Cell Cycle Regulation in Treatment of Breast Cancer

  • Zijie Cai
  • Qiang LiuEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1026)


Cell cycle progression and cell proliferation are under precise and orchestrated control in normal cells. However, uncontrolled cell proliferation caused by aberrant cell cycle progression is a crucial characteristic of cancer. Understanding cell cycle progression and its regulation sheds light on cancer treatment. Agents targeting cell cycle regulators (such as CDKs) have been considered as promising candidates in cancer treatment. Although the first-generation pan-CDK inhibitors failed in clinical trials because of their adverse events and low efficacy, new selective CDK 4/6 inhibitors showed potent efficacy with tolerable safety in preclinical and clinical studies. Here we will review the mechanisms of cell cycle regulation and targeting key cell cycle regulators (such as CDKs) in breast cancer treatment. Particularly, we will discuss the mechanism of CDK inhibitors in disrupting cell cycle progression, the use of selective CDK4/6 inhibitors in treatment of advanced, hormone receptor (HR)-positive postmenopausal breast cancer patients, and other clinical trials that aim to extend the utilization of these agents.


Cell cycle CDK inhibitors Breast cancer 


  1. 1.
    Nurse PM (2002) Cyclin dependent kinases and cell cycle control. Bioscience Rep 22(5-6):487–499. doi: 10.1023/A:1022017701871
  2. 2.
    Malumbres M, Barbacid M (2005) Mammalian cyclin-dependent kinases. Trends Biochem Sci 30(11):630–641. doi: 10.1016/j.tibs.2005.09.005 PubMedCrossRefGoogle Scholar
  3. 3.
    Malumbres M, Barbacid M (2009) Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer 9(3):153–166. doi: 10.1038/nrc2602 PubMedCrossRefGoogle Scholar
  4. 4.
    Kastan MB, Bartek J (2004) Cell-cycle checkpoints and cancer. Nature 432(7015):316–323. doi: 10.1038/nature03097 PubMedCrossRefGoogle Scholar
  5. 5.
    Shapiro GI (2006) Cyclin-dependent kinase pathways as targets for cancer treatment. J Clin Oncol 24(11):1770–1783. doi: 10.1200/Jco.2005.03.7689 PubMedCrossRefGoogle Scholar
  6. 6.
    Beaver JA, Amiri-Kordestani L, Charlab R, Chen W, Palmby T, Tilley A, Zirkelbach JF, Yu J, Liu Q, Zhao L, Crich J, Chen XH, Hughes M, Bloomquist E, Tang S, Sridhara R, Kluetz PG, Kim G, Ibrahim A, Pazdur R, Cortazar P (2015) FDA approval: Palbociclib for the treatment of postmenopausal patients with estrogen receptor-positive, HER2-negative metastatic breast cancer. Clin Cancer Res 21(21):4760–4766. doi: 10.1158/1078-0432.CCR-15-1185 PubMedCrossRefGoogle Scholar
  7. 7.
    Walker AJ, Wedam S, Amiri-Kordestani L, Bloomquist E, Tang S, Sridhara R, Chen W, Palmby TR, Fourie Zirkelbach J, Fu W, Liu Q, Tilley A, Kim G, Kluetz PG, McKee AE, Pazdur R (2016) FDA approval of Palbociclib in combination with Fulvestrant for the treatment of hormone receptor-positive, HER2-negative metastatic breast cancer. Clin Cancer Res 22(20):4968–4972. doi: 10.1158/1078-0432.CCR-16-0493 PubMedCrossRefGoogle Scholar
  8. 8.
    Anders L, Ke N, Hydbring P, Choi YJ, Widlund HR, Chick JM, Zhai H, Vidal M, Gygi SP, Braun P, Sicinski P (2011) A systematic screen for CDK4/6 substrates links FOXM1 phosphorylation to senescence suppression in cancer cells. Cancer Cell 20(5):620–634. doi: 10.1016/j.ccr.2011.10.001 PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Harbour JW, Dean DC (2000) The Rb/E2F pathway: expanding roles and emerging paradigms. Genes Dev 14(19):2393–2409PubMedCrossRefGoogle Scholar
  10. 10.
    Malumbres M, Barbacid M (2001) To cycle or not to cycle: a critical decision in cancer. Nat Rev Cancer 1(3):222–231. doi: 10.1038/35106065 PubMedCrossRefGoogle Scholar
  11. 11.
    Hwang HC, Clurman BE (2005) Cyclin E in normal and neoplastic cell cycles. Oncogene 24(17):2776–2786. doi: 10.1038/sj.onc.1208613 PubMedCrossRefGoogle Scholar
  12. 12.
    Spencer SL, Cappell SD, Tsai FC, Overton KW, Wang CL, Meyer T (2013) The proliferation-quiescence decision is controlled by a bifurcation in CDK2 activity at mitotic exit. Cell 155(2):369–383. doi: 10.1016/j.cell.2013.08.062 PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Ren S, Rollins BJ (2004) Cyclin C/cdk3 promotes Rb-dependent G0 exit. Cell 117(2):239–251PubMedCrossRefGoogle Scholar
  14. 14.
    Serrano M, Hannon GJ, Beach D (1993) A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Nature 366(6456):704–707. doi: 10.1038/366704a0 PubMedCrossRefGoogle Scholar
  15. 15.
    Hannon GJ, Beach D (1994) p15INK4B is a potential effector of TGF-beta-induced cell cycle arrest. Nature 371(6494):257–261. doi: 10.1038/371257a0 PubMedCrossRefGoogle Scholar
  16. 16.
    Chan FK, Zhang J, Cheng L, Shapiro DN, Winoto A (1995) Identification of human and mouse p19, a novel CDK4 and CDK6 inhibitor with homology to p16ink4. Mol Cell Biol 15(5):2682–2688PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Hirai H, Roussel MF, Kato JY, Ashmun RA, Sherr CJ (1995) Novel INK4 proteins, p19 and p18, are specific inhibitors of the cyclin D-dependent kinases CDK4 and CDK6. Mol Cell Biol 15(5):2672–2681PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Sherr CJ, Roberts JM (1999) CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 13(12):1501–1512PubMedCrossRefGoogle Scholar
  19. 19.
