Advertisement

Perspectives of Reprogramming Breast Cancer Metabolism

  • Yi-Ping WangEmail author
  • Qun-Ying LeiEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1026)

Abstract

Reprogramming of cellular metabolism is one of the hallmarks of breast cancer. Breast cancer cells remodel metabolic network to maintain their transformed state and survive in a harsh tumor microenvironment. Dysregulated metabolism further interacts with cellular signaling and epigenetics to promote breast cancer development. Meanwhile, breast cancer stem cells exhibit unique metabolic features, which are critical for therapeutic resistance and tumor recurrence. Besides, aberrant metabolism of breast cancer cells reshapes tumor microenvironment, such as promoting cancer vascularization and sabotaging tumor immunity, to accelerate tumor progression. These special metabolic traits not only open vulnerabilities of breast cancer by targeting essential metabolic pathways but also provide promising diagnostic and prognostic biomarkers to facilitate clinical investigations. Studies in the last few decades have significantly advanced our understanding of mechanisms underlying the reprogramming of breast cancer metabolism and metabolic regulation of breast cancer biology. Targeting tumor metabolism serves as a potentially effective therapeutic approach to suppress breast cancer.

Keywords

Metabolic reprogramming Glycolysis Amino acid metabolism Fatty acid metabolism Cell signaling Cancer microenvironment Breast cancer stem cell Cancer immunity Metabolic biomarker 

References

  1. 1.
    Benjamin DI, Cravatt BF, Nomura DK (2012) Global profiling strategies for mapping dysregulated metabolic pathways in cancer. Cell Metab 16(5):565–577. https://doi.org/10.1016/j.cmet.2012.09.013 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Pavlova NN, Thompson CB (2016) The emerging hallmarks of cancer metabolism. Cell Metab 23(1):27–47. https://doi.org/10.1016/j.cmet.2015.12.006 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Croce CM (2008) Oncogenes and cancer. N Engl J Med 358(5):502–511. https://doi.org/10.1056/NEJMra072367 CrossRefPubMedGoogle Scholar
  4. 4.
    Boroughs LK, DeBerardinis RJ (2015) Metabolic pathways promoting cancer cell survival and growth. Nat Cell Biol 17(4):351–359. https://doi.org/10.1038/ncb3124 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Peiris-Pages M, Martinez-Outschoorn UE, Pestell RG, Sotgia F, Lisanti MP (2016) Cancer stem cell metabolism. Breast Cancer Res 18(1):55. https://doi.org/10.1186/s13058-016-0712-6 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Cook KL, Soto-Pantoja DR, Clarke PA, Cruz MI, Zwart A, Warri A, Hilakivi-Clarke L, Roberts DD, Clarke R (2016) Endoplasmic reticulum stress protein GRP78 modulates lipid metabolism to control drug sensitivity and antitumor immunity in breast cancer. Cancer Res 76(19):5657–5670. https://doi.org/10.1158/0008-5472.CAN-15-2616 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Patra KC, Hay N (2014) The pentose phosphate pathway and cancer. Trends Biochem Sci 39(8):347–354. https://doi.org/10.1016/j.tibs.2014.06.005 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Wang L, Xiong H, Wu F, Zhang Y, Wang J, Zhao L, Guo X, Chang LJ, Zhang Y, You MJ, Koochekpour S, Saleem M, Huang H, Lu J, Deng Y (2014) Hexokinase 2-mediated Warburg effect is required for PTEN- and p53-deficiency-driven prostate cancer growth. Cell Rep 8(5):1461–1474. https://doi.org/10.1016/j.celrep.2014.07.053 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Patra KC, Wang Q, Bhaskar PT, Miller L, Wang Z, Wheaton W, Chandel N, Laakso M, Muller WJ, Allen EL, Jha AK, Smolen GA, Clasquin MF, Robey RB, Hay N (2013) Hexokinase 2 is required for tumor initiation and maintenance and its systemic deletion is therapeutic in mouse models of cancer. Cancer Cell 24(2):213–228. https://doi.org/10.1016/j.ccr.2013.06.014 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Wang YP, Zhou W, Wang J, Huang X, Zuo Y, Wang TS, Gao X, Xu YY, Zou SW, Liu YB, Cheng JK, Lei QY (2016) Arginine Methylation of MDH1 by CARM1 inhibits glutamine metabolism and suppresses pancreatic cancer. Mol Cell 64(4):673–687. https://doi.org/10.1016/j.molcel.2016.09.028 CrossRefPubMedGoogle Scholar
  11. 11.
