Metabolic Changes During Cancer Cachexia Pathogenesis

  • Ng Shyh-ChangEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1026)


Wasting of adipose tissue and skeletal muscle is a hallmark of metastatic cancer and a major cause of death. Like patients with cachexia caused by other chronic infections or inflammatory diseases, the cancer subject manifests both malnutrition and metabolic stress. Both carbohydrate utilization and amino acid incorporation are decreased in the muscles of cancer cachexia patients. Cancer cells affect host metabolism in two ways: (a) their own metabolism of nutrients into other metabolites and (b) circulating factors they secrete or induce the host to secrete. Accelerated glycolysis and lactate production, i.e., the Warburg effect and the resultant increase in Cori cycle activity, are the most widely discussed metabolic effects. Meanwhile, although a large number of pro-cachexia circulating factors have been found, such as TNFa, IL-6, myostatin, and PTHrp, none have been shown to be a dominant factor that can be targeted singly to treat cancer cachexia in humans. It is possible that given the complex multifactorial nature of the cachexia secretome, and the personalized differences between cancer patients, targeting any single circulating factor would always be insufficient to treat cachexia for all patients. Here we review the metabolic changes that occur in response to tumor growth and tumor-secreted factors during cachexia.


Cachexia Cancer Metabolism Circulating factors 


  1. 1.
    Argiles JM, Busquets S, Stemmler B, Lopez-Soriano FJ (2014) Cancer cachexia: understanding the molecular basis. Nat Rev Cancer 14(11):754–762. doi: 10.1038/nrc3829 PubMedCrossRefGoogle Scholar
  2. 2.
    Chaffer CL, Weinberg RA (2011) A perspective on cancer cell metastasis. Science 331(6024):1559–1564. doi: 10.1126/science.1203543 PubMedCrossRefGoogle Scholar
  3. 3.
    Massague J, Obenauf AC (2016) Metastatic colonization by circulating tumour cells. Nature 529(7586):298–306. doi: 10.1038/nature17038 PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Tisdale MJ (2009) Mechanisms of cancer cachexia. Physiol Rev 89(2):381–410. doi: 10.1152/physrev.00016.2008 PubMedCrossRefGoogle Scholar
  5. 5.
    Spano D, Heck C, De Antonellis P, Christofori G, Zollo M (2012) Molecular networks that regulate cancer metastasis. Semin Cancer Biol 22(3):234–249. doi: 10.1016/j.semcancer.2012.03.006 PubMedCrossRefGoogle Scholar
  6. 6.
    Fearon KC, Glass DJ, Guttridge DC (2012) Cancer cachexia: mediators, signaling, and metabolic pathways. Cell Metab 16(2):153–166. doi: 10.1016/j.cmet.2012.06.011 PubMedCrossRefGoogle Scholar
  7. 7.
    Waning DL, Guise TA (2014) Molecular mechanisms of bone metastasis and associated muscle weakness. Clin Cancer Res 20(12):3071–3077. doi: 10.1158/1078-0432.CCR-13-1590 PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Guttridge DC (2015) A TGF-beta pathway associated with cancer cachexia. Nat Med 21(11):1248–1249. doi: 10.1038/nm.3988 PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Fox KM, Brooks JM, Gandra SR, Markus R, Chiou CF (2009) Estimation of cachexia among cancer patients based on four definitions. J Oncol 2009:693458. doi: 10.1155/2009/693458 PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Dewys WD, Begg C, Lavin PT, Band PR, Bennett JM, Bertino JR, Cohen MH, Douglass HO Jr, Engstrom PF, Ezdinli EZ, Horton J, Johnson GJ, Moertel CG, Oken MM, Perlia C, Rosenbaum C, Silverstein MN, Skeel RT, Sponzo RW, Tormey DC (1980) Prognostic effect of weight loss prior to chemotherapy in cancer patients. Eastern cooperative oncology group. Am J Med 69(4):491–497PubMedCrossRefGoogle Scholar
  11. 11.
    Warren S (1932) The immediate causes of death in cancer. Am J Med Sci 184:610–615CrossRefGoogle Scholar
  12. 12.
    Houten L, Reilley AA (1980) An investigation of the cause of death from cancer. J Surg Oncol 13(2):111–116PubMedCrossRefGoogle Scholar
  13. 13.
    Harnett WL (1952) British empire cancer campaign: a survey of cancer in London. British Empire Cancer Campaign, LondonGoogle Scholar
  14. 14.
    Consul N, Guo X, Coker C, Lopez-Pintado S, Hibshoosh H, Zhao B, Kalinsky K, Acharyya S (2016) Monitoring metastasis and cachexia in a patient with breast cancer: a case study. Clin Med Insights Oncol 10:83–94. doi: 10.4137/CMO.S40479 PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Kubo Y, Naito T, Mori K, Osawa G, Aruga E (2017) Skeletal muscle loss and prognosis of breast cancer patients. Support Care Cancer. doi: 10.1007/s00520-017-3628-5
  16. 16.
    Waning DL, Guise TA (2015) Cancer-associated muscle weakness: What's bone got to do with it? Bonekey Rep 4:691. doi: 10.1038/bonekey.2015.59 PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Heymsfield SB HJ, Lawson DH (1980) Enteral hyperalimentation. In: JE B (ed) Developments in digestive diseases. Lea and Febiger, Philadelphia, pp 59–83Google Scholar
  18. 18.
    Clark CM, Goodlad GA (1971) Depletion of proteins of phasic and tonic muscles in tumour-bearing rats. Eur J Cancer 7(1):3–9PubMedCrossRefGoogle Scholar
  19. 19.
    Lundholm K, Edstrom S, Ekman L, Karlberg I, Bylund AC, Schersten T (1978) A comparative study of the influence of malignant tumor on host metabolism in mice and man: evaluation of an experimental model. Cancer 42(2):453–461PubMedCrossRefGoogle Scholar
  20. 20.
    Lundholm K, Bylund AC, Holm J, Schersten T (1976) Skeletal muscle metabolism in patients with malignant tumor. Eur J Cancer 12(6):465–473PubMedCrossRefGoogle Scholar
  21. 21.
    Begg RW (1958) Tumor-host relations. Adv Cancer Res 5:1–54PubMedCrossRefGoogle Scholar
  22. 22.
    Ramaswamy KLI, Baker N (1980) Dietary control of lipogenesis in vivo in host tissues and tumours of mice bearing Ehrlich ascites carcinoma. Cancer Res 40:4606–4611Google Scholar
  23. 23.
    Waterhouse C, Kemperman JH (1971) Carbohydrate metabolism in subjects with cancer. Cancer Res 31(9):1273–1278PubMedGoogle Scholar
  24. 24.
    Warnold I, Lundholm K, Schersten T (1978) Energy balance and body composition in cancer patients. Cancer Res 38(6):1801–1807PubMedGoogle Scholar
  25. 25.