    Pavletich NP (1999) Mechanisms of cyclin-dependent kinase regulation: structures of Cdks, their cyclin activators, and Cip and INK4 inhibitors. J Mol Biol 287(5):821–828. doi: 10.1006/jmbi.1999.2640 PubMedCrossRefGoogle Scholar
  20. 20.
    Serrano M, Blasco MA (2001) Putting the stress on senescence. Curr Opin Cell Biol 13(6):748–753PubMedCrossRefGoogle Scholar
  21. 21.
    Reynisdottir I, Polyak K, Iavarone A, Massague J (1995) Kip/Cip and Ink4 Cdk inhibitors cooperate to induce cell cycle arrest in response to TGF-beta. Genes Dev 9(15):1831–1845PubMedCrossRefGoogle Scholar
  22. 22.
    Witkiewicz AK, Knudsen KE, Dicker AP, Knudsen ES (2011) The meaning of p16(ink4a) expression in tumors: functional significance, clinical associations and future developments. Cell Cycle 10(15):2497–2503. doi: 10.4161/cc.10.15.16776 PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    LaPak KM, Burd CE (2014) The molecular balancing act of p16(INK4a) in cancer and aging. Mol Cancer Res 12(2):167–183. doi: 10.1158/1541-7786.MCR-13-0350 PubMedCrossRefGoogle Scholar
  24. 24.
    Lukas J, Parry D, Aagaard L, Mann DJ, Bartkova J, Strauss M, Peters G, Bartek J (1995) Retinoblastoma-protein-dependent cell-cycle inhibition by the tumour suppressor p16. Nature 375(6531):503–506. doi: 10.1038/375503a0 PubMedCrossRefGoogle Scholar
  25. 25.
    van den Heuvel S, Harlow E (1993) Distinct roles for cyclin-dependent kinases in cell cycle control. Science 262(5142):2050–2054PubMedCrossRefGoogle Scholar
  26. 26.
    Polyak K, Lee MH, Erdjument-Bromage H, Koff A, Roberts JM, Tempst P, Massague J (1994) Cloning of p27Kip1, a cyclin-dependent kinase inhibitor and a potential mediator of extracellular antimitogenic signals. Cell 78(1):59–66PubMedCrossRefGoogle Scholar
  27. 27.
    Coqueret O (2003) New roles for p21 and p27 cell-cycle inhibitors: a function for each cell compartment? Trends Cell Biol 13(2):65–70PubMedCrossRefGoogle Scholar
  28. 28.
    LaBaer J, Garrett MD, Stevenson LF, Slingerland JM, Sandhu C, Chou HS, Fattaey A, Harlow E (1997) New functional activities for the p21 family of CDK inhibitors. Genes Dev 11(7):847–862PubMedCrossRefGoogle Scholar
  29. 29.
    Cheng M, Olivier P, Diehl JA, Fero M, Roussel MF, Roberts JM, Sherr CJ (1999) The p21(Cip1) and p27(Kip1) CDK ‘inhibitors’ are essential activators of cyclin D-dependent kinases in murine fibroblasts. EMBO J 18(6):1571–1583. doi: 10.1093/emboj/18.6.1571 PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Frank CJ, Hyde M, Greider CW (2006) Regulation of telomere elongation by the cyclin-dependent kinase CDK1. Mol Cell 24(3):423–432. doi: 10.1016/j.molcel.2006.10.020 PubMedCrossRefGoogle Scholar
  31. 31.
    Pagano M (2004) Control of DNA synthesis and mitosis by the Skp2-p27-Cdk1/2 axis. Mol Cell 14(4):414–416PubMedCrossRefGoogle Scholar
  32. 32.
    Nigg EA (2001) Mitotic kinases as regulators of cell division and its checkpoints. Nat Rev Mol Cell Biol 2(1):21–32. doi: 10.1038/35048096 PubMedCrossRefGoogle Scholar
  33. 33.
    Harper JW, Burton JL, Solomon MJ (2002) The anaphase-promoting complex: it’s not just for mitosis any more. Genes Dev 16(17):2179–2206. doi: 10.1101/gad.1013102 PubMedCrossRefGoogle Scholar
  34. 34.
    Ubersax JA, Woodbury EL, Quang PN, Paraz M, Blethrow JD, Shah K, Shokat KM, Morgan DO (2003) Targets of the cyclin-dependent kinase Cdk1. Nature 425(6960):859–864. doi: 10.1038/nature02062 PubMedCrossRefGoogle Scholar
  35. 35.
    Maestre C, Delgado-Esteban M, Gomez-Sanchez JC, Bolanos JP, Almeida A (2008) Cdk5 phosphorylates Cdh1 and modulates cyclin B1 stability in excitotoxicity. EMBO J 27(20):2736–2745. doi: 10.1038/emboj.2008.195 PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Zhang J, Cicero SA, Wang L, Romito-Digiacomo RR, Yang Y, Herrup K (2008) Nuclear localization of Cdk5 is a key determinant in the postmitotic state of neurons. Proc Natl Acad Sci U S A 105(25):8772–8777. doi: 10.1073/pnas.0711355105 PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Cruz JC, Tsai LH (2004) A Jekyll and Hyde kinase: roles for Cdk5 in brain development and disease. Curr Opin Neurobiol 14(3):390–394. doi: 10.1016/j.conb.2004.05.002 PubMedCrossRefGoogle Scholar
  38. 38.
    Kesavapany S, Li BS, Amin N, Zheng YL, Grant P, Pant HC (2004) Neuronal cyclin-dependent kinase 5: role in nervous system function and its specific inhibition by the Cdk5 inhibitory peptide. Biochim Biophys Acta 1697(1–2):143–153. doi: 10.1016/j.bbapap.2003.11.020 PubMedCrossRefGoogle Scholar
  39. 39.
    Fisher RP (2005) Secrets of a double agent: CDK7 in cell-cycle control and transcription. J Cell Sci 118(Pt 22):5171–5180. doi: 10.1242/jcs.02718 PubMedCrossRefGoogle Scholar
  40. 40.