    Wang JB, Erickson JW, Fuji R, Ramachandran S, Gao P, Dinavahi R, Wilson KF, Ambrosio AL, Dias SM, Dang CV, Cerione RA (2010) Targeting mitochondrial glutaminase activity inhibits oncogenic transformation. Cancer Cell 18(3):207–219. https://doi.org/10.1016/j.ccr.2010.08.009 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Mashimo T, Pichumani K, Vemireddy V, Hatanpaa KJ, Singh DK, Sirasanagandla S, Nannepaga S, Piccirillo SG, Kovacs Z, Foong C, Huang Z, Barnett S, Mickey BE, DeBerardinis RJ, Tu BP, Maher EA, Bachoo RM (2014) Acetate is a bioenergetic substrate for human glioblastoma and brain metastases. Cell 159(7):1603–1614. https://doi.org/10.1016/j.cell.2014.11.025 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Comerford SA, Huang Z, Du X, Wang Y, Cai L, Witkiewicz AK, Walters H, Tantawy MN, Fu A, Manning HC, Horton JD, Hammer RE, McKnight SL, Tu BP (2014) Acetate dependence of tumors. Cell 159(7):1591–1602. https://doi.org/10.1016/j.cell.2014.11.020 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Gao X, Lin SH, Ren F, Li JT, Chen JJ, Yao CB, Yang HB, Jiang SX, Yan GQ, Wang D, Wang Y, Liu Y, Cai Z, Xu YY, Chen J, Yu W, Yang PY, Lei QY (2016) Acetate functions as an epigenetic metabolite to promote lipid synthesis under hypoxia. Nat Commun 7:11960. https://doi.org/10.1038/ncomms11960 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Yang HB, Xu YY, Zhao XN, Zou SW, Zhang Y, Zhang M, Li JT, Ren F, Wang LY, Lei QY (2015) Acetylation of MAT II alpha represses tumour cell growth and is decreased in human hepatocellular cancer. Nat Commun 6:6973. https://doi.org/10.1038/ncomms7973 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Nilsson R, Jain M, Madhusudhan N, Sheppard NG, Strittmatter L, Kampf C, Huang J, Asplund A, Mootha VK (2014) Metabolic enzyme expression highlights a key role for MTHFD2 and the mitochondrial folate pathway in cancer. Nat Commun 5:3128. https://doi.org/10.1038/ncomms4128 PubMedPubMedCentralGoogle Scholar
  17. 17.
    Hilvo M, Denkert C, Lehtinen L, Muller B, Brockmoller S, Seppanen-Laakso T, Budczies J, Bucher E, Yetukuri L, Castillo S, Berg E, Nygren H, Sysi-Aho M, Griffin JL, Fiehn O, Loibl S, Richter-Ehrenstein C, Radke C, Hyotylainen T, Kallioniemi O, Iljin K, Oresic M (2011) Novel theranostic opportunities offered by characterization of altered membrane lipid metabolism in breast cancer progression. Cancer Res 71(9):3236–3245. https://doi.org/10.1158/0008-5472.CAN-10-3894 CrossRefPubMedGoogle Scholar
  18. 18.
