Fatigue Life Prediction of Commercial Dental Implant Using Analytical Approach and Verification by FEA

  • Pankaj DhatrakEmail author
  • Uddhav Shirsat
  • Vijay Deshmukh
  • S. Sumanth
Conference paper
Part of the Lecture Notes in Mechanical Engineering book series (LNME)


Dental implants are nowadays commonly used as replacement for natural teeth when natural teeth get damaged due to injury, infection or old age. Despite high success rates of implantation, complications and failures of implants still occur. The aim of this study is to predict fatigue life of commercially available implant system using FEA and verification by analytical method. Implant is basically a mechanical screw made of titanium alloy Ti–6Al–4V with threads on its periphery. A three-dimensional finite element model (FE model) of implant prosthesis (implant, abutment, fitting screw and crown) is modeled using linear isotropic material properties for implant, abutment, cortical bone and cancellous bone using commercial software code. Occlusal load (vertical and lateral) on teeth is applied as static load on the crown to find the stresses around implant–bone interface. Analytical approach is used to predict fatigue life of implant. Good correlation is observed in analytical method and FEA results. The study is useful for better understanding of stress concentration location of implant systems. Guidelines for selecting the best implant can be suggested.


Fatigue life Dental implant FEA Implant–bone interface 


  1. 1.
    Brunski JB, Moccia AF Jr, Pollack SR (1979) The influence of functional use of endosseous dental implant on tissue implant interface II. J Res Dent 58:1970–1980CrossRefGoogle Scholar
  2. 2.
    Soballe K, Hanseen ES, B-Rasmussen H (2006) Tissue ingrowth into titanium and hydroxyapatite-coated implants during stable and unstable mechanical condition. J Orthop Res 10: 285–299 (Oct. 1994. Web Services. In: Nagel WE, Walter WV, Lehner W (eds) Euro-Par 2006, LNCS, vol 4128. Springer, Heidelberg, pp 1148–1158)Google Scholar
  3. 3.
    Abuhussein H, Pagni G, Rebaudi A, Wang HL (2010) The effect of thread pattern upon implant osseointegration. Clin Oral Implant Res 21:129–136CrossRefGoogle Scholar
  4. 4.
    Kienapfel H, Sprey C, Wilke A, Griss P (1999) Implant fixation by bone in-growth. J Arthroplast 14(3):355–368CrossRefGoogle Scholar
  5. 5.
    Hernandez-Rodriguez MAL, Contreras-Hernandez GR, Juarez-Hernandez A, Beltran-Ramirez B, Garcia-Sanchez E (2015) Failure analysis in a dental implant. Eng Fail Anal 57:236–242CrossRefGoogle Scholar
  6. 6.
    Pérez MA (2012) Life prediction of different commercial dental implants as influence by uncertainties in their fatigue material properties and loading conditions. Comput Methods Programs Biomed 1277–1286Google Scholar
  7. 7.
    Fakhouri SF (2012) Photoelastic analysis of the vertebral fixation system using different screws. Eng Technol Appl Sc Res 2(2):190–195MathSciNetGoogle Scholar
  8. 8.
    Chang HS, Chen Y, Hsieh Y, Lun Hsu M (2013) Stress distribution of two commercial dental implant systems: a three-dimensional finite element analysis. J Dent Sci 1–11 Google Scholar
  9. 9.
    Kayabas O, Yuzbasıoglu E, Erzincanl F (2006) Static, dynamic and fatigue behaviors of dental implant using finite element method. Adv Eng Softw 37:649–658CrossRefGoogle Scholar
  10. 10.
    Jamshidinia M, Wang L, Tong W, Ajlouni R, Kovacevic R (2015) Fatigue properties of a dental implant produced by electron beam melting (EBM). J Mater Process Technol 226:255–263CrossRefGoogle Scholar
  11. 11.
    Ali B, Chikh EBO, Meddah HM, Merdji A, Bouiadjra BB (2013) Effects of overloading in mastication on the mechanical behavior of dental implants. Mater Design 47:210–217CrossRefGoogle Scholar
  12. 12.
    Yona K (2012) Effect of dental implant diameter on Fatigue Performance part-I and part-II. Clin Implant Dent Relat ResGoogle Scholar
  13. 13.
    Shemtov-Yona K (2014) Identification of failure mechanisms in retrieved fractured dental implants. Eng Fail Anal 38:58–65CrossRefGoogle Scholar
  14. 14.
    Bae J-S, Jeong H-Y (2012) Effects of material properties and hole designs of the jig on the fatigue life of dental implants. J Mech Sci Technol 26(3):759–766CrossRefGoogle Scholar
  15. 15.
    ASM International (2009) Failure analysis of titanium-based dental implant. J Fail Anal Prev 10:138–142Google Scholar
  16. 16.
    Kim MG (2011) Fatigue properties on the failure mode of a dental implant in a simulated body environment. Met Mater Int 17(5):705–711CrossRefGoogle Scholar
  17. 17.
    Park S, Won SY, Bae TS, Song KY, Park CW, Eom TG, Jeong CM (2008) Fatigue characteristics of five types of implant-abutment joint designs. Met Mater Int 14(2):133–138CrossRefGoogle Scholar
  18. 18.
    Misch CE. Contemporary implant dentistry, 3rd edn. Elsevier, A division of Reed Elsevier India Private LimitedGoogle Scholar
  19. 19.
    Duyck J, Naert I (1998) Failure of oral implants: aetiology, symptoms and influencing factors. Clin Oral Invest 2:102–114CrossRefGoogle Scholar
  20. 20.
    Kobayashi E, Mochizuki H, Doi H, Yoneyama T, Hanawa T (2006) Fatigue life prediction of biomedical titanium alloys under tensile/torsional stress. Mater Trans 47(7):1826–1831CrossRefGoogle Scholar
  21. 21.
    Misch CE, Bidez MW (1999) A scientific rationale for dental implant design. Contemp Implant DentGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Pankaj Dhatrak
    • 1
    Email author
  • Uddhav Shirsat
    • 2
  • Vijay Deshmukh
    • 3
  • S. Sumanth
    • 4
  1. 1.MAEERS’S Maharashtra Institute of TechnologyPuneIndia
  2. 2.Navsahyadri Institute of TechnologyPuneIndia
  3. 3.International Clinical Dental Research OrganizationPuneIndia
  4. 4.M.A. Rangoonwala College of Dental Science & Research CentrePuneIndia

Personalised recommendations