    Bozzetti F, Pagnoni AM, Del Vecchio M (1980) Excessive caloric expenditure as a cause of malnutrition in patients with cancer. Surg Gynecol Obstet 150(2):229–234PubMedGoogle Scholar
  26. 26.
    Emery PW, Edwards RH, Rennie MJ, Souhami RL, Halliday D (1984) Protein synthesis in muscle measured in vivo in cachectic patients with cancer. Br Med J (Clin Res Ed) 289(6445):584–586CrossRefGoogle Scholar
  27. 27.
    Lundholm K, Bennegard K, Eden E, Svaninger G, Emery PW, Rennie MJ (1982) Efflux of 3-methylhistidine from the leg in cancer patients who experience weight loss. Cancer Res 42(11):4807–4811PubMedGoogle Scholar
  28. 28.
    O'Keefe SJ, Ogden J, Ramjee G, Rund J (1990) Contribution of elevated protein turnover and anorexia to cachexia in patients with hepatocellular carcinoma. Cancer Res 50(4):1226–1230PubMedGoogle Scholar
  29. 29.
    Acharyya S, Ladner KJ, Nelsen LL, Damrauer J, Reiser PJ, Swoap S, Guttridge DC (2004) Cancer cachexia is regulated by selective targeting of skeletal muscle gene products. J Clin Invest 114(3):370–378. doi: 10.1172/JCI20174 PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Yu Z, Li P, Zhang M, Hannink M, Stamler JS, Yan Z (2008) Fiber type-specific nitric oxide protects oxidative myofibers against cachectic stimuli. PLoS One 3(5):e2086. doi: 10.1371/journal.pone.0002086 PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Diffee GM, Kalfas K, Al-Majid S, McCarthy DO (2002) Altered expression of skeletal muscle myosin isoforms in cancer cachexia. Am J Physiol Cell Physiol 283(5):C1376–C1382. doi: 10.1152/ajpcell.00154.2002 PubMedCrossRefGoogle Scholar
  32. 32.
    Schmitt TL, Martignoni ME, Bachmann J, Fechtner K, Friess H, Kinscherf R, Hildebrandt W (2007) Activity of the Akt-dependent anabolic and catabolic pathways in muscle and liver samples in cancer-related cachexia. J Mol Med (Berl) 85(6):647–654. doi: 10.1007/s00109-007-0177-2 CrossRefGoogle Scholar
  33. 33.
    Eley HL, Skipworth RJ, Deans DA, Fearon KC, Tisdale MJ (2008) Increased expression of phosphorylated forms of RNA-dependent protein kinase and eukaryotic initiation factor 2alpha may signal skeletal muscle atrophy in weight-losing cancer patients. Br J Cancer 98(2):443–449. doi: 10.1038/sj.bjc.6604150 PubMedCrossRefGoogle Scholar
  34. 34.
    Johns N, Hatakeyama S, Stephens NA, Degen M, Degen S, Frieauff W, Lambert C, Ross JA, Roubenoff R, Glass DJ, Jacobi C, Fearon KC (2014) Clinical classification of cancer cachexia: phenotypic correlates in human skeletal muscle. PLoS One 9(1):e83618. doi: 10.1371/journal.pone.0083618 PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Proud CG (2005) eIF2 and the control of cell physiology. Semin Cell Dev Biol 16(1):3–12. doi: 10.1016/j.semcdb.2004.11.004 PubMedCrossRefGoogle Scholar
  36. 36.
    Proud CG (2007) Signalling to translation: how signal transduction pathways control the protein synthetic machinery. Biochem J 403(2):217–234. doi: 10.1042/BJ20070024 PubMedCrossRefGoogle Scholar
  37. 37.
    Carlberg U, Nilsson A, Nygard O (1990) Functional properties of phosphorylated elongation factor 2. Eur J Biochem 191(3):639–645PubMedCrossRefGoogle Scholar
  38. 38.
    Smith KL, Tisdale MJ (1993) Increased protein degradation and decreased protein synthesis in skeletal muscle during cancer cachexia. Br J Cancer 67(4):680–685PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Eley HL, Tisdale MJ (2007) Skeletal muscle atrophy, a link between depression of protein synthesis and increase in degradation. J Biol Chem 282(10):7087–7097. doi: 10.1074/jbc.M610378200 PubMedCrossRefGoogle Scholar
  40. 40.
    Eley HL, Russell ST, Tisdale MJ (2007) Effect of branched-chain amino acids on muscle atrophy in cancer cachexia. Biochem J 407(1):113–120. doi: 10.1042/BJ20070651 PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Papageorgopoulos C, Caldwell K, Schweingrubber H, Neese RA, Shackleton CH, Hellerstein M (2002) Measuring synthesis rates of muscle creatine kinase and myosin with stable isotopes and mass spectrometry. Anal Biochem 309(1):1–10PubMedCrossRefGoogle Scholar
  42. 42.
    Drexler HC, Ruhs A, Konzer A, Mendler L, Bruckskotten M, Looso M, Gunther S, Boettger T, Kruger M, Braun T (2012) On marathons and sprints: an integrated quantitative proteomics and transcriptomics analysis of differences between slow and fast muscle fibers. Mol Cell Proteomics 11(6):M111 010801. doi: 10.1074/mcp.M111.010801
  43. 43.
    Pallafacchina G, Calabria E, Serrano AL, Kalhovde JM, Schiaffino S (2002) A protein kinase B-dependent and rapamycin-sensitive pathway controls skeletal muscle growth but not fiber type specification. Proc Natl Acad Sci U S A 99(14):9213–9218. doi: 10.1073/pnas.142166599 PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Raffaello A, Milan G, Masiero E, Carnio S, Lee D, Lanfranchi G, Goldberg AL, Sandri M (2010) JunB transcription factor maintains skeletal muscle mass and promotes hypertrophy. J Cell Biol 191(1):101–113. doi: 10.1083/jcb.201001136 PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Glickman MH, Ciechanover A (2002) The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev 82(2):373–428. doi: 10.1152/physrev.00027.2001 PubMedCrossRefGoogle Scholar
  46. 46.
    Hasselgren PO, Wray C, Mammen J (2002) Molecular regulation of muscle cachexia: it may be more than the proteasome. Biochem Biophys Res Commun 290(1):1–10. doi: 10.1006/bbrc.2001.5849 PubMedCrossRefGoogle Scholar
  47. 47.
    Khal J, Hine AV, Fearon KC, Dejong CH, Tisdale MJ (2005) Increased expression of proteasome subunits in skeletal muscle of cancer patients with weight loss. Int J Biochem Cell Biol 37(10):2196–2206. doi: 10.1016/j.biocel.2004.10.017 PubMedCrossRefGoogle Scholar
  48. 48.
    Mammucari C, Milan G, Romanello V, Masiero E, Rudolf R, Del Piccolo P, Burden SJ, Di Lisi R, Sandri C, Zhao J, Goldberg AL, Schiaffino S, Sandri M (2007) FoxO3 controls autophagy in skeletal muscle in vivo. Cell Metab 6(6):458–471. doi: 10.1016/j.cmet.2007.11.001 PubMedCrossRefGoogle Scholar
  49. 49.