    Rysman E, Brusselmans K, Scheys K, Timmermans L, Derua R, Munck S, Van Veldhoven PP, Waltregny D, Daniels VW, Machiels J, Vanderhoydonc F, Smans K, Waelkens E, Verhoeven G, Swinnen JV (2010) De novo lipogenesis protects cancer cells from free radicals and chemotherapeutics by promoting membrane lipid saturation. Cancer Res 70(20):8117–8126. https://doi.org/10.1158/0008-5472.CAN-09-3871 CrossRefPubMedGoogle Scholar
  19. 19.
    Soule HD, Maloney TM, Wolman SR, Peterson WD Jr, Brenz R, McGrath CM, Russo J, Pauley RJ, Jones RF, Brooks SC (1990) Isolation and characterization of a spontaneously immortalized human breast epithelial cell line, MCF-10. Cancer Res 50(18):6075–6086PubMedGoogle Scholar
  20. 20.
    Hirsch HA, Iliopoulos D, Joshi A, Zhang Y, Jaeger SA, Bulyk M, Tsichlis PN, Shirley Liu X, Struhl K (2010) A transcriptional signature and common gene networks link cancer with lipid metabolism and diverse human diseases. Cancer Cell 17(4):348–361. https://doi.org/10.1016/j.ccr.2010.01.022 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Kuhajda FP, Jenner K, Wood FD, Hennigar RA, Jacobs LB, Dick JD, Pasternack GR (1994) Fatty acid synthesis: a potential selective target for antineoplastic therapy. Proc Natl Acad Sci U S A 91(14):6379–6383CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Pizer ES, Jackisch C, Wood FD, Pasternack GR, Davidson NE, Kuhajda FP (1996) Inhibition of fatty acid synthesis induces programmed cell death in human breast cancer cells. Cancer Res 56(12):2745–2747PubMedGoogle Scholar
  23. 23.
    Alli PM, Pinn ML, Jaffee EM, McFadden JM, Kuhajda FP (2005) Fatty acid synthase inhibitors are chemopreventive for mammary cancer in neu-N transgenic mice. Oncogene 24(1):39–46. https://doi.org/10.1038/sj.onc.1208174 CrossRefPubMedGoogle Scholar
  24. 24.
    Pollari S, Kakonen SM, Edgren H, Wolf M, Kohonen P, Sara H, Guise T, Nees M, Kallioniemi O (2011) Enhanced serine production by bone metastatic breast cancer cells stimulates osteoclastogenesis. Breast Cancer Res Treat 125(2):421–430. https://doi.org/10.1007/s10549-010-0848-5 CrossRefPubMedGoogle Scholar
  25. 25.
    Locasale JW, Grassian AR, Melman T, Lyssiotis CA, Mattaini KR, Bass AJ, Heffron G, Metallo CM, Muranen T, Sharfi H, Sasaki AT, Anastasiou D, Mullarky E, Vokes NI, Sasaki M, Beroukhim R, Stephanopoulos G, Ligon AH, Meyerson M, Richardson AL, Chin L, Wagner G, Asara JM, Brugge JS, Cantley LC, Vander Heiden MG (2011) Phosphoglycerate dehydrogenase diverts glycolytic flux and contributes to oncogenesis. Nat Genet 43(9):869–874. https://doi.org/10.1038/ng.890 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Beroukhim R, Mermel CH, Porter D, Wei G, Raychaudhuri S, Donovan J, Barretina J, Boehm JS, Dobson J, Urashima M, Mc Henry KT, Pinchback RM, Ligon AH, Cho YJ, Haery L, Greulich H, Reich M, Winckler W, Lawrence MS, Weir BA, Tanaka KE, Chiang DY, Bass AJ, Loo A, Hoffman C, Prensner J, Liefeld T, Gao Q, Yecies D, Signoretti S, Maher E, Kaye FJ, Sasaki H, Tepper JE, Fletcher JA, Tabernero J, Baselga J, Tsao MS, Demichelis F, Rubin MA, Janne PA, Daly MJ, Nucera C, Levine RL, Ebert BL, Gabriel S, Rustgi AK, Antonescu CR, Ladanyi M, Letai A, Garraway LA, Loda M, Beer DG, True LD, Okamoto A, Pomeroy SL, Singer S, Golub TR, Lander ES, Getz G, Sellers WR, Meyerson M (2010) The landscape of somatic copy-number alteration across human cancers. Nature 463(7283):899–905. https://doi.org/10.1038/nature08822 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Kim HS, Patel K, Muldoon-Jacobs K, Bisht KS, Aykin-Burns N, Pennington JD, van der Meer R, Nguyen P, Savage J, Owens KM, Vassilopoulos A, Ozden O, Park SH, Singh KK, Abdulkadir SA, Spitz DR, Deng CX, Gius D (2010) SIRT3 is a mitochondria-localized tumor suppressor required for maintenance of mitochondrial integrity and metabolism during stress. Cancer Cell 17(1):41–52. https://doi.org/10.1016/j.ccr.2009.11.023 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Finley LW, Carracedo A, Lee J, Souza A, Egia A, Zhang J, Teruya-Feldstein J, Moreira PI, Cardoso SM, Clish CB, Pandolfi PP, Haigis MC (2011) SIRT3 opposes reprogramming of cancer cell metabolism through HIF1alpha destabilization. Cancer Cell 19(3):416–428. https://doi.org/10.1016/j.ccr.2011.02.014 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Elstrom RL, Bauer DE, Buzzai M, Karnauskas R, Harris MH, Plas DR, Zhuang H, Cinalli RM, Alavi A, Rudin CM, Thompson CB (2004) Akt stimulates aerobic glycolysis in cancer cells. Cancer Res 64(11):3892–3899. https://doi.org/10.1158/0008-5472.CAN-03-2904 CrossRefPubMedGoogle Scholar
  30. 30.
    Chan CH, Li CF, Yang WL, Gao Y, Lee SW, Feng Z, Huang HY, Tsai KK, Flores LG, Shao Y, Hazle JD, Yu D, Wei W, Sarbassov D, Hung MC, Nakayama KI, Lin HK (2012) The Skp2-SCF E3 ligase regulates Akt ubiquitination, glycolysis, Herceptin sensitivity, and tumorigenesis. Cell 149(5):1098–1111. https://doi.org/10.1016/j.cell.2012.02.065 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Robey RB, Hay N (2009) Is Akt the “Warburg kinase”?-Akt-energy metabolism interactions and oncogenesis. Semin Cancer Biol 19(1):25–31. https://doi.org/10.1016/j.semcancer.2008.11.010 CrossRefPubMedGoogle Scholar
  32. 32.
    Jiang S, Zhang LF, Zhang HW, Hu S, Lu MH, Liang S, Li B, Li Y, Li D, Wang ED, Liu MF (2012) A novel miR-155/miR-143 cascade controls glycolysis by regulating hexokinase 2 in breast cancer cells. EMBO J 31(8):1985–1998. https://doi.org/10.1038/emboj.2012.45 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Wang YP, Zhou LS, Zhao YZ, Wang SW, Chen LL, Liu LX, Ling ZQ, Hu FJ, Sun YP, Zhang JY, Yang C, Yang Y, Xiong Y, Guan KL, Ye D (2014) Regulation of G6PD acetylation by SIRT2 and KAT9 modulates NADPH homeostasis and cell survival during oxidative stress. EMBO J 33(12):1304–1320. https://doi.org/10.1002/embj.201387224 PubMedPubMedCentralGoogle Scholar
  34. 34.
    Xu SN, Wang TS, Li X, Wang YP (2016) SIRT2 activates G6PD to enhance NADPH production and promote leukaemia cell proliferation. Sci Rep 6:32734. https://doi.org/10.1038/srep32734 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Du W, Jiang P, Mancuso A, Stonestrom A, Brewer MD, Minn AJ, Mak TW, Wu M, Yang X (2013) TAp73 enhances the pentose phosphate pathway and supports cell proliferation. Nat Cell Biol 15(8):991–1000. https://doi.org/10.1038/ncb2789 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Deblois G, Giguere V (2013) Oestrogen-related receptors in breast cancer: control of cellular metabolism and beyond. Nat Rev Cancer 13(1):27–36. https://doi.org/10.1038/nrc3396 CrossRefPubMedGoogle Scholar
  37. 37.