    Lolli G, Johnson LN (2005) CAK-Cyclin-dependent activating kinase: a key kinase in cell cycle control and a target for drugs? Cell Cycle 4(4):572–577PubMedCrossRefGoogle Scholar
  41. 41.
    Morris EJ, Ji JY, Yang F, Di Stefano L, Herr A, Moon NS, Kwon EJ, Haigis KM, Naar AM, Dyson NJ (2008) E2F1 represses beta-catenin transcription and is antagonized by both pRB and CDK8. Nature 455(7212):552–556. doi: 10.1038/nature07310 PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Garriga J, Grana X (2004) Cellular control of gene expression by T-type cyclin/CDK9 complexes. Gene 337:15–23. doi: 10.1016/j.gene.2004.05.007 PubMedCrossRefGoogle Scholar
  43. 43.
    Kasten M, Giordano A (2001) Cdk10, a Cdc2-related kinase, associates with the Ets2 transcription factor and modulates its transactivation activity. Oncogene 20(15):1832–1838. doi: 10.1038/sj.onc.1204295 PubMedCrossRefGoogle Scholar
  44. 44.
    Loyer P, Trembley JH, Katona R, Kidd VJ, Lahti JM (2005) Role of CDK/cyclin complexes in transcription and RNA splicing. Cell Signal 17(9):1033–1051. doi: 10.1016/j.cellsig.2005.02.005 PubMedCrossRefGoogle Scholar
  45. 45.
    Yokoyama H, Gruss OJ, Rybina S, Caudron M, Schelder M, Wilm M, Mattaj IW, Karsenti E (2008) Cdk11 is a RanGTP-dependent microtubule stabilization factor that regulates spindle assembly rate. J Cell Biol 180(5):867–875. doi: 10.1083/jcb.200706189 PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Hu D, Valentine M, Kidd VJ, Lahti JM (2007) CDK11(p58) is required for the maintenance of sister chromatid cohesion. J Cell Sci 120(Pt 14):2424–2434. doi: 10.1242/jcs.007963 PubMedCrossRefGoogle Scholar
  47. 47.
    Wilker EW, van Vugt MA, Artim SA, Huang PH, Petersen CP, Reinhardt HC, Feng Y, Sharp PA, Sonenberg N, White FM, Yaffe MB (2007) 14-3-3sigma controls mitotic translation to facilitate cytokinesis. Nature 446(7133):329–332. doi: 10.1038/nature05584 PubMedCrossRefGoogle Scholar
  48. 48.
    Petretti C, Savoian M, Montembault E, Glover DM, Prigent C, Giet R (2006) The PITSLRE/CDK11p58 protein kinase promotes centrosome maturation and bipolar spindle formation. EMBO Rep 7(4):418–424. doi: 10.1038/sj.embor.7400639 PubMedPubMedCentralGoogle Scholar
  49. 49.
    Asghar U, Witkiewicz AK, Turner NC, Knudsen ES (2015) The history and future of targeting cyclin-dependent kinases in cancer therapy. Nat Rev Drug Discov 14(2):130–146. doi: 10.1038/nrd4504 PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Motokura T, Bloom T, Kim HG, Juppner H, Ruderman JV, Kronenberg HM, Arnold A (1991) A novel cyclin encoded by a bcl1-linked candidate oncogene. Nature 350(6318):512–515. doi: 10.1038/350512a0 PubMedCrossRefGoogle Scholar
  51. 51.
    Sutherland RL, Musgrove EA (2002) Cyclin D1 and mammary carcinoma: new insights from transgenic mouse models. Breast Cancer Res 4(1):14–17PubMedCrossRefGoogle Scholar
  52. 52.
    Gillett C, Fantl V, Smith R, Fisher C, Bartek J, Dickson C, Barnes D, Peters G (1994) Amplification and overexpression of cyclin D1 in breast cancer detected by immunohistochemical staining. Cancer Res 54(7):1812–1817PubMedGoogle Scholar
  53. 53.
    Foster JS, Henley DC, Ahamed S, Wimalasena J (2001) Estrogens and cell-cycle regulation in breast cancer. Trends Endocrinol Metab 12(7):320–327PubMedCrossRefGoogle Scholar
  54. 54.
    Musgrove EA, Caldon CE, Barraclough J, Stone A, Sutherland RL (2011) Cyclin D as a therapeutic target in cancer. Nat Rev Cancer 11(8):558–572. doi: 10.1038/nrc3090 PubMedCrossRefGoogle Scholar
  55. 55.
    Choi YJ, Anders L (2014) Signaling through cyclin D-dependent kinases. Oncogene 33(15):1890–1903. doi: 10.1038/onc.2013.137 PubMedCrossRefGoogle Scholar
  56. 56.
    Herschkowitz JI, He X, Fan C, Perou CM (2008) The functional loss of the retinoblastoma tumour suppressor is a common event in basal-like and luminal B breast carcinomas. Breast Cancer Res 10(5):R75. doi: 10.1186/bcr2142 PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Buckley MF, Sweeney KJ, Hamilton JA, Sini RL, Manning DL, Nicholson RI, deFazio A, Watts CK, Musgrove EA, Sutherland RL (1993) Expression and amplification of cyclin genes in human breast cancer. Oncogene 8(8):2127–2133PubMedGoogle Scholar
  58. 58.
    Wang TC, Cardiff RD, Zukerberg L, Lees E, Arnold A, Schmidt EV (1994) Mammary hyperplasia and carcinoma in MMTV-cyclin D1 transgenic mice. Nature 369(6482):669–671. doi: 10.1038/369669a0 PubMedCrossRefGoogle Scholar
  59. 59.
    Weinstat-Saslow D, Merino MJ, Manrow RE, Lawrence JA, Bluth RF, Wittenbel KD, Simpson JF, Page DL, Steeg PS (1995) Overexpression of cyclin D mRNA distinguishes invasive and in situ breast carcinomas from non-malignant lesions. Nat Med 1(12):1257–1260PubMedCrossRefGoogle Scholar
  60. 60.
    Alle KM, Henshall SM, Field AS, Sutherland RL (1998) Cyclin D1 protein is overexpressed in hyperplasia and intraductal carcinoma of the breast. Clin Cancer Res 4(4):847–854PubMedGoogle Scholar
  61. 61.
