtypes, hormone receptor-negative/HER2-negative subtype, also called triple-negative subtype (TNBC), is the most aggressive type with limited choices of therapy. However, recent research has provided important new insights into effective treatments for this subtype. One molecular target that has gained attention is the BRCA gene. BRCA proteins are involved in the maintenance of genomic integrity, therefore playing an important role as a “caretaker” DNA repair protein. Approximately 5% of all breast cancer patients are BRCA mutation carriers, and among the patients with BRCA mutations, 57.1% have the clinical TNBC subtype, showing a high association between BRCA mutations and TNBCs. When cells lack either BRCA1 or BRCA2, all types of homology-directed repairs are compromised, and poly(ADP-ribose) (PAR) polymerase (PARP) acts as a backup system to maintain the genome, consequently making the cells highly sensitive to PARP1 inhibitors. PARP inhibitors have shown promising activity in preclinical and early clinical trials, and today, phase III trials are ongoing. In this chapter, we discuss the mechanism and the role of PARP inhibitors in BRCA-mutated breast cancers and further elaborate the clinical potential of PARP inhibitors as well as their barriers.

Keywords

Triple-negative breast cancer BRCA mutation PARP inhibitor Synthetic lethality 

References

  1. 1.
    Ismail-Khan R, Bui MM (2010) A review of triple-negative breast cancer. Cancer Control 17(3):173–176CrossRefPubMedGoogle Scholar
  2. 2.
    Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA, Fluge O, Pergamenschikov A, Williams C, Zhu SX, Lonning PE, Borresen-Dale AL, Brown PO, Botstein D (2000) Molecular portraits of human breast tumours. Nature 406(6797):747–752. https://doi.org/10.1038/35021093 CrossRefPubMedGoogle Scholar
  3. 3.
    Cancer Genome Atlas N (2012) Comprehensive molecular portraits of human breast tumours. Nature 490(7418):61–70. https://doi.org/10.1038/nature11412 CrossRefGoogle Scholar
  4. 4.
    Han W, Jung EM, Cho J, Lee JW, Hwang KT, Yang SJ, Kang JJ, Bae JY, Jeon YK, Park IA, Nicolau M, Jeffrey SS, Noh DY (2008) DNA copy number alterations and expression of relevant genes in triple-negative breast cancer. Genes Chromosomes Cancer 47(6):490–499. https://doi.org/10.1002/gcc.20550 CrossRefPubMedGoogle Scholar
  5. 5.
    Perren A, Weng LP, Boag AH, Ziebold U, Thakore K, Dahia PL, Komminoth P, Lees JA, Mulligan LM, Mutter GL, Eng C (1999) Immunohistochemical evidence of loss of PTEN expression in primary ductal adenocarcinomas of the breast. Am J Pathol 155(4):1253–1260. https://doi.org/10.1016/S0002-9440(10)65227-3 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Kotsopoulos J, Lubinski J, Lynch HT, Neuhausen SL, Ghadirian P, Isaacs C, Weber B, Kim-Sing C, Foulkes WD, Gershoni-Baruch R, Ainsworth P, Friedman E, Daly M, Garber JE, Karlan B, Olopade OI, Tung N, Saal HM, Eisen A, Osborne M, Olsson H, Gilchrist D, Sun P, Narod SA (2005) Age at menarche and the risk of breast cancer in BRCA1 and BRCA2 mutation carriers. Cancer Causes Control 16(6):667–674. https://doi.org/10.1007/s10552-005-1724-1 CrossRefPubMedGoogle Scholar
  7. 7.
    Foulkes WD, Brunet JS, Stefansson IM, Straume O, Chappuis PO, Begin LR, Hamel N, Goffin JR, Wong N, Trudel M, Kapusta L, Porter P, Akslen LA (2004) The prognostic implication of the basal-like (cyclin E high/p27 low/p53+/glomeruloid-microvascular-proliferation+) phenotype of BRCA1-related breast cancer. Cancer Res 64(3):830–835CrossRefPubMedGoogle Scholar
  8. 8.