    Bodine SC, Latres E, Baumhueter S, Lai VK, Nunez L, Clarke BA, Poueymirou WT, Panaro FJ, Na E, Dharmarajan K, Pan ZQ, Valenzuela DM, DeChiara TM, Stitt TN, Yancopoulos GD, Glass DJ (2001) Identification of ubiquitin ligases required for skeletal muscle atrophy. Science 294(5547):1704–1708. doi: 10.1126/science.1065874 PubMedCrossRefGoogle Scholar
  50. 50.
    Gomes MD, Lecker SH, Jagoe RT, Navon A, Goldberg AL (2001) Atrogin-1, a muscle-specific F-box protein highly expressed during muscle atrophy. Proc Natl Acad Sci U S A 98(25):14440–14445. doi: 10.1073/pnas.251541198 PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Lecker SH, Jagoe RT, Gilbert A, Gomes M, Baracos V, Bailey J, Price SR, Mitch WE, Goldberg AL (2004) Multiple types of skeletal muscle atrophy involve a common program of changes in gene expression. FASEB J 18(1):39–51. doi: 10.1096/fj.03-0610com PubMedCrossRefGoogle Scholar
  52. 52.
    Lokireddy S, Wijesoma IW, Sze SK, McFarlane C, Kambadur R, Sharma M (2012) Identification of atrogin-1-targeted proteins during the myostatin-induced skeletal muscle wasting. Am J Physiol Cell Physiol 303(5):C512–C529. doi: 10.1152/ajpcell.00402.2011 PubMedCrossRefGoogle Scholar
  53. 53.
    Kedar V, McDonough H, Arya R, Li HH, Rockman HA, Patterson C (2004) Muscle-specific RING finger 1 is a bona fide ubiquitin ligase that degrades cardiac troponin I. Proc Natl Acad Sci U S A 101(52):18135–18140. doi: 10.1073/pnas.0404341102 PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Fielitz J, Kim MS, Shelton JM, Latif S, Spencer JA, Glass DJ, Richardson JA, Bassel-Duby R, Olson EN (2007) Myosin accumulation and striated muscle myopathy result from the loss of muscle RING finger 1 and 3. J Clin Invest 117(9):2486–2495. doi: 10.1172/JCI32827 PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Clarke BA, Drujan D, Willis MS, Murphy LO, Corpina RA, Burova E, Rakhilin SV, Stitt TN, Patterson C, Latres E, Glass DJ (2007) The E3 ligase MuRF1 degrades myosin heavy chain protein in dexamethasone-treated skeletal muscle. Cell Metab 6(5):376–385. doi: 10.1016/j.cmet.2007.09.009 PubMedCrossRefGoogle Scholar
  56. 56.
    Polge C, Heng AE, Jarzaguet M, Ventadour S, Claustre A, Combaret L, Bechet D, Matondo M, Uttenweiler-Joseph S, Monsarrat B, Attaix D, Taillandier D (2011) Muscle actin is polyubiquitinylated in vitro and in vivo and targeted for breakdown by the E3 ligase MuRF1. FASEB J 25(11):3790–3802. doi: 10.1096/fj.11-180968 PubMedCrossRefGoogle Scholar
  57. 57.
    Cohen S, Brault JJ, Gygi SP, Glass DJ, Valenzuela DM, Gartner C, Latres E, Goldberg AL (2009) During muscle atrophy, thick, but not thin, filament components are degraded by MuRF1-dependent ubiquitylation. J Cell Biol 185(6):1083–1095. doi: 10.1083/jcb.200901052 PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Sandri M (2016) Protein breakdown in cancer cachexia. Semin Cell Dev Biol 54:11–19. doi: 10.1016/j.semcdb.2015.11.002 PubMedCrossRefGoogle Scholar
  59. 59.
    Stephens NA, Gallagher IJ, Rooyackers O, Skipworth RJ, Tan BH, Marstrand T, Ross JA, Guttridge DC, Lundell L, Fearon KC, Timmons JA (2010) Using transcriptomics to identify and validate novel biomarkers of human skeletal muscle cancer cachexia. Genome Med 2(1):1. doi: 10.1186/gm122 PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    D'Orlando C, Marzetti E, Francois S, Lorenzi M, Conti V, di Stasio E, Rosa F, Brunelli S, Doglietto GB, Pacelli F, Bossola M (2014) Gastric cancer does not affect the expression of atrophy-related genes in human skeletal muscle. Muscle Nerve 49(4):528–533. doi: 10.1002/mus.23945 PubMedCrossRefGoogle Scholar
  61. 61.
    Jagoe RT, Redfern CP, Roberts RG, Gibson GJ, Goodship TH (2002) Skeletal muscle mRNA levels for cathepsin B, but not components of the ubiquitin-proteasome pathway, are increased in patients with lung cancer referred for thoracotomy. Clin Sci (Lond) 102(3):353–361Google Scholar
  62. 62.
    Schersten T, Lundholm K (1972) Lysosomal enzyme activity in muscle tissue from patients with malignant tumor. Cancer 30(5):1246–1251PubMedCrossRefGoogle Scholar
  63. 63.
    Lapierre LR, Kumsta C, Sandri M, Ballabio A, Hansen M (2015) Transcriptional and epigenetic regulation of autophagy in aging. Autophagy 11(6):867–880. doi: 10.1080/15548627.2015.1034410 PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Bechet D, Tassa A, Taillandier D, Combaret L, Attaix D (2005) Lysosomal proteolysis in skeletal muscle. Int J Biochem Cell Biol 37(10):2098–2114. doi: 10.1016/j.biocel.2005.02.029 PubMedCrossRefGoogle Scholar
  65. 65.
    Deval C, Mordier S, Obled C, Bechet D, Combaret L, Attaix D, Ferrara M (2001) Identification of cathepsin L as a differentially expressed message associated with skeletal muscle wasting. Biochem J 360(Pt 1):143–150PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Tassa A, Roux MP, Attaix D, Bechet DM (2003) Class III phosphoinositide 3-kinase--Beclin1 complex mediates the amino acid-dependent regulation of autophagy in C2C12 myotubes. Biochem J 376(Pt 3):577–586. doi: 10.1042/BJ20030826 PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Penna F, Costamagna D, Pin F, Camperi A, Fanzani A, Chiarpotto EM, Cavallini G, Bonelli G, Baccino FM, Costelli P (2013) Autophagic degradation contributes to muscle wasting in cancer cachexia. Am J Pathol 182(4):1367–1378. doi: 10.1016/j.ajpath.2012.12.023 PubMedCrossRefGoogle Scholar
  68. 68.