    Musgrove EA, Lee CS, Buckley MF, Sutherland RL (1994) Cyclin D1 induction in breast cancer cells shortens G1 and is sufficient for cells arrested in G1 to complete the cell cycle. Proc Natl Acad Sci U S A 91(17):8022–8026PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Yu Q, Geng Y, Sicinski P (2001) Specific protection against breast cancers by cyclin D1 ablation. Nature 411(6841):1017–1021. doi: 10.1038/35082500 PubMedCrossRefGoogle Scholar
  63. 63.
    Yang C, Ionescu-Tiba V, Burns K, Gadd M, Zukerberg L, Louis DN, Sgroi D, Schmidt EV (2004) The role of the cyclin D1-dependent kinases in ErbB2-mediated breast cancer. Am J Pathol 164(3):1031–1038. doi: 10.1016/S0002-9440(10)63190-2 PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Roy PG, Thompson AM (2006) Cyclin D1 and breast cancer. Breast 15(6):718–727. doi: 10.1016/j.breast.2006.02.005 PubMedCrossRefGoogle Scholar
  65. 65.
    Neuman E, Ladha MH, Lin N, Upton TM, Miller SJ, DiRenzo J, Pestell RG, Hinds PW, Dowdy SF, Brown M, Ewen ME (1997) Cyclin D1 stimulation of estrogen receptor transcriptional activity independent of cdk4. Mol Cell Biol 17(9):5338–5347PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Zwijsen RM, Wientjens E, Klompmaker R, van der Sman J, Bernards R, Michalides RJ (1997) CDK-independent activation of estrogen receptor by cyclin D1. Cell 88(3):405–415PubMedCrossRefGoogle Scholar
  67. 67.
    Sorlie T, Tibshirani R, Parker J, Hastie T, Marron JS, Nobel A, Deng S, Johnsen H, Pesich R, Geisler S, Demeter J, Perou CM, Lonning PE, Brown PO, Borresen-Dale AL, Botstein D (2003) Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci U S A 100(14):8418–8423. doi: 10.1073/pnas.0932692100 PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Nielsen NH, Arnerlov C, Emdin SO, Landberg G (1996) Cyclin E overexpression, a negative prognostic factor in breast cancer with strong correlation to oestrogen receptor status. Br J Cancer 74(6):874–880PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Donnellan R, Kleinschmidt I, Chetty R (2001) Cyclin E immunoexpression in breast ductal carcinoma: pathologic correlations and prognostic implications. Hum Pathol 32(1):89–94. doi: 10.1053/hupa.2001.21141 PubMedCrossRefGoogle Scholar
  70. 70.
    Span PN, Tjan-Heijnen VC, Manders P, Beex LV, Sweep CG (2003) Cyclin-E is a strong predictor of endocrine therapy failure in human breast cancer. Oncogene 22(31):4898–4904. doi: 10.1038/sj.onc.1206818 PubMedCrossRefGoogle Scholar
  71. 71.
    Keyomarsi K, Tucker SL, Buchholz TA, Callister M, Ding Y, Hortobagyi GN, Bedrosian I, Knickerbocker C, Toyofuku W, Lowe M, Herliczek TW, Bacus SS (2002) Cyclin E and survival in patients with breast cancer. N Engl J Med 347(20):1566–1575. doi: 10.1056/NEJMoa021153 PubMedCrossRefGoogle Scholar
  72. 72.
    Scaltriti M, Eichhorn PJ, Cortes J, Prudkin L, Aura C, Jimenez J, Chandarlapaty S, Serra V, Prat A, Ibrahim YH, Guzman M, Gili M, Rodriguez O, Rodriguez S, Perez J, Green SR, Mai S, Rosen N, Hudis C, Baselga J (2011) Cyclin E amplification/overexpression is a mechanism of trastuzumab resistance in HER2+ breast cancer patients. Proc Natl Acad Sci U S A 108(9):3761–3766. doi: 10.1073/pnas.1014835108 PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Smith ML, Seo YR (2000) Sensitivity of cyclin E-overexpressing cells to cisplatin/taxol combinations. Anticancer Res 20(4):2537–2539PubMedGoogle Scholar
  74. 74.
    Sutherland RL, Musgrove EA (2004) Cyclins and breast cancer. J Mammary Gland Biol Neoplasia 9(1):95–104. doi: 10.1023/B:JOMG.0000023591.45568.77 PubMedCrossRefGoogle Scholar
  75. 75.
    Barton MC, Akli S, Keyomarsi K (2006) Deregulation of cyclin E meets dysfunction in p53: closing the escape hatch on breast cancer. J Cell Physiol 209(3):686–694. doi: 10.1002/jcp.20818 PubMedCrossRefGoogle Scholar
  76. 76.
    Luhtala S, Staff S, Tanner M, Isola J (2016) Cyclin E amplification, over-expression, and relapse-free survival in HER-2-positive primary breast cancer. Tumour Biol 37(7):9813–9823. doi: 10.1007/s13277-016-4870-z PubMedCrossRefGoogle Scholar
  77. 77.
    Gao S, Ma JJ, Lu C (2013) Prognostic value of cyclin E expression in breast cancer: a meta-analysis. Tumour Biol 34(6):3423–3430. doi: 10.1007/s13277-013-0915-8 PubMedCrossRefGoogle Scholar
  78. 78.
    Hunt KK, Karakas C, Ha MJ, Biernacka A, Yi M, Sahin A, Adjapong O, Hortobogyi GN, Bondy ML, Thompson PA, Cheung KL, Ellis IO, Bacus S, Symmans WF, Do KA, Keyomarsi K (2016) Cytoplasmic Cyclin E predicts recurrence in patients with breast cancer. Clin Cancer Res. doi: 10.1158/1078-0432.CCR-16-2217
  79. 79.
    Timms JF, White SL, O’Hare MJ, Waterfield MD (2002) Effects of ErbB-2 overexpression on mitogenic signalling and cell cycle progression in human breast luminal epithelial cells. Oncogene 21(43):6573–6586. doi: 10.1038/sj.onc.1205847 PubMedCrossRefGoogle Scholar
  80. 80.