    Gonzalez-Angulo AM, Timms KM, Liu S, Chen H, Litton JK, Potter J, Lanchbury JS, Stemke-Hale K, Hennessy BT, Arun BK, Hortobagyi GN, Do KA, Mills GB, Meric-Bernstam F (2011) Incidence and outcome of BRCA mutations in unselected patients with triple receptor-negative breast cancer. Clin Cancer Res 17(5):1082–1089. https://doi.org/10.1158/1078-0432.CCR-10-2560 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Palmieri C, Krell J, James CR, Harper-Wynne C, Misra V, Cleator S, Miles D (2010) Rechallenging with anthracyclines and taxanes in metastatic breast cancer. Nat Rev Clin Oncol 7(10):561–574. https://doi.org/10.1038/nrclinonc.2010.122 CrossRefPubMedGoogle Scholar
  10. 10.
    Jassem J, Carroll C, Ward SE, Simpson E, Hind D (2009) The clinical efficacy of cytotoxic agents in locally advanced or metastatic breast cancer patients pretreated with an anthracycline and a taxane: a systematic review. Eur J Cancer 45(16):2749–2758. https://doi.org/10.1016/j.ejca.2009.05.035 CrossRefPubMedGoogle Scholar
  11. 11.
    Kaufman PA, Awada A, Twelves C, Yelle L, Perez EA, Velikova G, Olivo MS, He Y, Dutcus CE, Cortes J (2015) Phase III open-label randomized study of eribulin mesylate versus capecitabine in patients with locally advanced or metastatic breast cancer previously treated with an anthracycline and a taxane. J Clin Oncol 33(6):594–601. https://doi.org/10.1200/JCO.2013.52.4892 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Cortes J, O’Shaughnessy J, Loesch D, Blum JL, Vahdat LT, Petrakova K, Chollet P, Manikas A, Dieras V, Delozier T, Vladimirov V, Cardoso F, Koh H, Bougnoux P, Dutcus CE, Seegobin S, Mir D, Meneses N, Wanders J, Twelves C, investigators E (2011) Eribulin monotherapy versus treatment of physician’s choice in patients with metastatic breast cancer (EMBRACE): a phase 3 open-label randomised study. Lancet 377 (9769):914–923. doi:https://doi.org/10.1016/S0140-6736(11)60070-6
  13. 13.
    Cardoso F, Bedard PL, Winer EP, Pagani O, Senkus-Konefka E, Fallowfield LJ, Kyriakides S, Costa A, Cufer T, Albain KS, Force E-MT (2009) International guidelines for management of metastatic breast cancer: combination vs sequential single-agent chemotherapy. J Natl Cancer Inst 101(17):1174–1181. https://doi.org/10.1093/jnci/djp235 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Foulkes WD, Smith IE, Reis-Filho JS (2010) Triple-negative breast cancer. N Engl J Med 363(20):1938–1948. https://doi.org/10.1056/NEJMra1001389 CrossRefPubMedGoogle Scholar
  15. 15.
    Uhm JE, Park YH, Yi SY, Cho EY, Choi YL, Lee SJ, Park MJ, Lee SH, Jun HJ, Ahn JS, Kang WK, Park K, Im YH (2009) Treatment outcomes and clinicopathologic characteristics of triple-negative breast cancer patients who received platinum-containing chemotherapy. Int J Cancer 124(6):1457–1462. https://doi.org/10.1002/ijc.24090 CrossRefPubMedGoogle Scholar
  16. 16.
    Tutt A, Ellis P, Kilburn L, Gilett C, Pinder S, Abraham J, Barrett S, Barrett-Lee P, Chan S, Cheang M, Dowsett M, Fox L, Gazinska P, Grigoriadis A, Gutin A, Harper-Wynne C, Hatton M, Kernaghan S, Lanchbury J, Morden J, Owen J, Parikh J, Parker P, Rahman N, Roylance R, Shaw A, Smith I, Thompson R, Timms K, Tovey H, Wardley A, Wilson G, Harries M, Bliss J (2015) Abstract S3-01: the TNT trial: a randomized phase III trial of carboplatin (C) compared with docetaxel (D) for patients with metastatic or recurrent locally advanced triple negative or <em>BRCA1/2</em> breast cancer (CRUK/07/012). Cancer Res 75(9 Suppl):S3-01-S03-01. doi:https://doi.org/10.1158/1538-7445.sabcs14-s3-01
  17. 17.