    Contractor T, Harris CR (2012) p53 negatively regulates transcription of the pyruvate dehydrogenase kinase Pdk2. Cancer Res 72(2):560–567. https://doi.org/10.1158/0008-5472.CAN-11-1215 CrossRefPubMedGoogle Scholar
  38. 38.
    Lee SY, Jeon HM, Ju MK, Kim CH, Yoon G, Han SI, Park HG, Kang HS (2012) Wnt/snail signaling regulates cytochrome C oxidase and glucose metabolism. Cancer Res 72(14):3607–3617. https://doi.org/10.1158/0008-5472.CAN-12-0006 CrossRefPubMedGoogle Scholar
  39. 39.
    Cai R, Yu T, Huang C, Xia X, Liu X, Gu J, Xue S, Yeh ET, Cheng J (2012) SUMO-specific protease 1 regulates mitochondrial biogenesis through PGC-1alpha. J Biol Chem 287(53):44464–44470. https://doi.org/10.1074/jbc.M112.422626 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    LeBleu VS, O’Connell JT, Gonzalez Herrera KN, Wikman H, Pantel K, Haigis MC, de Carvalho FM, Damascena A, Domingos Chinen LT, Rocha RM, Asara JM, Kalluri R (2014) PGC-1alpha mediates mitochondrial biogenesis and oxidative phosphorylation in cancer cells to promote metastasis. Nat Cell Biol 16(10):992–1003., 1001-1015. https://doi.org/10.1038/ncb3039 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Rao X, Duan X, Mao W, Li X, Li Z, Li Q, Zheng Z, Xu H, Chen M, Wang PG, Wang Y, Shen B, Yi W (2015) O-GlcNAcylation of G6PD promotes the pentose phosphate pathway and tumor growth. Nat Commun 6:8468. https://doi.org/10.1038/ncomms9468 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Ferrer CM, Lynch TP, Sodi VL, Falcone JN, Schwab LP, Peacock DL, Vocadlo DJ, Seagroves TN, Reginato MJ (2014) O-GlcNAcylation regulates cancer metabolism and survival stress signaling via regulation of the HIF-1 pathway. Mol Cell 54(5):820–831. https://doi.org/10.1016/j.molcel.2014.04.026 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Lv L, Li D, Zhao D, Lin R, Chu Y, Zhang H, Zha Z, Liu Y, Li Z, Xu Y, Wang G, Huang Y, Xiong Y, Guan KL, Lei QY (2011) Acetylation targets the M2 isoform of pyruvate kinase for degradation through chaperone-mediated autophagy and promotes tumor growth. Mol Cell 42(6):719–730. https://doi.org/10.1016/j.molcel.2011.04.025 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Wang HJ, Hsieh YJ, Cheng WC, Lin CP, Lin YS, Yang SF, Chen CC, Izumiya Y, Yu JS, Kung HJ, Wang WC (2014) JMJD5 regulates PKM2 nuclear translocation and reprograms HIF-1alpha-mediated glucose metabolism. Proc Natl Acad Sci U S A 111(1):279–284. https://doi.org/10.1073/pnas.1311249111 CrossRefPubMedGoogle Scholar
  45. 45.
    Favaro E, Bensaad K, Chong MG, Tennant DA, Ferguson DJ, Snell C, Steers G, Turley H, Li JL, Gunther UL, Buffa FM, McIntyre A, Harris AL (2012) Glucose utilization via glycogen phosphorylase sustains proliferation and prevents premature senescence in cancer cells. Cell Metab 16(6):751–764. https://doi.org/10.1016/j.cmet.2012.10.017 CrossRefPubMedGoogle Scholar
  46. 46.