    Mittendorf EA, Liu Y, Tucker SL, McKenzie T, Qiao N, Akli S, Biernacka A, Meijer L, Keyomarsi K, Hunt KK (2010) A novel interaction between HER2/neu and cyclin E in breast cancer. Oncogene 29(27):3896–3907. doi: 10.1038/onc.2010.151 PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Akli S, Zheng PJ, Multani AS, Wingate HF, Pathak S, Zhang N, Tucker SL, Chang S, Keyomarsi K (2004) Tumor-specific low molecular weight forms of cyclin E induce genomic instability and resistance to p21, p27, and antiestrogens in breast cancer. Cancer Res 64(9):3198–3208PubMedCrossRefGoogle Scholar
  82. 82.
    Akli S, Van Pelt CS, Bui T, Meijer L, Keyomarsi K (2011) Cdk2 is required for breast cancer mediated by the low-molecular-weight isoform of cyclin E. Cancer Res 71(9):3377–3386. doi: 10.1158/0008-5472.CAN-10-4086 PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Robinson WA, Elefanty AG, Hersey P (1996) Expression of the tumour suppressor genes p15 and p16 in malignant melanoma. Melanoma Res 6(4):285–289PubMedCrossRefGoogle Scholar
  84. 84.
    Van Zee KJ, Calvano JE, Bisogna M (1998) Hypomethylation and increased gene expression of p16INK4a in primary and metastatic breast carcinoma as compared to normal breast tissue. Oncogene 16(21):2723–2727. doi: 10.1038/sj.onc.1201794 PubMedCrossRefGoogle Scholar
  85. 85.
    Wong SC, Chan JK, Lee KC, Hsiao WL (2001) Differential expression of p16/p21/p27 and cyclin D1/D3, and their relationships to cell proliferation, apoptosis, and tumour progression in invasive ductal carcinoma of the breast. J Pathol 194(1):35–42. doi: 10.1002/path.838 PubMedCrossRefGoogle Scholar
  86. 86.
    Bisogna M, Calvano JE, Ho GH, Orlow I, Cordon-Cardo C, Borgen PI, Van Zee KJ (2001) Molecular analysis of the INK4A and INK4B gene loci in human breast cancer cell lines and primary carcinomas. Cancer Genet Cytogenet 125(2):131–138PubMedCrossRefGoogle Scholar
  87. 87.
    Zariwala M, Liu E, Xiong Y (1996) Mutational analysis of the p16 family cyclin-dependent kinase inhibitors p15INK4b and p18INK4c in tumor-derived cell lines and primary tumors. Oncogene 12(2):451–455PubMedGoogle Scholar
  88. 88.
    Herman JG, Jen J, Merlo A, Baylin SB (1996) Hypermethylation-associated inactivation indicates a tumor suppressor role for p15INK4B. Cancer Res 56(4):722–727PubMedGoogle Scholar
  89. 89.
    Gartel AL, Radhakrishnan SK (2005) Lost in transcription: p21 repression, mechanisms, and consequences. Cancer Res 65(10):3980–3985. doi: 10.1158/0008-5472.CAN-04-3995 PubMedCrossRefGoogle Scholar
  90. 90.
    Walsh A, Cook RS, Rexer B, Arteaga CL, Skala MC (2012) Optical imaging of metabolism in HER2 overexpressing breast cancer cells. Biomed Opt Express 3(1):75–85. doi: 10.1364/BOE.3.000075 PubMedCrossRefGoogle Scholar
  91. 91.
    Musgrove EA, Davison EA, Ormandy CJ (2004) Role of the CDK inhibitor p27 (Kip1) in mammary development and carcinogenesis: insights from knockout mice. J Mammary Gland Biol Neoplasia 9(1):55–66. doi: 10.1023/B:JOMG.0000023588.55733.84 PubMedCrossRefGoogle Scholar
  92. 92.
    Katayose Y, Kim M, Rakkar AN, Li Z, Cowan KH, Seth P (1997) Promoting apoptosis: a novel activity associated with the cyclin-dependent kinase inhibitor p27. Cancer Res 57(24):5441–5445PubMedGoogle Scholar
  93. 93.
    Lapenna S, Giordano A (2009) Cell cycle kinases as therapeutic targets for cancer. Nat Rev Drug Discov 8(7):547–566. doi: 10.1038/nrd2907 PubMedCrossRefGoogle Scholar
  94. 94.
    Bose P, Simmons GL, Grant S (2013) Cyclin-dependent kinase inhibitor therapy for hematologic malignancies. Expert Opin Investig Drugs 22(6):723–738. doi: 10.1517/13543784.2013.789859 PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Lin TS, Blum KA, Fischer DB, Mitchell SM, Ruppert AS, Porcu P, Kraut EH, Baiocchi RA, Moran ME, Johnson AJ, Schaaf LJ, Grever MR, Byrd JC (2010) Flavopiridol, fludarabine, and rituximab in mantle cell lymphoma and indolent B-cell lymphoproliferative disorders. J Clin Oncol 28(3):418–423. doi: 10.1200/JCO.2009.24.1570 PubMedCrossRefGoogle Scholar
  96. 96.
    Ramaswamy B, Phelps MA, Baiocchi R, Bekaii-Saab T, Ni W, Lai JP, Wolfson A, Lustberg ME, Wei L, Wilkins D, Campbell A, Arbogast D, Doyle A, Byrd JC, Grever MR, Shah MH (2012) A dose-finding, pharmacokinetic and pharmacodynamic study of a novel schedule of flavopiridol in patients with advanced solid tumors. Investig New Drugs 30(2):629–638. doi: 10.1007/s10637-010-9563-7 CrossRefGoogle Scholar
  97. 97.
    Hegeman RB, Mulkerin D, Thomas J, Alberti D, Binger K, Marnocha R, Kolesar J, Wilding G (2005) Phase I study of oxaliplatin in combination with 5-fluorouracil (5-FU), leucovorin (LV) and capecitabine (ORAL FOLFOX-6) in patients with advanced or metastatic solid tumors. J Clin Oncol 23(16):149s–149sGoogle Scholar
  98. 98.