    Scully R, Livingston DM (2000) In search of the tumour-suppressor functions of BRCA1 and BRCA2. Nature 408(6811):429–432. https://doi.org/10.1038/35044000 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Starita LM, Parvin JD (2003) The multiple nuclear functions of BRCA1: transcription, ubiquitination and DNA repair. Curr Opin Cell Biol 15(3):345–350CrossRefPubMedGoogle Scholar
  19. 19.
    Gudmundsdottir K, Ashworth A (2006) The roles of BRCA1 and BRCA2 and associated proteins in the maintenance of genomic stability. Oncogene 25(43):5864–5874. https://doi.org/10.1038/sj.onc.1209874 CrossRefPubMedGoogle Scholar
  20. 20.
    Wilson JH, Elledge SJ (2002) Cancer. BRCA2 enters the fray. Science 297(5588):1822–1823. https://doi.org/10.1126/science.1077171 CrossRefPubMedGoogle Scholar
  21. 21.
    Chen S, Parmigiani G (2007) Meta-analysis of BRCA1 and BRCA2 penetrance. J Clin Oncol 25(11):1329–1333. https://doi.org/10.1200/JCO.2006.09.1066 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Ford D, Easton DF, Peto J (1995) Estimates of the gene frequency of BRCA1 and its contribution to breast and ovarian cancer incidence. Am J Hum Genet 57(6):1457–1462PubMedPubMedCentralGoogle Scholar
  23. 23.
    Atchley DP, Albarracin CT, Lopez A, Valero V, Amos CI, Gonzalez-Angulo AM, Hortobagyi GN, Arun BK (2008) Clinical and pathologic characteristics of patients with BRCA-positive and BRCA-negative breast cancer. J Clin Oncol 26(26):4282–4288. https://doi.org/10.1200/JCO.2008.16.6231 CrossRefPubMedGoogle Scholar
  24. 24.
    Birgisdottir V, Stefansson OA, Bodvarsdottir SK, Hilmarsdottir H, Jonasson JG, Eyfjord JE (2006) Epigenetic silencing and deletion of the BRCA1 gene in sporadic breast cancer. Breast Cancer Res 8(4):R38. https://doi.org/10.1186/bcr1522 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    De Vos M, Schreiber V, Dantzer F (2012) The diverse roles and clinical relevance of PARPs in DNA damage repair: current state of the art. Biochem Pharmacol 84(2):137–146. https://doi.org/10.1016/j.bcp.2012.03.018 CrossRefPubMedGoogle Scholar
  26. 26.
    Krishnakumar R, Kraus WL (2010) The PARP side of the nucleus: molecular actions, physiological outcomes, and clinical targets. Mol Cell 39(1):8–24. https://doi.org/10.1016/j.molcel.2010.06.017 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Eustermann S, Wu WF, Langelier MF, Yang JC, Easton LE, Riccio AA, Pascal JM, Neuhaus D (2015) Structural basis of detection and signaling of DNA single-strand breaks by human PARP-1. Mol Cell 60(5):742–754. https://doi.org/10.1016/j.molcel.2015.10.032 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Dawicki-McKenna JM, Langelier MF, DeNizio JE, Riccio AA, Cao CD, Karch KR, McCauley M, Steffen JD, Black BE, Pascal JM (2015) PARP-1 activation requires local unfolding of an autoinhibitory domain. Mol Cell 60(5):755–768. https://doi.org/10.1016/j.molcel.2015.10.013 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Satoh MS, Lindahl T (1992) Role of poly(ADP-ribose) formation in DNA repair. Nature 356(6367):356–358. https://doi.org/10.1038/356356a0 CrossRefPubMedGoogle Scholar
  30. 30.