    Chacon-Cabrera A, Fermoselle C, Urtreger AJ, Mateu-Jimenez M, Diament MJ, de Kier Joffe ED, Sandri M, Barreiro E (2014) Pharmacological strategies in lung cancer-induced cachexia: effects on muscle proteolysis, autophagy, structure, and weakness. J Cell Physiol 229(11):1660–1672. doi: 10.1002/jcp.24611 PubMedCrossRefGoogle Scholar
  69. 69.
    Mizushima N, Yamamoto A, Matsui M, Yoshimori T, Ohsumi Y (2004) In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol Biol Cell 15(3):1101–1111. doi: 10.1091/mbc.E03-09-0704 PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Grumati P, Coletto L, Sabatelli P, Cescon M, Angelin A, Bertaggia E, Blaauw B, Urciuolo A, Tiepolo T, Merlini L, Maraldi NM, Bernardi P, Sandri M, Bonaldo P (2010) Autophagy is defective in collagen VI muscular dystrophies, and its reactivation rescues myofiber degeneration. Nat Med 16(11):1313–1320. doi: 10.1038/nm.2247 PubMedCrossRefGoogle Scholar
  71. 71.
    Wohlgemuth SE, Seo AY, Marzetti E, Lees HA, Leeuwenburgh C (2010) Skeletal muscle autophagy and apoptosis during aging: effects of calorie restriction and life-long exercise. Exp Gerontol 45(2):138–148. doi: 10.1016/j.exger.2009.11.002 PubMedCrossRefGoogle Scholar
  72. 72.
    Mofarrahi M, Sigala I, Guo Y, Godin R, Davis EC, Petrof B, Sandri M, Burelle Y, Hussain SN (2012) Autophagy and skeletal muscles in sepsis. PLoS One 7(10):e47265. doi: 10.1371/journal.pone.0047265 PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Derde S, Vanhorebeek I, Guiza F, Derese I, Gunst J, Fahrenkrog B, Martinet W, Vervenne H, Ververs EJ, Larsson L, Van den Berghe G (2012) Early parenteral nutrition evokes a phenotype of autophagy deficiency in liver and skeletal muscle of critically ill rabbits. Endocrinology 153(5):2267–2276. doi: 10.1210/en.2011-2068 PubMedCrossRefGoogle Scholar
  74. 74.
    Qiu J, Tsien C, Thapalaya S, Narayanan A, Weihl CC, Ching JK, Eghtesad B, Singh K, Fu X, Dubyak G, McDonald C, Almasan A, Hazen SL, Naga Prasad SV, Dasarathy S (2012) Hyperammonemia-mediated autophagy in skeletal muscle contributes to sarcopenia of cirrhosis. Am J Physiol Endocrinol Metab 303(8):E983–E993. doi: 10.1152/ajpendo.00183.2012 PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Smuder AJ, Kavazis AN, Min K (1985) Powers SK (2011) exercise protects against doxorubicin-induced oxidative stress and proteolysis in skeletal muscle. J Appl Physiol 110(4):935–942. doi: 10.1152/japplphysiol.00677.2010 CrossRefGoogle Scholar
  76. 76.
    Brocca L, Cannavino J, Coletto L, Biolo G, Sandri M, Bottinelli R, Pellegrino MA (2012) The time course of the adaptations of human muscle proteome to bed rest and the underlying mechanisms. J Physiol 590(20):5211–5230. doi: 10.1113/jphysiol.2012.240267 PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    O'Leary MF, Vainshtein A, Carter HN, Zhang Y, Hood DA (2012) Denervation-induced mitochondrial dysfunction and autophagy in skeletal muscle of apoptosis-deficient animals. Am J Physiol Cell Physiol 303(4):C447–C454. doi: 10.1152/ajpcell.00451.2011 PubMedCrossRefGoogle Scholar
  78. 78.
    Zhao J, Brault JJ, Schild A, Cao P, Sandri M, Schiaffino S, Lecker SH, Goldberg AL (2007) FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells. Cell Metab 6(6):472–483. doi: 10.1016/j.cmet.2007.11.004 PubMedCrossRefGoogle Scholar
  79. 79.
    Nascimbeni AC, Fanin M, Masiero E, Angelini C, Sandri M (2012) The role of autophagy in the pathogenesis of glycogen storage disease type II (GSDII). Cell Death Differ 19(10):1698–1708. doi: 10.1038/cdd.2012.52 PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    De Palma C, Morisi F, Cheli S, Pambianco S, Cappello V, Vezzoli M, Rovere-Querini P, Moggio M, Ripolone M, Francolini M, Sandri M, Clementi E (2012) Autophagy as a new therapeutic target in Duchenne muscular dystrophy. Cell Death Dis 3:e418. doi: 10.1038/cddis.2012.159 PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Sandri M, Coletto L, Grumati P, Bonaldo P (2013) Misregulation of autophagy and protein degradation systems in myopathies and muscular dystrophies. J Cell Sci 126(Pt 23):5325–5333. doi: 10.1242/jcs.114041 PubMedCrossRefGoogle Scholar
  82. 82.
    Tardif N, Klaude M, Lundell L, Thorell A, Rooyackers O (2013) Autophagic-lysosomal pathway is the main proteolytic system modified in the skeletal muscle of esophageal cancer patients. Am J Clin Nutr 98(6):1485–1492. doi: 10.3945/ajcn.113.063859 PubMedCrossRefGoogle Scholar
  83. 83.
    Wang H, Sun HQ, Zhu X, Zhang L, Albanesi J, Levine B, Yin H (2015) GABARAPs regulate PI4P-dependent autophagosome:lysosome fusion. Proc Natl Acad Sci U S A 112(22):7015–7020. doi: 10.1073/pnas.1507263112 PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Stephens NA, Skipworth RJ, Gallagher IJ, Greig CA, Guttridge DC, Ross JA, Fearon KC (2015) Evaluating potential biomarkers of cachexia and survival in skeletal muscle of upper gastrointestinal cancer patients. J Cachexia Sarcopenia Muscle 6(1):53–61. doi: 10.1002/jcsm.12005 PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Wenz T, Rossi SG, Rotundo RL, Spiegelman BM, Moraes CT (2009) Increased muscle PGC-1alpha expression protects from sarcopenia and metabolic disease during aging. Proc Natl Acad Sci U S A 106(48):20405–20410. doi: 10.1073/pnas.0911570106 PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Carnio S, LoVerso F, Baraibar MA, Longa E, Khan MM, Maffei M, Reischl M, Canepari M, Loefler S, Kern H, Blaauw B, Friguet B, Bottinelli R, Rudolf R, Sandri M (2014) Autophagy impairment in muscle induces neuromuscular junction degeneration and precocious aging. Cell Rep 8(5):1509–1521. doi: 10.1016/j.celrep.2014.07.061 PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Karsli-Uzunbas G, Guo JY, Price S, Teng X, Laddha SV, Khor S, Kalaany NY, Jacks T, Chan CS, Rabinowitz JD, White E (2014) Autophagy is required for glucose homeostasis and lung tumor maintenance. Cancer Discov 4(8):914–927. doi: 10.1158/2159-8290.CD-14-0363 PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Masiero E, Agatea L, Mammucari C, Blaauw B, Loro E, Komatsu M, Metzger D, Reggiani C, Schiaffino S, Sandri M (2009) Autophagy is required to maintain muscle mass. Cell Metab 10(6):507–515. doi: 10.1016/j.cmet.2009.10.008 PubMedCrossRefGoogle Scholar
  89. 89.