    Le Tourneau C, Faivre S, Laurence V, Delbaldo C, Vera K, Girre V, Chiao J, Armour S, Frame S, Green SR, Gianella-Borradori A, Dieras V, Raymond E (2010) Phase I evaluation of seliciclib (R-roscovitine), a novel oral cyclin-dependent kinase inhibitor, in patients with advanced malignancies. Eur J Cancer 46(18):3243–3250. doi: 10.1016/j.ejca.2010.08.001 PubMedCrossRefGoogle Scholar
  99. 99.
    Nair BC, Vallabhaneni S, Tekmal RR, Vadlamudi RK (2011) Roscovitine confers tumor suppressive effect on therapy-resistant breast tumor cells. Breast Cancer Res 13(3):R80. doi: 10.1186/bcr2929 PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Appleyard MV, O’Neill MA, Murray KE, Paulin FE, Bray SE, Kernohan NM, Levison DA, Lane DP, Thompson AM (2009) Seliciclib (CYC202, R-roscovitine) enhances the antitumor effect of doxorubicin in vivo in a breast cancer xenograft model. Int J Cancer 124(2):465–472. doi: 10.1002/ijc.23938 PubMedCrossRefGoogle Scholar
  101. 101.
    Kodym E, Kodym R, Reis AE, Habib AA, Story MD, Saha D (2009) The small-molecule CDK inhibitor, SNS-032, enhances cellular radiosensitivity in quiescent and hypoxic non-small cell lung cancer cells. Lung Cancer 66(1):37–47. doi: 10.1016/j.lungcan.2008.12.026 PubMedCrossRefGoogle Scholar
  102. 102.
    Walsby E, Lazenby M, Pepper C, Burnett AK (2011) The cyclin-dependent kinase inhibitor SNS-032 has single agent activity in AML cells and is highly synergistic with cytarabine. Leukemia 25(3):411–419. doi: 10.1038/leu.2010.290 PubMedCrossRefGoogle Scholar
  103. 103.
    Tong WG, Chen R, Plunkett W, Siegel D, Sinha R, Harvey RD, Badros AZ, Popplewell L, Coutre S, Fox JA, Mahadocon K, Chen T, Kegley P, Hoch U, Wierda WG (2010) Phase I and pharmacologic study of SNS-032, a potent and selective Cdk2, 7, and 9 inhibitor, in patients with advanced chronic lymphocytic leukemia and multiple myeloma. J Clin Oncol 28(18):3015–3022. doi: 10.1200/JCO.2009.26.1347 PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Heath EI, Bible K, Martell RE, Adelman DC, Lorusso PM (2008) A phase 1 study of SNS-032 (formerly BMS-387032), a potent inhibitor of cyclin-dependent kinases 2, 7 and 9 administered as a single oral dose and weekly infusion in patients with metastatic refractory solid tumors. Investig New Drugs 26(1):59–65. doi: 10.1007/s10637-007-9090-3 CrossRefGoogle Scholar
  105. 105.
    Kumar SK, LaPlant B, Chng WJ, Zonder J, Callander N, Fonseca R, Fruth B, Roy V, Erlichman C, Stewart AK (2015) Dinaciclib, a novel CDK inhibitor, demonstrates encouraging single-agent activity in patients with relapsed multiple myeloma. Blood 125(3):443–448. doi: 10.1182/blood-2014-05-573741 PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Flynn J, Jones J, Johnson AJ, Andritsos L, Maddocks K, Jaglowski S, Hessler J, Grever MR, Im E, Zhou H, Zhu Y, Zhang D, Small K, Bannerji R, Byrd JC (2015) Dinaciclib is a novel cyclin-dependent kinase inhibitor with significant clinical activity in relapsed and refractory chronic lymphocytic leukemia. Leukemia 29(7):1524–1529. doi: 10.1038/leu.2015.31 PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Nemunaitis JJ, Small KA, Kirschmeier P, Zhang D, Zhu Y, Jou YM, Statkevich P, Yao SL, Bannerji R (2013) A first-in-human, phase 1, dose-escalation study of dinaciclib, a novel cyclin-dependent kinase inhibitor, administered weekly in subjects with advanced malignancies. J Transl Med 11:259. doi: 10.1186/1479-5876-11-259 PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Mitri Z, Karakas C, Wei C, Briones B, Simmons H, Ibrahim N, Alvarez R, Murray JL, Keyomarsi K, Moulder S (2015) A phase 1 study with dose expansion of the CDK inhibitor dinaciclib (SCH 727965) in combination with epirubicin in patients with metastatic triple negative breast cancer. Investig New Drugs 33(4):890–894. doi: 10.1007/s10637-015-0244-4 CrossRefGoogle Scholar
  109. 109.
    Mita MM, Joy AA, Mita A, Sankhala K, Jou YM, Zhang D, Statkevich P, Zhu Y, Yao SL, Small K, Bannerji R, Shapiro CL (2014) Randomized phase II trial of the cyclin-dependent kinase inhibitor dinaciclib (MK-7965) versus capecitabine in patients with advanced breast cancer. Clin Breast Cancer 14(3):169–176. doi: 10.1016/j.clbc.2013.10.016 PubMedCrossRefGoogle Scholar
  110. 110.
    O’Leary B, Finn RS, Turner NC (2016) Treating cancer with selective CDK4/6 inhibitors. Nat Rev Clin Oncol 13(7):417–430. doi: 10.1038/nrclinonc.2016.26 PubMedCrossRefGoogle Scholar
  111. 111.
    Fry DW, Harvey PJ, Keller PR, Elliott WL, Meade M, Trachet E, Albassam M, Zheng X, Leopold WR, Pryer NK, Toogood PL (2004) Specific inhibition of cyclin-dependent kinase 4/6 by PD 0332991 and associated antitumor activity in human tumor xenografts. Mol Cancer Ther 3(11):1427–1438PubMedGoogle Scholar
  112. 112.