    Rouleau M, Patel A, Hendzel MJ, Kaufmann SH, Poirier GG (2010) PARP inhibition: PARP1 and beyond. Nat Rev Cancer 10(4):293–301. https://doi.org/10.1038/nrc2812 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Ame JC, Spenlehauer C, de Murcia G (2004) The PARP superfamily. BioEssays 26(8):882–893. https://doi.org/10.1002/bies.20085 CrossRefPubMedGoogle Scholar
  32. 32.
    Farmer H, McCabe N, Lord CJ, Tutt AN, Johnson DA, Richardson TB, Santarosa M, Dillon KJ, Hickson I, Knights C, Martin NM, Jackson SP, Smith GC, Ashworth A (2005) Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434(7035):917–921. https://doi.org/10.1038/nature03445 CrossRefPubMedGoogle Scholar
  33. 33.
    Lord CJ, Ashworth A (2017) PARP inhibitors: synthetic lethality in the clinic. Science 355(6330):1152–1158. https://doi.org/10.1126/science.aam7344 CrossRefPubMedGoogle Scholar
  34. 34.
    Helleday T, Petermann E, Lundin C, Hodgson B, Sharma RA (2008) DNA repair pathways as targets for cancer therapy. Nat Rev Cancer 8(3):193–204. https://doi.org/10.1038/nrc2342 CrossRefPubMedGoogle Scholar
  35. 35.
    Bryant HE, Schultz N, Thomas HD, Parker KM, Flower D, Lopez E, Kyle S, Meuth M, Curtin NJ, Helleday T (2005) Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 434(7035):913–917. https://doi.org/10.1038/nature03443 CrossRefPubMedGoogle Scholar
  36. 36.
    Shall S (1975) Seminar on poly(ADP-ribose) and ADP-ribosylation of protine. J Biochem 77(Suppl):2Google Scholar
  37. 37.
    M R Purnell WJW (1980) Novel inhibitors of poly(ADP-ribose) synthetase. Biochem J 185(3):775–777CrossRefGoogle Scholar
  38. 38.
    Terada M, Fujiki H, Marks PA, Sugimura T (1979) Induction of erythroid differentiation of murine erythroleukemia cells by nicotinamide and related compounds. Proc Natl Acad Sci U S A 76(12):6411–6414CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Shen Y, Rehman FL, Feng Y, Boshuizen J, Bajrami I, Elliott R, Wang B, Lord CJ, Post LE, Ashworth A (2013) BMN 673, a novel and highly potent PARP1/2 inhibitor for the treatment of human cancers with DNA repair deficiency. Clin Cancer Res 19(18):5003–5015. https://doi.org/10.1158/1078-0432.CCR-13-1391 CrossRefPubMedGoogle Scholar
  40. 40.
    Murai J, Huang SY, Renaud A, Zhang Y, Ji J, Takeda S, Morris J, Teicher B, Doroshow JH, Pommier Y (2014) Stereospecific PARP trapping by BMN 673 and comparison with olaparib and rucaparib. Mol Cancer Ther 13(2):433–443. https://doi.org/10.1158/1535-7163.MCT-13-0803 CrossRefPubMedGoogle Scholar
  41. 41.
    J.J. Mahany NL, E.I. Heath et al. (2008) A phase IB study evaluating BSI-201 in combination with chemotherapy in subjects with advanced solid tumors. J Clin Oncol 26(Suppl; abstr 3579)Google Scholar
  42. 42.
    O’Shaughnessy J, Osborne C, Pippen JE, Yoffe M, Patt D, Rocha C, Koo IC, Sherman BM, Bradley C (2011) Iniparib plus chemotherapy in metastatic triple-negative breast cancer. N Engl J Med 364(3):205–214. https://doi.org/10.1056/NEJMoa1011418 CrossRefPubMedGoogle Scholar
  43. 43.