    Zhou X, Wang S, Wang Z, Feng X, Liu P, Lv XB, Li F, Yu FX, Sun Y, Yuan H, Zhu H, Xiong Y, Lei QY, Guan KL (2015) Estrogen regulates hippo signaling via GPER in breast cancer. J Clin Invest 125(5):2123–2135. https://doi.org/10.1172/JCI79573 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Sorrentino G, Ruggeri N, Specchia V, Cordenonsi M, Mano M, Dupont S, Manfrin A, Ingallina E, Sommaggio R, Piazza S, Rosato A, Piccolo S, Del Sal G (2014) Metabolic control of YAP and TAZ by the mevalonate pathway. Nat Cell Biol 16(4):357–366. https://doi.org/10.1038/ncb2936 CrossRefPubMedGoogle Scholar
  48. 48.
    Wang Z, Wu Y, Wang H, Zhang Y, Mei L, Fang X, Zhang X, Zhang F, Chen H, Liu Y, Jiang Y, Sun S, Zheng Y, Li N, Huang L (2014) Interplay of mevalonate and hippo pathways regulates RHAMM transcription via YAP to modulate breast cancer cell motility. Proc Natl Acad Sci U S A 111(1):E89–E98. https://doi.org/10.1073/pnas.1319190110 CrossRefPubMedGoogle Scholar
  49. 49.
    Bierie B, Pierce SE, Kroeger C, Stover DG, Pattabiraman DR, Thiru P, Liu Donaher J, Reinhardt F, Chaffer CL, Keckesova Z, Weinberg RA (2017) Integrin-beta4 identifies cancer stem cell-enriched populations of partially mesenchymal carcinoma cells. Proc Natl Acad Sci U S A. https://doi.org/10.1073/pnas.1618298114
  50. 50.
    Diehn M, Cho RW, Lobo NA, Kalisky T, Dorie MJ, Kulp AN, Qian D, Lam JS, Ailles LE, Wong M, Joshua B, Kaplan MJ, Wapnir I, Dirbas FM, Somlo G, Garberoglio C, Paz B, Shen J, Lau SK, Quake SR, Brown JM, Weissman IL, Clarke MF (2009) Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature 458(7239):780–783. https://doi.org/10.1038/nature07733 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Schieber MS, Chandel NS (2013) ROS links glucose metabolism to breast cancer stem cell and EMT phenotype. Cancer Cell 23(3):265–267. https://doi.org/10.1016/j.ccr.2013.02.021 CrossRefPubMedGoogle Scholar
  52. 52.
    Dong C, Yuan T, Wu Y, Wang Y, Fan TW, Miriyala S, Lin Y, Yao J, Shi J, Kang T, Lorkiewicz P, St Clair D, Hung MC, Evers BM, Zhou BP (2013) Loss of FBP1 by snail-mediated repression provides metabolic advantages in basal-like breast cancer. Cancer Cell 23(3):316–331. https://doi.org/10.1016/j.ccr.2013.01.022 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Zhao D, Mo Y, Li MT, Zou SW, Cheng ZL, Sun YP, Xiong Y, Guan KL, Lei QY (2014) NOTCH-induced aldehyde dehydrogenase 1A1 deacetylation promotes breast cancer stem cells. J Clin Invest 124(12):5453–5465. https://doi.org/10.1172/JCI76611 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Hirata N, Yamada S, Shoda T, Kurihara M, Sekino Y, Kanda Y (2014) Sphingosine-1-phosphate promotes expansion of cancer stem cells via S1PR3 by a ligand-independent Notch activation. Nat Commun 5:4806. https://doi.org/10.1038/ncomms5806 CrossRefPubMedGoogle Scholar
  55. 55.