    Rivadeneira DB, Mayhew CN, Thangavel C, Sotillo E, Reed CA, Grana X, Knudsen ES (2010) Proliferative suppression by CDK4/6 inhibition: complex function of the retinoblastoma pathway in liver tissue and hepatoma cells. Gastroenterology 138(5):1920–1930. doi: 10.1053/j.gastro.2010.01.007 PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Flaherty KT, Lorusso PM, Demichele A, Abramson VG, Courtney R, Randolph SS, Shaik MN, Wilner KD, O’Dwyer PJ, Schwartz GK (2012) Phase I, dose-escalation trial of the oral cyclin-dependent kinase 4/6 inhibitor PD 0332991, administered using a 21-day schedule in patients with advanced cancer. Clin Cancer Res 18(2):568–576. doi: 10.1158/1078-0432.CCR-11-0509 PubMedCrossRefGoogle Scholar
  114. 114.
    Schwartz GK, LoRusso PM, Dickson MA, Randolph SS, Shaik MN, Wilner KD, Courtney R, O’Dwyer PJ (2011) Phase I study of PD 0332991, a cyclin-dependent kinase inhibitor, administered in 3-week cycles (schedule 2/1). Br J Cancer 104(12):1862–1868. doi: 10.1038/bjc.2011.177 PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    DeMichele A, Clark AS, Tan KS, Heitjan DF, Gramlich K, Gallagher M, Lal P, Feldman M, Zhang P, Colameco C, Lewis D, Langer M, Goodman N, Domchek S, Gogineni K, Rosen M, Fox K, O’Dwyer P (2015) CDK 4/6 inhibitor palbociclib (PD0332991) in Rb+ advanced breast cancer: phase II activity, safety, and predictive biomarker assessment. Clin Cancer Res 21(5):995–1001. doi: 10.1158/1078-0432.CCR-14-2258 PubMedCrossRefGoogle Scholar
  116. 116.
    Finn RS, Crown JP, Lang I, Boer K, Bondarenko IM, Kulyk SO, Ettl J, Patel R, Pinter T, Schmidt M, Shparyk Y, Thummala AR, Voytko NL, Fowst C, Huang X, Kim ST, Randolph S, Slamon DJ (2015) The cyclin-dependent kinase 4/6 inhibitor palbociclib in combination with letrozole versus letrozole alone as first-line treatment of oestrogen receptor-positive, HER2-negative, advanced breast cancer (PALOMA-1/TRIO-18): a randomised phase 2 study. Lancet Oncol 16(1):25–35. doi: 10.1016/S1470-2045(14)71159-3 PubMedCrossRefGoogle Scholar
  117. 117.
    Finn RS, Hurvitz SA, Allison MA, Applebaum S, Glaspy J, DiCarlo B, Courtney R, Shaik N, Kim ST, Fowst C, Slamon DJ (2009) Phase I study of PD 0332991, a novel, oral, Cyclin-D kinase (CDK) 4/6 inhibitor in combination with Letrozole, for first-line treatment of metastatic post-menopausal, estrogen receptor-positive (ER plus ), human epidermal growth factor receptor 2 (HER2)-negative breast cancer. Cancer Res 69(24):788s–788sGoogle Scholar
  118. 118.
    Finn RS, Martin M, Rugo HS, Jones S, Im SA, Gelmon K, Harbeck N, Lipatov ON, Walshe JM, Moulder S, Gauthier E, Lu DR, Randolph S, Dieras V, Slamon DJ (2016) Palbociclib and Letrozole in advanced breast cancer. N Engl J Med 375(20):1925–1936. doi: 10.1056/NEJMoa1607303 PubMedCrossRefGoogle Scholar
  119. 119.
    Cristofanilli M, Turner NC, Bondarenko I (2016) Fulvestrant plus palbociclib versus fulvestrant plus placebo for treatment of hormone-receptor-positive, HER2-negative metastatic breast cancer that progressed on previous endocrine therapy (PALOMA-3): final analysis of the multicentre, double-blind, phase 3 randomised controlled trial (vol 17, pg 431, 2016). Lancet Oncol 17(7):E270–E270Google Scholar
  120. 120.
    Turner NC, Huang Bartlett C, Cristofanilli M (2015) Palbociclib in hormone-receptor-positive advanced breast cancer. N Engl J Med 373(17):1672–1673. doi: 10.1056/NEJMc1510345 PubMedCrossRefGoogle Scholar
  121. 121.
    Murphy CG, Dickler MN (2015) The role of CDK4/6 inhibition in breast cancer. Oncologist 20(5):483–490. doi: 10.1634/theoncologist.2014-0443 PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Finn RS, Dering J, Conklin D, Kalous O, Cohen DJ, Desai AJ, Ginther C, Atefi M, Chen I, Fowst C, Los G, Slamon DJ (2009) PD 0332991, a selective cyclin D kinase 4/6 inhibitor, preferentially inhibits proliferation of luminal estrogen receptor-positive human breast cancer cell lines in vitro. Breast Cancer Res 11(5):R77. doi: 10.1186/bcr2419 PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Witkiewicz AK, Cox D, Knudsen ES (2014) CDK4/6 inhibition provides a potent adjunct to Her2-targeted therapies in preclinical breast cancer models. Genes Cancer 5(7-8):261–272. doi:10.18632/genesandcancer.24
  124. 124.
    Rader J, Russell MR, Hart LS, Nakazawa MS, Belcastro LT, Martinez D, Li Y, Carpenter EL, Attiyeh EF, Diskin SJ, Kim S, Parasuraman S, Caponigro G, Schnepp RW, Wood AC, Pawel B, Cole KA, Maris JM (2013) Dual CDK4/CDK6 inhibition induces cell-cycle arrest and senescence in neuroblastoma. Clin Cancer Res 19(22):6173–6182. doi: 10.1158/1078-0432.CCR-13-1675 PubMedCrossRefGoogle Scholar
  125. 125.
    O’Brien NA, Tomaso ED, Ayala R, Tong L, Issakhanian S, Linnartz R, Finn RS, Hirawat S, Slamon DJ (2014) In vivo efficacy of combined targeting of CDK4/6, ER and PI3K signaling in ER plus breast cancer. Cancer Res 74(19). doi: 10.1158/1538-7445.AM2014-4756
  126. 126.