    O’Shaughnessy J, Schwartzberg L, Danso MA, Miller KD, Rugo HS, Neubauer M, Robert N, Hellerstedt B, Saleh M, Richards P, Specht JM, Yardley DA, Carlson RW, Finn RS, Charpentier E, Garcia-Ribas I, Winer EP (2014) Phase III study of iniparib plus gemcitabine and carboplatin versus gemcitabine and carboplatin in patients with metastatic triple-negative breast cancer. J Clin Oncol 32(34):3840–3847. https://doi.org/10.1200/JCO.2014.55.2984 CrossRefPubMedGoogle Scholar
  44. 44.
    Menear KA, Adcock C, Boulter R, Cockcroft XL, Copsey L, Cranston A, Dillon KJ, Drzewiecki J, Garman S, Gomez S, Javaid H, Kerrigan F, Knights C, Lau A, Loh VM Jr, Matthews IT, Moore S, O’Connor MJ, Smith GC, Martin NM (2008) 4-[3-(4-cyclopropanecarbonylpiperazine-1-carbonyl)-4-fluorobenzyl]-2H-phthalazin- 1-one: a novel bioavailable inhibitor of poly(ADP-ribose) polymerase-1. J Med Chem 51(20):6581–6591. https://doi.org/10.1021/jm8001263 CrossRefPubMedGoogle Scholar
  45. 45.
    Hay T, Matthews JR, Pietzka L, Lau A, Cranston A, Nygren AO, Douglas-Jones A, Smith GC, Martin NM, O’Connor M, Clarke AR (2009) Poly(ADP-ribose) polymerase-1 inhibitor treatment regresses autochthonous Brca2/p53-mutant mammary tumors in vivo and delays tumor relapse in combination with carboplatin. Cancer Res 69(9):3850–3855. https://doi.org/10.1158/0008-5472.CAN-08-2388 CrossRefPubMedGoogle Scholar
  46. 46.
    Rottenberg S, Jaspers JE, Kersbergen A, van der Burg E, Nygren AO, Zander SA, Derksen PW, de Bruin M, Zevenhoven J, Lau A, Boulter R, Cranston A, O’Connor MJ, Martin NM, Borst P, Jonkers J (2008) High sensitivity of BRCA1-deficient mammary tumors to the PARP inhibitor AZD2281 alone and in combination with platinum drugs. Proc Natl Acad Sci U S A 105(44):17079–17084. https://doi.org/10.1073/pnas.0806092105 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Fong PC, Boss DS, Yap TA, Tutt A, Wu P, Mergui-Roelvink M, Mortimer P, Swaisland H, Lau A, O’Connor MJ, Ashworth A, Carmichael J, Kaye SB, Schellens JH, de Bono JS (2009) Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N Engl J Med 361(2):123–134. https://doi.org/10.1056/NEJMoa0900212 CrossRefPubMedGoogle Scholar
  48. 48.
    Tutt A, Robson M, Garber JE, Domchek SM, Audeh MW, Weitzel JN, Friedlander M, Arun B, Loman N, Schmutzler RK, Wardley A, Mitchell G, Earl H, Wickens M, Carmichael J (2010) Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and advanced breast cancer: a proof-of-concept trial. Lancet 376(9737):235–244. https://doi.org/10.1016/S0140-6736(10)60892-6 CrossRefPubMedGoogle Scholar
  49. 49.
    Gelmon KA, Tischkowitz M, Mackay H, Swenerton K, Robidoux A, Tonkin K, Hirte H, Huntsman D, Clemons M, Gilks B, Yerushalmi R, Macpherson E, Carmichael J, Oza A (2011) Olaparib in patients with recurrent high-grade serous or poorly differentiated ovarian carcinoma or triple-negative breast cancer: a phase 2, multicentre, open-label, non-randomised study. Lancet Oncol 12(9):852–861. https://doi.org/10.1016/S1470-2045(11)70214-5 CrossRefPubMedGoogle Scholar
  50. 50.
    Kaufman B, Shapira-Frommer R, Schmutzler RK, Audeh MW, Friedlander M, Balmana J, Mitchell G, Fried G, Stemmer SM, Hubert A, Rosengarten O, Steiner M, Loman N, Bowen K, Fielding A, Domchek SM (2015) Olaparib monotherapy in patients with advanced cancer and a germline BRCA1/2 mutation. J Clin Oncol 33(3):244–250. https://doi.org/10.1200/JCO.2014.56.2728 CrossRefPubMedGoogle Scholar
  51. 51.