    Lucke B, Berwick M, Zeckwer I (1952) Liver catalase activity in parabiotic rats with one partner tumor-bearing. J Natl Cancer Inst 13(3):681–686PubMedGoogle Scholar
  90. 90.
    Beutler B, Mahoney J, Le Trang N, Pekala P, Cerami A (1985) Purification of cachectin, a lipoprotein lipase-suppressing hormone secreted by endotoxin-induced RAW 264.7 cells. J Exp Med 161(5):984–995PubMedCrossRefGoogle Scholar
  91. 91.
    Garcia-Martinez C, Agell N, Llovera M, Lopez-Soriano FJ, Argiles JM (1993) Tumour necrosis factor-alpha increases the ubiquitinization of rat skeletal muscle proteins. FEBS Lett 323(3):211–214PubMedCrossRefGoogle Scholar
  92. 92.
    Garcia-Martinez C, Llovera M, Agell N, Lopez-Soriano FJ, Argiles JM (1994) Ubiquitin gene expression in skeletal muscle is increased by tumour necrosis factor-alpha. Biochem Biophys Res Commun 201(2):682–686PubMedCrossRefGoogle Scholar
  93. 93.
    Llovera M, Carbo N, Lopez-Soriano J, Garcia-Martinez C, Busquets S, Alvarez B, Agell N, Costelli P, Lopez-Soriano FJ, Celada A, Argiles JM (1998) Different cytokines modulate ubiquitin gene expression in rat skeletal muscle. Cancer Lett 133(1):83–87PubMedCrossRefGoogle Scholar
  94. 94.
    Llovera M, Garcia-Martinez C, Agell N, Lopez-Soriano FJ, Argiles JM (1997) TNF can directly induce the expression of ubiquitin-dependent proteolytic system in rat soleus muscles. Biochem Biophys Res Commun 230(2):238–241PubMedCrossRefGoogle Scholar
  95. 95.
    van Hall G (2012) Cytokines: muscle protein and amino acid metabolism. Curr Opin Clin Nutr Metab Care 15(1):85–91. doi: 10.1097/MCO.0b013e32834e6ea2 PubMedCrossRefGoogle Scholar
  96. 96.
    Tisdale MJ (1997) Biology of cachexia. J Natl Cancer Inst 89(23):1763–1773PubMedCrossRefGoogle Scholar
  97. 97.
    Chen SE, Gerken E, Zhang Y, Zhan M, Mohan RK, Li AS, Reid MB, Li YP (2005) Role of TNF-{alpha} signaling in regeneration of cardiotoxin-injured muscle. Am J Physiol Cell Physiol 289(5):C1179–C1187. doi: 10.1152/ajpcell.00062.2005 PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Chen SE, Jin B, Li YP (2007) TNF-alpha regulates myogenesis and muscle regeneration by activating p38 MAPK. Am J Physiol Cell Physiol 292(5):C1660–C1671. doi: 10.1152/ajpcell.00486.2006 PubMedCrossRefGoogle Scholar
  99. 99.
    Miller SC, Ito H, Blau HM, Torti FM (1988) Tumor necrosis factor inhibits human myogenesis in vitro. Mol Cell Biol 8(6):2295–2301PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Oliff A, Defeo-Jones D, Boyer M, Martinez D, Kiefer D, Vuocolo G, Wolfe A, Socher SH (1987) Tumors secreting human TNF/cachectin induce cachexia in mice. Cell 50(4):555–563PubMedCrossRefGoogle Scholar
  101. 101.
    Garcia-Martinez C, Lopez-Soriano FJ, Argiles JM (1993) Acute treatment with tumour necrosis factor-alpha induces changes in protein metabolism in rat skeletal muscle. Mol Cell Biochem 125(1):11–18PubMedCrossRefGoogle Scholar
  102. 102.
    Li YP, Reid MB (2000) NF-kappaB mediates the protein loss induced by TNF-alpha in differentiated skeletal muscle myotubes. Am J Physiol Regul Integr Comp Physiol 279(4):R1165–R1170PubMedCrossRefGoogle Scholar
  103. 103.
    Keren A, Tamir Y, Bengal E (2006) The p38 MAPK signaling pathway: a major regulator of skeletal muscle development. Mol Cell Endocrinol 252(1–2):224–230. doi: 10.1016/j.mce.2006.03.017 PubMedCrossRefGoogle Scholar
  104. 104.
    Bernet JD, Doles JD, Hall JK, Kelly Tanaka K, Carter TA, Olwin BB (2014) p38 MAPK signaling underlies a cell-autonomous loss of stem cell self-renewal in skeletal muscle of aged mice. Nat Med 20(3):265–271. doi: 10.1038/nm.3465 PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Cosgrove BD, Gilbert PM, Porpiglia E, Mourkioti F, Lee SP, Corbel SY, Llewellyn ME, Delp SL, Blau HM (2014) Rejuvenation of the muscle stem cell population restores strength to injured aged muscles. Nat Med 20(3):255–264. doi: 10.1038/nm.3464 PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Fukawa T, Yan-Jiang BC, Min-Wen JC, Jun-Hao ET, Huang D, Qian CN, Ong P, Li Z, Chen S, Mak SY, Lim WJ, Kanayama HO, Mohan RE, Wang RR, Lai JH, Chua C, Ong HS, Tan KK, Ho YS, Tan IB, Teh BT, Shyh-Chang N (2016) Excessive fatty acid oxidation induces muscle atrophy in cancer cachexia. Nat Med 22(6):666–671. doi: 10.1038/nm.4093 PubMedCrossRefGoogle Scholar
  107. 107.
    Maltoni M, Fabbri L, Nanni O, Scarpi E, Pezzi L, Flamini E, Riccobon A, Derni S, Pallotti G, Amadori D (1997) Serum levels of tumour necrosis factor alpha and other cytokines do not correlate with weight loss and anorexia in cancer patients. Support Care Cancer 5(2):130–135PubMedCrossRefGoogle Scholar
  108. 108.
    Jatoi A, Ritter HL, Dueck A, Nguyen PL, Nikcevich DA, Luyun RF, Mattar BI, Loprinzi CL (2010) A placebo-controlled, double-blind trial of infliximab for cancer-associated weight loss in elderly and/or poor performance non-small cell lung cancer patients (N01C9). Lung Cancer 68(2):234–239. doi: 10.1016/j.lungcan.2009.06.020 PubMedCrossRefGoogle Scholar
  109. 109.