    Infante JR, Cassier PA, Gerecitano JF, Witteveen PO, Chugh R, Ribrag V, Chakraborty A, Matano A, Dobson JR, Crystal AS, Parasuraman S, Shapiro GI (2016) A phase I study of the Cyclin-dependent kinase 4/6 inhibitor Ribociclib (LEE011) in patients with advanced solid tumors and lymphomas. Clin Cancer Res 22(23):5696–5705. doi: 10.1158/1078-0432.CCR-16-1248 PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Juric DMP, Campone M et al (2016) Ribociclib (LEE011) and letrozole in estrogen receptor-positive (ER+), HER2-negative (HER2–) advanced breast cancer (aBC): phase Ib safety, preliminary efficacy and molecular analysis. Presented at the 2016 annual meeting of the American Society of Clinical Oncology, ChicagoGoogle Scholar
  128. 128.
    Vora SR, Juric D, Kim N, Mino-Kenudson M, Huynh T, Costa C, Lockerman EL, Pollack SF, Liu M, Li X, Lehar J, Wiesmann M, Wartmann M, Chen Y, Cao ZA, Pinzon-Ortiz M, Kim S, Schlegel R, Huang A, Engelman JA (2014) CDK 4/6 inhibitors sensitize PIK3CA mutant breast cancer to PI3K inhibitors. Cancer Cell 26(1):136–149. doi: 10.1016/j.ccr.2014.05.020 PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Juric D, Ismail-Khan R, Campone M, Garcia-Estevez L, Becerra C, De Boer R, Hamilton E, Mayer IA, Hui R, Lathrop KI, Pagani O, Asano S, Bhansali SG, Zhang V, Hewes B, Munster P (2016) Phase Ib/Il study of ribociclib and alpelisib and letrozole in ER+, HER2-breast cancer: safety, preliminary efficacy and molecular analysis. Cancer Res 76. doi: 10.1158/1538-7445.SABCS15-P3-14-01
  130. 130.
    Curigliano G, Gomez Pardo P, Meric-Bernstam F, Conte P, Lolkema MP, Beck JT, Bardia A, Martinez Garcia M, Penault-Llorca F, Dhuria S, Tang Z, Solovieff N, Miller M, Di Tomaso E, Hurvitz SA (2016) Ribociclib plus letrozole in early breast cancer: a presurgical, window-of-opportunity study. Breast 28:191–198. doi: 10.1016/j.breast.2016.06.008 PubMedCrossRefGoogle Scholar
  131. 131.
    Gelbert LM, Cai S, Lin X, Sanchez-Martinez C, Del Prado M, Lallena MJ, Torres R, Ajamie RT, Wishart GN, Flack RS, Neubauer BL, Young J, Chan EM, Iversen P, Cronier D, Kreklau E, de Dios A (2014) Preclinical characterization of the CDK4/6 inhibitor LY2835219: in-vivo cell cycle-dependent/independent anti-tumor activities alone/in combination with gemcitabine. Investig New Drugs 32(5):825–837. doi: 10.1007/s10637-014-0120-7 CrossRefGoogle Scholar
  132. 132.
    Tate SC, Cai S, Ajamie RT, Burke T, Beckmann RP, Chan EM, De Dios A, Wishart GN, Gelbert LM, Cronier DM (2014) Semi-mechanistic pharmacokinetic/pharmacodynamic modeling of the antitumor activity of LY2835219, a new cyclin-dependent kinase 4/6 inhibitor, in mice bearing human tumor xenografts. Clin Cancer Res 20(14):3763–3774. doi: 10.1158/1078-0432.CCR-13-2846 PubMedCrossRefGoogle Scholar
  133. 133.
    Patnaik A, Rosen LS, Tolaney SM, Tolcher AW, Goldman JW, Gandhi L, Papadopoulos KP, Beeram M, Rasco DW, Hilton JF, Nasir A, Beckmann RP, Schade AE, Fulford AD, Nguyen TS, Martinez R, Kulanthaivel P, Li LQ, Frenzel M, Cronier DM, Chan EM, Flaherty KT, Wen PY, Shapiro GI (2016) Efficacy and safety of Abemaciclib, an inhibitor of CDK4 and CDK6, for patients with breast cancer, non-small cell lung cancer, and other solid tumors. Cancer Discov 6(7):740–753. doi: 10.1158/2159-8290.CD-16-0095 PubMedCrossRefGoogle Scholar
  134. 134.
    Goetz MP, Beeram M, Beck T, Conlin AK, Dees EC, Dickler MN, Helsten TL, Conkling PR, Edenfield WJ, Richards DA, Turner PK, Cai N, Chan EM, Pant S, Becerra CH, Kalinsky K, Puhalla SL, Rexer BN, Burris HA, Tolaney SM (2016) Abemaciclib, an inhibitor of CDK4 and CDK6, combined with endocrine and HER2-targeted therapies for women with metastatic breast cancer. Cancer Res 76. doi: 10.1158/1538-7445.SABCS15-P4-13-25
  135. 135.
    Dickler MN TS, Rugo HS et al (2016) MONARCH1: results from a phase II study of abemaciclib, a CDK4 and CDK6 inhibitor, as monotherapy, in patients with HR+/HER2- breast cancer, after chemotherapy for advanced disease. J Clin Oncol 34(Suppl, abstr 510)Google Scholar
  136. 136.
    Raub TJ, Wishart GN, Kulanthaivel P, Staton BA, Ajamie RT, Sawada GA, Gelbert LM, Shannon HE, Sanchez-Martinez C, De Dios A (2015) Brain exposure of two selective dual CDK4 and CDK6 inhibitors and the antitumor activity of CDK4 and CDK6 inhibition in combination with Temozolomide in an intracranial glioblastoma Xenograft. Drug Metab Dispos 43(9):1360–1371. doi: 10.1124/dmd.114.062745 PubMedCrossRefGoogle Scholar
  137. 137.
    Hurvitz S MM, Fernández Abad M, Chan D, Rostorfer R, Petru E, Barriga S, Costigan TM, Caldwell CW, Nguyen T, Press M, Slamon D (2016) Biological effects of abemaciclib in a phase 2 neoadjuvant study for postmenopausal patients with HR+, HER2- breast cancer. Presented at the 2016 San Antonio breast cancer symposiumGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Breast Tumor Center, Sun Yat-sen Memorial HospitalSun Yat-sen UniversityGuangzhouChina

Personalised recommendations