    Robson ME, Im SA, Senkus E, Xu B, Domchek SM, Masuda N, Delaloge S, Li W, Tung NM, Armstrong A, Wu W, Goessl CD, Runswick S, Conte PF (2017) OlympiAD: Phase III trial of olaparib monotherapy versus chemotherapy for patients (pts) with HER2-negative metastatic breast cancer (mBC) and a germline BRCA mutation (gBRCAm). J Clin Oncol (Suppl; abstr LBA4):35Google Scholar
  52. 52.
    Dent RA, Lindeman GJ, Clemons M, Wildiers H, Chan A, McCarthy NJ, Singer CF, Lowe ES, Watkins CL, Carmichael J (2013) Phase I trial of the oral PARP inhibitor olaparib in combination with paclitaxel for first- or second-line treatment of patients with metastatic triple-negative breast cancer. Breast Cancer Res 15(5):R88. https://doi.org/10.1186/bcr3484 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    van der Noll R AJ, Jager A, et al. (2013) Phase I study of olaparib in combination with carboplatin and/or paclitaxel in patients with advanced solid tumors. J Clin Oncol 31(Suppl; abstr 2579)Google Scholar
  54. 54.
    Takahashi M YK, Yamamoto H, et al. (2016) A phase I/II trial of olaparib in combination with eribulin in patients with advanced or metastatic triple negative breast cancer (TNBC) previously treated with anthracyclines and taxanes: the analyses of efficacy and safety from phase II. J Clin Oncol 34(Suppl; abstr 1080)Google Scholar
  55. 55.
    Litton JK, Scoggins M, Ramirez DL, Murthy RK, Whitman GJ, Hess KR, Adrada BE, Moulder SL, Barcenas CH, Valero V, Booser D, Gomez JS, Mills GB, Piwnica-Worms H, Arun BK (2016) A pilot study of neoadjuvant talazoparib for early-stage breast cancer patients with a BRCA mutation. Ann Oncol 27(Suppl 6):vi43–vi67Google Scholar
  56. 56.
    Jaspers JE, Kersbergen A, Boon U, Sol W, van Deemter L, Zander SA, Drost R, Wientjens E, Ji J, Aly A, Doroshow JH, Cranston A, Martin NM, Lau A, O’Connor MJ, Ganesan S, Borst P, Jonkers J, Rottenberg S (2013) Loss of 53BP1 causes PARP inhibitor resistance in Brca1-mutated mouse mammary tumors. Cancer Discov 3(1):68–81. https://doi.org/10.1158/2159-8290.CD-12-0049 CrossRefPubMedGoogle Scholar
  57. 57.
    Xu G, Chapman JR, Brandsma I, Yuan J, Mistrik M, Bouwman P, Bartkova J, Gogola E, Warmerdam D, Barazas M, Jaspers JE, Watanabe K, Pieterse M, Kersbergen A, Sol W, Celie PH, Schouten PC, van den Broek B, Salman A, Nieuwland M, de Rink I, de Ronde J, Jalink K, Boulton SJ, Chen J, van Gent DC, Bartek J, Jonkers J, Borst P, Rottenberg S (2015) REV7 counteracts DNA double-strand break resection and affects PARP inhibition. Nature 521(7553):541–544. https://doi.org/10.1038/nature14328 CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Pettitt SJ, Rehman FL, Bajrami I, Brough R, Wallberg F, Kozarewa I, Fenwick K, Assiotis I, Chen L, Campbell J, Lord CJ, Ashworth A (2013) A genetic screen using the PiggyBac transposon in haploid cells identifies Parp1 as a mediator of olaparib toxicity. PLoS One 8(4):e61520. https://doi.org/10.1371/journal.pone.0061520 CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Chaudhuri AR, Callen E, Ding X, Gogola E, Duarte AA, Lee JE, Wong N, Lafarga V, Calvo JA, Panzarino NJ, John S, Day A, Crespo AV, Shen B, Starnes LM, de Ruiter JR, Daniel JA, Konstantinopoulos PA, Cortez D, Cantor SB, Fernandez-Capetillo O, Ge K, Jonkers J, Rottenberg S, Sharan SK, Nussenzweig A (2016) Erratum: replication fork stability confers chemoresistance in BRCA-deficient cells. Nature 539(7629):456. https://doi.org/10.1038/nature19826 CrossRefPubMedGoogle Scholar
  60. 60.