    Scott HR, McMillan DC, Crilly A, McArdle CS, Milroy R (1996) The relationship between weight loss and interleukin 6 in non-small-cell lung cancer. Br J Cancer 73(12):1560–1562PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Moses AG, Maingay J, Sangster K, Fearon KC, Ross JA (2009) Pro-inflammatory cytokine release by peripheral blood mononuclear cells from patients with advanced pancreatic cancer: relationship to acute phase response and survival. Oncol Rep 21(4):1091–1095PubMedGoogle Scholar
  111. 111.
    Black K, Garrett IR, Mundy GR (1991) Chinese hamster ovarian cells transfected with the murine interleukin-6 gene cause hypercalcemia as well as cachexia, leukocytosis and thrombocytosis in tumor-bearing nude mice. Endocrinology 128(5):2657–2659. doi: 10.1210/endo-128-5-2657 PubMedCrossRefGoogle Scholar
  112. 112.
    Strassmann G, Fong M, Kenney JS, Jacob CO (1992) Evidence for the involvement of interleukin 6 in experimental cancer cachexia. J Clin Invest 89(5):1681–1684. doi: 10.1172/JCI115767 PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Strassmann G, Fong M, Freter CE, Windsor S, D'Alessandro F, Nordan RP (1993) Suramin interferes with interleukin-6 receptor binding in vitro and inhibits colon-26-mediated experimental cancer cachexia in vivo. J Clin Invest 92(5):2152–2159. doi: 10.1172/JCI116816 PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Goodman MN (1994) Interleukin-6 induces skeletal muscle protein breakdown in rats. Proc Soc Exp Biol Med 205(2):182–185PubMedCrossRefGoogle Scholar
  115. 115.
    Baltgalvis KA, Berger FG, Pena MM, Davis JM, Muga SJ, Carson JA (2008) Interleukin-6 and cachexia in ApcMin/+ mice. Am J Physiol Regul Integr Comp Physiol 294(2):R393–R401. doi: 10.1152/ajpregu.00716.2007 PubMedCrossRefGoogle Scholar
  116. 116.
    Espat NJ, Auffenberg T, Rosenberg JJ, Rogy M, Martin D, Fang CH, Hasselgren PO, Copeland EM, Moldawer LL (1996) Ciliary neurotrophic factor is catabolic and shares with IL-6 the capacity to induce an acute phase response. Am J Phys 271(1 Pt 2):R185–R190Google Scholar
  117. 117.
    Bayliss TJ, Smith JT, Schuster M, Dragnev KH, Rigas JR (2011) A humanized anti-IL-6 antibody (ALD518) in non-small cell lung cancer. Expert Opin Biol Ther 11(12):1663–1668. doi: 10.1517/14712598.2011.627850 PubMedCrossRefGoogle Scholar
  118. 118.
    Reardon KA, Davis J, Kapsa RM, Choong P, Byrne E (2001) Myostatin, insulin-like growth factor-1, and leukemia inhibitory factor mRNAs are upregulated in chronic human disuse muscle atrophy. Muscle Nerve 24(7):893–899PubMedCrossRefGoogle Scholar
  119. 119.
    Carlson CJ, Booth FW, Gordon SE (1999) Skeletal muscle myostatin mRNA expression is fiber-type specific and increases during hindlimb unloading. Am J Phys 277(2 Pt 2):R601–R606Google Scholar
  120. 120.
    Zachwieja JJ, Smith SR, Sinha-Hikim I, Gonzalez-Cadavid N, Bhasin S (1999) Plasma myostatin-immunoreactive protein is increased after prolonged bed rest with low-dose T3 administration. J Gravit Physiol 6(2):11–15PubMedGoogle Scholar
  121. 121.
    Gustafsson T, Osterlund T, Flanagan JN, von Walden F, Trappe TA, Linnehan RM (1985) Tesch PA (2010) effects of 3 days unloading on molecular regulators of muscle size in humans. J Appl Physiol 109(3):721–727. doi: 10.1152/japplphysiol.00110.2009 CrossRefGoogle Scholar
  122. 122.
    Shao C, Liu M, Wu X, Ding F (2007) Time-dependent expression of myostatin RNA transcript and protein in gastrocnemius muscle of mice after sciatic nerve resection. Microsurgery 27(5):487–493. doi: 10.1002/micr.20392 PubMedCrossRefGoogle Scholar
  123. 123.
    Elkina Y, von Haehling S, Anker SD, Springer J (2011) The role of myostatin in muscle wasting: an overview. J Cachexia Sarcopenia Muscle 2(3):143–151. doi: 10.1007/s13539-011-0035-5 PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Zimmers TA, Davies MV, Koniaris LG, Haynes P, Esquela AF, Tomkinson KN, McPherron AC, Wolfman NM, Lee SJ (2002) Induction of cachexia in mice by systemically administered myostatin. Science 296(5572):1486–1488. doi: 10.1126/science.1069525 PubMedCrossRefGoogle Scholar
  125. 125.
    Langley B, Thomas M, Bishop A, Sharma M, Gilmour S, Kambadur R (2002) Myostatin inhibits myoblast differentiation by down-regulating MyoD expression. J Biol Chem 277(51):49831–49840. doi: 10.1074/jbc.M204291200 PubMedCrossRefGoogle Scholar
  126. 126.
    Aversa Z, Bonetto A, Penna F, Costelli P, Di Rienzo G, Lacitignola A, Baccino FM, Ziparo V, Mercantini P, Rossi Fanelli F, Muscaritoli M (2012) Changes in myostatin signaling in non-weight-losing cancer patients. Ann Surg Oncol 19(4):1350–1356. doi: 10.1245/s10434-011-1720-5 PubMedCrossRefGoogle Scholar
  127. 127.
    George I, Bish LT, Kamalakkannan G, Petrilli CM, Oz MC, Naka Y, Sweeney HL, Maybaum S (2010) Myostatin activation in patients with advanced heart failure and after mechanical unloading. Eur J Heart Fail 12(5):444–453. doi: 10.1093/eurjhf/hfq039 PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Elliott B, Renshaw D, Getting S, Mackenzie R (2012) The central role of myostatin in skeletal muscle and whole body homeostasis. Acta Physiol (Oxf) 205(3):324–340. doi: 10.1111/j.1748-1716.2012.02423.x CrossRefGoogle Scholar
  129. 129.
    Loumaye A, de Barsy M, Nachit M, Lause P, Frateur L, van Maanen A, Trefois P, Gruson D, Thissen JP (2015) Role of Activin a and myostatin in human cancer cachexia. J Clin Endocrinol Metab 100(5):2030–2038. doi: 10.1210/jc.2014-4318 PubMedCrossRefGoogle Scholar
  130. 130.