    Doherty JR, Cleveland JL (2013) Targeting lactate metabolism for cancer therapeutics. J Clin Invest 123(9):3685–3692. https://doi.org/10.1172/JCI69741 CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Vegran F, Boidot R, Michiels C, Sonveaux P, Feron O (2011) Lactate influx through the endothelial cell monocarboxylate transporter MCT1 supports an NF-kappaB/IL-8 pathway that drives tumor angiogenesis. Cancer Res 71(7):2550–2560. https://doi.org/10.1158/0008-5472.CAN-10-2828 CrossRefPubMedGoogle Scholar
  57. 57.
    Ho PC, Bihuniak JD, Macintyre AN, Staron M, Liu X, Amezquita R, Tsui YC, Cui G, Micevic G, Perales JC, Kleinstein SH, Abel ED, Insogna KL, Feske S, Locasale JW, Bosenberg MW, Rathmell JC, Kaech SM (2015) Phosphoenolpyruvate is a metabolic checkpoint of anti-tumor T cell responses. Cell 162(6):1217–1228. https://doi.org/10.1016/j.cell.2015.08.012 CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Cui G, Staron MM, Gray SM, Ho PC, Amezquita RA, Wu J, Kaech SM (2015) IL-7-induced glycerol transport and TAG synthesis promotes memory CD8+ T cell longevity. Cell 161(4):750–761. https://doi.org/10.1016/j.cell.2015.03.021 CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Cheng G, Zielonka J, Dranka BP, McAllister D, Mackinnon AC Jr, Joseph J, Kalyanaraman B (2012) Mitochondria-targeted drugs synergize with 2-deoxyglucose to trigger breast cancer cell death. Cancer Res 72(10):2634–2644. https://doi.org/10.1158/0008-5472.CAN-11-3928 CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Zhao Y, Liu H, Liu Z, Ding Y, Ledoux SP, Wilson GL, Voellmy R, Lin Y, Lin W, Nahta R, Liu B, Fodstad O, Chen J, Wu Y, Price JE, Tan M (2011) Overcoming trastuzumab resistance in breast cancer by targeting dysregulated glucose metabolism. Cancer Res 71(13):4585–4597. https://doi.org/10.1158/0008-5472.CAN-11-0127 CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Thornburg JM, Nelson KK, Clem BF, Lane AN, Arumugam S, Simmons A, Eaton JW, Telang S, Chesney J (2008) Targeting aspartate aminotransferase in breast cancer. Breast Cancer Res 10(5):R84. https://doi.org/10.1186/bcr2154 CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    von Moos R, Costa L, Ripamonti CI, Niepel D, Santini D (2017) Improving quality of life in patients with advanced cancer: targeting metastatic bone pain. Eur J Cancer 71:80–94. https://doi.org/10.1016/j.ejca.2016.10.021 CrossRefGoogle Scholar
  63. 63.
    Jahnke W, Rondeau JM, Cotesta S, Marzinzik A, Pelle X, Geiser M, Strauss A, Gotte M, Bitsch F, Hemmig R, Henry C, Lehmann S, Glickman JF, Roddy TP, Stout SJ, Green JR (2010) Allosteric non-bisphosphonate FPPS inhibitors identified by fragment-based discovery. Nat Chem Biol 6(9):660–666. https://doi.org/10.1038/nchembio.421 CrossRefPubMedGoogle Scholar
  64. 64.
    Rajendran JG, Mankoff DA, O’Sullivan F, Peterson LM, Schwartz DL, Conrad EU, Spence AM, Muzi M, Farwell DG, Krohn KA (2004) Hypoxia and glucose metabolism in malignant tumors: evaluation by [18F]fluoromisonidazole and [18F]fluorodeoxyglucose positron emission tomography imaging. Clin Cancer Res 10(7):2245–2252CrossRefPubMedGoogle Scholar
  65. 65.