    Edwards SL, Brough R, Lord CJ, Natrajan R, Vatcheva R, Levine DA, Boyd J, Reis-Filho JS, Ashworth A (2008) Resistance to therapy caused by intragenic deletion in BRCA2. Nature 451(7182):1111–1115. https://doi.org/10.1038/nature06548 CrossRefPubMedGoogle Scholar
  61. 61.
    Barber LJ, Sandhu S, Chen L, Campbell J, Kozarewa I, Fenwick K, Assiotis I, Rodrigues DN, Reis Filho JS, Moreno V, Mateo J, Molife LR, De Bono J, Kaye S, Lord CJ, Ashworth A (2013) Secondary mutations in BRCA2 associated with clinical resistance to a PARP inhibitor. J Pathol 229(3):422–429. https://doi.org/10.1002/path.4140 CrossRefPubMedGoogle Scholar
  62. 62.
    Sakai W, Swisher EM, Karlan BY, Agarwal MK, Higgins J, Friedman C, Villegas E, Jacquemont C, Farrugia DJ, Couch FJ, Urban N, Taniguchi T (2008) Secondary mutations as a mechanism of cisplatin resistance in BRCA2-mutated cancers. Nature 451(7182):1116–1120. https://doi.org/10.1038/nature06633 CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Lord CJ, Ashworth A (2016) BRCAness revisited. Nat Rev Cancer 16(2):110–120. https://doi.org/10.1038/nrc.2015.21 CrossRefPubMedGoogle Scholar
  64. 64.
    McCabe N, Turner NC, Lord CJ, Kluzek K, Bialkowska A, Swift S, Giavara S, O’Connor MJ, Tutt AN, Zdzienicka MZ, Smith GC, Ashworth A (2006) Deficiency in the repair of DNA damage by homologous recombination and sensitivity to poly(ADP-ribose) polymerase inhibition. Cancer Res 66(16):8109–8115. https://doi.org/10.1158/0008-5472.CAN-06-0140 CrossRefPubMedGoogle Scholar
  65. 65.
    Gilardini Montani MS, Prodosmo A, Stagni V, Merli D, Monteonofrio L, Gatti V, Gentileschi MP, Barila D, Soddu S (2013) ATM-depletion in breast cancer cells confers sensitivity to PARP inhibition. J Exp Clin Cancer Res 32:95. https://doi.org/10.1186/1756-9966-32-95 CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Subhash VV, Tan SH, Yeo MS, Yan FL, Peethala PC, Liem N, Krishnan V, Yong WP (2016) ATM expression predicts Veliparib and Irinotecan sensitivity in gastric cancer by mediating P53-independent regulation of cell cycle and apoptosis. Mol Cancer Ther 15(12):3087–3096. https://doi.org/10.1158/1535-7163.MCT-15-1002 CrossRefPubMedGoogle Scholar
  67. 67.
    Villalona-Calero MA, Duan W, Zhao W, Shilo K, Schaaf LJ, Thurmond J, Westman JA, Marshall J, Xiaobai L, Ji J, Rose J, Lustberg M, Bekaii-Saab T, Chen A, Timmers C (2016) Veliparib alone or in combination with Mitomycin C in patients with solid tumors with functional deficiency in homologous recombination repair. J Natl Cancer Inst 108(7). https://doi.org/10.1093/jnci/djv437

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Department of Breast and Medical OncologyNational Cancer Center HospitalTokyoJapan

Personalised recommendations