    Sinha M, Jang YC, Oh J, Khong D, Wu EY, Manohar R, Miller C, Regalado SG, Loffredo FS, Pancoast JR, Hirshman MF, Lebowitz J, Shadrach JL, Cerletti M, Kim MJ, Serwold T, Goodyear LJ, Rosner B, Lee RT, Wagers AJ (2014) Restoring systemic GDF11 levels reverses age-related dysfunction in mouse skeletal muscle. Science 344(6184):649–652. doi: 10.1126/science.1251152 PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Egerman MA, Cadena SM, Gilbert JA, Meyer A, Nelson HN, Swalley SE, Mallozzi C, Jacobi C, Jennings LL, Clay I, Laurent G, Ma S, Brachat S, Lach-Trifilieff E, Shavlakadze T, Trendelenburg AU, Brack AS, Glass DJ (2015) GDF11 increases with age and inhibits skeletal muscle regeneration. Cell Metab 22(1):164–174. doi: 10.1016/j.cmet.2015.05.010 PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Zhou Y, Sharma N, Dukes D, Myzithras MB, Gupta P, Khalil A, Kahn J, Ahlberg JS, Hayes DB, Franti M, Criswell T (2017) GDF11 treatment attenuates the recovery of skeletal muscle function after injury in older rats. AAPS J 19(2):431–437. doi: 10.1208/s12248-016-0024-x PubMedCrossRefGoogle Scholar
  133. 133.
    Zhou X, Wang JL, Lu J, Song Y, Kwak KS, Jiao Q, Rosenfeld R, Chen Q, Boone T, Simonet WS, Lacey DL, Goldberg AL, Han HQ (2010) Reversal of cancer cachexia and muscle wasting by ActRIIB antagonism leads to prolonged survival. Cell 142(4):531–543. doi: 10.1016/j.cell.2010.07.011 PubMedCrossRefGoogle Scholar
  134. 134.
    Busquets S, Toledo M, Orpi M, Massa D, Porta M, Capdevila E, Padilla N, Frailis V, Lopez-Soriano FJ, Han HQ, Argiles JM (2012) Myostatin blockage using actRIIB antagonism in mice bearing the Lewis lung carcinoma results in the improvement of muscle wasting and physical performance. J Cachexia Sarcopenia Muscle 3(1):37–43. doi: 10.1007/s13539-011-0049-z PubMedCrossRefGoogle Scholar
  135. 135.
    Murphy KT, Chee A, Gleeson BG, Naim T, Swiderski K, Koopman R, Lynch GS (2011) Antibody-directed myostatin inhibition enhances muscle mass and function in tumor-bearing mice. Am J Physiol Regul Integr Comp Physiol 301(3):R716–R726. doi: 10.1152/ajpregu.00121.2011 PubMedCrossRefGoogle Scholar
  136. 136.
    Benny Klimek ME, Aydogdu T, Link MJ, Pons M, Koniaris LG, Zimmers TA (2010) Acute inhibition of myostatin-family proteins preserves skeletal muscle in mouse models of cancer cachexia. Biochem Biophys Res Commun 391(3):1548–1554. doi: 10.1016/j.bbrc.2009.12.123 PubMedCrossRefGoogle Scholar
  137. 137.
    Gallot YS, Durieux AC, Castells J, Desgeorges MM, Vernus B, Plantureux L, Remond D, Jahnke VE, Lefai E, Dardevet D, Nemoz G, Schaeffer L, Bonnieu A, Freyssenet DG (2014) Myostatin gene inactivation prevents skeletal muscle wasting in cancer. Cancer Res 74(24):7344–7356. doi: 10.1158/0008-5472.CAN-14-0057 PubMedCrossRefGoogle Scholar
  138. 138.
    Carroll J (2016) Novartis’ ‘breakthrough’ muscle drug bimagrumab flunks a late-stage trial. Accessed 21 Apr 2016
  139. 139.
    Todorov P, Cariuk P, McDevitt T, Coles B, Fearon K, Tisdale M (1996) Characterization of a cancer cachectic factor. Nature 379(6567):739–742. doi: 10.1038/379739a0 PubMedCrossRefGoogle Scholar
  140. 140.
    Hussey HJ, Todorov PT, Field WN, Inagaki N, Tanaka Y, Ishitsuka H, Tisdale MJ (2000) Effect of a fluorinated pyrimidine on cachexia and tumour growth in murine cachexia models: relationship with a proteolysis inducing factor. Br J Cancer 83(1):56–62. doi: 10.1054/bjoc.2000.1278 PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Lorite MJ, Thompson MG, Drake JL, Carling G, Tisdale MJ (1998) Mechanism of muscle protein degradation induced by a cancer cachectic factor. Br J Cancer 78(7):850–856PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Wyke SM, Tisdale MJ (2005) NF-kappaB mediates proteolysis-inducing factor induced protein degradation and expression of the ubiquitin-proteasome system in skeletal muscle. Br J Cancer 92(4):711–721. doi: 10.1038/sj.bjc.6602402 PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Todorov PT, Field WN, Tisdale MJ (1999) Role of a proteolysis-inducing factor (PIF) in cachexia induced by a human melanoma (G361). Br J Cancer 80(11):1734–1737. doi: 10.1038/sj.bjc.6690590 PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Tisdale MJ (2008) Re: Wieland BM et al. is there a human homologue to the murine proteolysis-inducing factor? Clin Cancer Res 14(7):2245; author reply 2245–2246. doi: 10.1158/1078-0432.CCR-07-4769
  145. 145.
    Wieland BM, Stewart GD, Skipworth RJ, Sangster K, Fearon KC, Ross JA, Reiman TJ, Easaw J, Mourtzakis M, Kumar V, Pak BJ, Calder K, Filippatos G, Kremastinos DT, Palcic M, Baracos VE (2007) Is there a human homologue to the murine proteolysis-inducing factor? Clin Cancer Res 13(17):4984–4992. doi: 10.1158/1078-0432.CCR-07-0946 PubMedCrossRefGoogle Scholar
  146. 146.
    Case 27461 (1941) New Engl J Med 225:789–791Google Scholar
  147. 147.
    Moseley JM, Kubota M, Diefenbach-Jagger H, Wettenhall RE, Kemp BE, Suva LJ, Rodda CP, Ebeling PR, Hudson PJ, Zajac JD et al (1987) Parathyroid hormone-related protein purified from a human lung cancer cell line. Proc Natl Acad Sci U S A 84(14):5048–5052PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Juppner H, Abou-Samra AB, Uneno S, Gu WX, Potts JT Jr, Segre GV (1988) The parathyroid hormone-like peptide associated with humoral hypercalcemia of malignancy and parathyroid hormone bind to the same receptor on the plasma membrane of ROS 17/2.8 cells. J Biol Chem 263(18):8557–8560PubMedGoogle Scholar
  149. 149.
    Strewler GJ, Stern PH, Jacobs JW, Eveloff J, Klein RF, Leung SC, Rosenblatt M, Nissenson RA (1987) Parathyroid hormone like protein from human renal carcinoma cells. Structural and functional homology with parathyroid hormone. J Clin Invest 80(6):1803–1807. doi: 10.1172/JCI113275 PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Orland SM, Stewart AF, Livolsi VA, Wein AJ (1986) Detection of the hypercalcemic hormone of malignancy in an adrenal cortical carcinoma. J Urol 136(5):1000–1002PubMedCrossRefGoogle Scholar
  151. 151.