    Palaskas N, Larson SM, Schultz N, Komisopoulou E, Wong J, Rohle D, Campos C, Yannuzzi N, Osborne JR, Linkov I, Kastenhuber ER, Taschereau R, Plaisier SB, Tran C, Heguy A, Wu H, Sander C, Phelps ME, Brennan C, Port E, Huse JT, Graeber TG, Mellinghoff IK (2011) 18F-fluorodeoxy-glucose positron emission tomography marks MYC-overexpressing human basal-like breast cancers. Cancer Res 71(15):5164–5174. https://doi.org/10.1158/0008-5472.CAN-10-4633 CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Walsh AJ, Cook RS, Manning HC, Hicks DJ, Lafontant A, Arteaga CL, Skala MC (2013) Optical metabolic imaging identifies glycolytic levels, subtypes, and early-treatment response in breast cancer. Cancer Res 73(20):6164–6174. https://doi.org/10.1158/0008-5472.CAN-13-0527 CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Slupsky CM, Steed H, Wells TH, Dabbs K, Schepansky A, Capstick V, Faught W, Sawyer MB (2010) Urine metabolite analysis offers potential early diagnosis of ovarian and breast cancers. Clin Cancer Res 16(23):5835–5841. https://doi.org/10.1158/1078-0432.CCR-10-1434 CrossRefPubMedGoogle Scholar
  68. 68.
    Vrieling A, Hein R, Abbas S, Schneeweiss A, Flesch-Janys D, Chang-Claude J (2011) Serum 25-hydroxyvitamin D and postmenopausal breast cancer survival: a prospective patient cohort study. Breast Cancer Res 13(4):R74. https://doi.org/10.1186/bcr2920 CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Wu Q, Ishikawa T, Sirianni R, Tang H, McDonald JG, Yuhanna IS, Thompson B, Girard L, Mineo C, Brekken RA, Umetani M, Euhus DM, Xie Y, Shaul PW (2013) 27-Hydroxycholesterol promotes cell-autonomous, ER-positive breast cancer growth. Cell Rep 5(3):637–645. https://doi.org/10.1016/j.celrep.2013.10.006 CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Nelson ER, Wardell SE, Jasper JS, Park S, Suchindran S, Howe MK, Carver NJ, Pillai RV, Sullivan PM, Sondhi V, Umetani M, Geradts J, McDonnell DP (2013) 27-Hydroxycholesterol links hypercholesterolemia and breast cancer pathophysiology. Science 342(6162):1094–1098. https://doi.org/10.1126/science.1241908 CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Wang Y, Xiao M, Chen X, Chen L, Xu Y, Lv L, Wang P, Yang H, Ma S, Lin H, Jiao B, Ren R, Ye D, Guan KL, Xiong Y (2015) WT1 recruits TET2 to regulate its target gene expression and suppress leukemia cell proliferation. Mol Cell 57(4):662–673. https://doi.org/10.1016/j.molcel.2014.12.023 CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Terunuma A, Putluri N, Mishra P, Mathe EA, Dorsey TH, Yi M, Wallace TA, Issaq HJ, Zhou M, Killian JK, Stevenson HS, Karoly ED, Chan K, Samanta S, Prieto D, Hsu TY, Kurley SJ, Putluri V, Sonavane R, Edelman DC, Wulff J, Starks AM, Yang Y, Kittles RA, Yfantis HG, Lee DH, Ioffe OB, Schiff R, Stephens RM, Meltzer PS, Veenstra TD, Westbrook TF, Sreekumar A, Ambs S (2014) MYC-driven accumulation of 2-hydroxyglutarate is associated with breast cancer prognosis. J Clin Invest 124(1):398–412. https://doi.org/10.1172/JCI71180 CrossRefPubMedGoogle Scholar
  73. 73.
    Llaverias G, Danilo C, Mercier I, Daumer K, Capozza F, Williams TM, Sotgia F, Lisanti MP, Frank PG (2011) Role of cholesterol in the development and progression of breast cancer. Am J Pathol 178(1):402–412. https://doi.org/10.1016/j.ajpath.2010.11.005 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Cancer Hospital, Institute of Biomedical SciencesFudan UniversityShanghaiChina

Personalised recommendations