    Iguchi H, Onuma E, Sato K, Sato K, Ogata E (2001) Involvement of parathyroid hormone-related protein in experimental cachexia induced by a human lung cancer-derived cell line established from a bone metastasis specimen. Int J Cancer 94(1):24–27. doi: 10.1002/ijc.1425 PubMedCrossRefGoogle Scholar
  152. 152.
    Petruzzelli M, Schweiger M, Schreiber R, Campos-Olivas R, Tsoli M, Allen J, Swarbrick M, Rose-John S, Rincon M, Robertson G, Zechner R, Wagner EF (2014) A switch from white to brown fat increases energy expenditure in cancer-associated cachexia. Cell Metab 20(3):433–447. doi: 10.1016/j.cmet.2014.06.011 PubMedCrossRefGoogle Scholar
  153. 153.
    Kir S, White JP, Kleiner S, Kazak L, Cohen P, Baracos VE, Spiegelman BM (2014) Tumour-derived PTH-related protein triggers adipose tissue browning and cancer cachexia. Nature 513(7516):100–104. doi: 10.1038/nature13528 PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Bosaeus I, Daneryd P, Svanberg E, Lundholm K (2001) Dietary intake and resting energy expenditure in relation to weight loss in unselected cancer patients. Int J Cancer 93(3):380–383PubMedCrossRefGoogle Scholar
  155. 155.
    Falconer JS, Fearon KC, Plester CE, Ross JA, Carter DC (1994) Cytokines, the acute-phase response, and resting energy expenditure in cachectic patients with pancreatic cancer. Ann Surg 219(4):325–331PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Fredrix EW, Soeters PB, Wouters EF, Deerenberg IM, von Meyenfeldt MF, Saris WH (1991) Effect of different tumor types on resting energy expenditure. Cancer Res 51(22):6138–6141PubMedGoogle Scholar
  157. 157.
    Rigaud D, Hassid J, Meulemans A, Poupard AT, Boulier A (2000) A paradoxical increase in resting energy expenditure in malnourished patients near death: the king penguin syndrome. Am J Clin Nutr 72(2):355–360PubMedGoogle Scholar
  158. 158.
    Zylicz Z, Schwantje O, Wagener DJ, Folgering HT (1990) Metabolic response to enteral food in different phases of cancer cachexia in rats. Oncology 47(1):87–91PubMedCrossRefGoogle Scholar
  159. 159.
    Bennani-Baiti N, Walsh D (2011) Animal models of the cancer anorexia-cachexia syndrome. Support Care Cancer 19(9):1451–1463. doi: 10.1007/s00520-010-0972-0 PubMedCrossRefGoogle Scholar
  160. 160.
    Hyltander A, Drott C, Korner U, Sandstrom R, Lundholm K (1991) Elevated energy expenditure in cancer patients with solid tumours. Eur J Cancer 27(1):9–15PubMedCrossRefGoogle Scholar
  161. 161.
    Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324(5930):1029–1033. doi: 10.1126/science.1160809 PubMedPubMedCentralCrossRefGoogle Scholar
  162. 162.
    Holroyde CP, Gabuzda TG, Putnam RC, Paul P, Reichard GA (1975) Altered glucose metabolism in metastatic carcinoma. Cancer Res 35(12):3710–3714PubMedGoogle Scholar
  163. 163.
    Holroyde CP, Axelrod RS, Skutches CL, Haff AC, Paul P, Reichard GA (1979) Lactate metabolism in patients with metastatic colorectal cancer. Cancer Res 39(12):4900–4904PubMedGoogle Scholar
  164. 164.
    Shellock FG, Riedinger MS, Fishbein MC (1986) Brown adipose tissue in cancer patients: possible cause of cancer-induced cachexia. J Cancer Res Clin Oncol 111(1):82–85PubMedCrossRefGoogle Scholar
  165. 165.
    van Hall G, Steensberg A, Sacchetti M, Fischer C, Keller C, Schjerling P, Hiscock N, Moller K, Saltin B, Febbraio MA, Pedersen BK (2003) Interleukin-6 stimulates lipolysis and fat oxidation in humans. J Clin Endocrinol Metab 88(7):3005–3010. doi: 10.1210/jc.2002-021687 PubMedCrossRefGoogle Scholar
  166. 166.
    Kawakami M, Murase T, Ogawa H, Ishibashi S, Mori N, Takaku F, Shibata S (1987) Human recombinant TNF suppresses lipoprotein lipase activity and stimulates lipolysis in 3T3-L1 cells. J Biochem 101(2):331–338PubMedCrossRefGoogle Scholar
  167. 167.
    Green A, Dobias SB, Walters DJ, Brasier AR (1994) Tumor necrosis factor increases the rate of lipolysis in primary cultures of adipocytes without altering levels of hormone-sensitive lipase. Endocrinology 134(6):2581–2588. doi: 10.1210/endo.134.6.8194485 PubMedCrossRefGoogle Scholar
  168. 168.
    Das SK, Eder S, Schauer S, Diwoky C, Temmel H, Guertl B, Gorkiewicz G, Tamilarasan KP, Kumari P, Trauner M, Zimmermann R, Vesely P, Haemmerle G, Zechner R, Hoefler G (2011) Adipose triglyceride lipase contributes to cancer-associated cachexia. Science 333(6039):233–238. doi: 10.1126/science.1198973 PubMedCrossRefGoogle Scholar
  169. 169.
    Son Y, Kim S, Chung HT, Pae HO (2013) Reactive oxygen species in the activation of MAP kinases. Methods Enzymol 528:27–48. doi: 10.1016/B978-0-12-405881-1.00002-1 PubMedCrossRefGoogle Scholar
  170. 170.
    Muller FL, Song W, Liu Y, Chaudhuri A, Pieke-Dahl S, Strong R, Huang TT, Epstein CJ, Roberts LJ 2nd, Csete M, Faulkner JA, Van Remmen H (2006) Absence of CuZn superoxide dismutase leads to elevated oxidative stress and acceleration of age-dependent skeletal muscle atrophy. Free Radic Biol Med 40(11):1993–2004. doi: 10.1016/j.freeradbiomed.2006.01.036 PubMedCrossRefGoogle Scholar
  171. 171.
    Gomes-Marcondes MC, Tisdale MJ (2002) Induction of protein catabolism and the ubiquitin-proteasome pathway by mild oxidative stress. Cancer Lett 180(1):69–74PubMedCrossRefGoogle Scholar
  172. 172.
    Solheim TS, Fearon KC, Blum D, Kaasa S (2013) Non-steroidal anti-inflammatory treatment in cancer cachexia: a systematic literature review. Acta Oncol 52(1):6–17. doi: 10.3109/0284186X.2012.724536 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Genome Institute of SingaporeAgency for Science Technology and ResearchSingaporeSingapore

Personalised recommendations