Skip to main content

Transmission of Begomoviruses

  • Chapter
  • First Online:
Begomoviruses: Occurrence and Management in Asia and Africa

Abstract

Transmission is the mechanism of pathogen transfer from an infected plant to another host. Begomoviruses are emerging and economically very important phloem-bound plant pathogens that choose the single species of whitefly, i.e. B. tabaci, as vector for their spread in many crops. Mouthparts of whiteflies are designed to detain begomoviruses while feeding on phloem sap of plants. An interaction between mouthparts and coat protein of virus confers Begomovirus-whitefly specificity. High-degree conservation of capsid protein of begomoviruses is the main reason for the choice of their vector. Once virus particle enters, it further moves along in the body of vector in a persistent circulative manner and is introduced back into the plant with salivary secretion during next feeding. There are many proteins present inside the vector that facilitate the efficient transmission of begomoviruses. Variations in the begomoviral coat protein can change their vector preferences. Viruses have the ability to manipulate the behaviour of their vector to enhance their transmission; as a result, begomoviruses negatively affect the longevity and fertility of their whitefly vector, whereas behaviour of whiteflies and their feeding habits can also affect the population genetics, behaviour and evolution of viruses. Whitefly-Begomovirus relationship is an example of co-evolution, and the studies on transmission mechanism, virus-vector interactions and proteins involved in virus translocation inside the vector can help in developing new virus management strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Accotto GP, Sardo L (2010) Transovarial transmission of begomoviruses in Bemisia tabaci. In: Stansly PA, Naranjo SE (eds) Bemisia: bionomics and management of a global pest, pp 339–345. doi:10.1007/978-90-481-2460-2_12

    Google Scholar 

  • Akhtar KP, Ahsanul Haq M (2003) Standardization of a graft inoculation method for the screening of Mungbean germplasm against Mungbean yellow mosaic virus (MYMV). Plant Pathol J 19(5):257–259

    Article  Google Scholar 

  • Ariyo OA, Koerbler M, Dixon AGO, Atiri GI, Winter S (2003) Development of an efficient virus transmission technique to screen cassava genotypes for resistance to cassava mosaic disease. Conference preceedings on International Agricultural Research for Development, October 8–10, 2003

    Google Scholar 

  • Ashfaq M, Hebert PDN, Mirza MS, Khan AM, Mansoor S et al (2014) DNA barcoding of Bemisia tabaci complex (Hemiptera: Aleyrodidae) reveals southerly expansion of the dominant whitefly species on cotton in Pakistan. PLoS One 9(8):e104485. doi:10.1371/journal.pone.0104485

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Azzam OJ, Frazer D, La Rosa D, Beaver JS, Ahlquist P, Maxwell DP (1994) Whitefly transmission and efficient ssDNA accumulation of bean golden mosaic geminivirus require functional coat protein. Virology 204:289–296

    Article  CAS  PubMed  Google Scholar 

  • Baumann P (2005) Biology bacteriocyte-associated endosymbionts of plant sapsucking insects. Annu Rev Microbiol 59:155–189

    Article  CAS  PubMed  Google Scholar 

  • Bedford ID, Briddon RW, Brown JK, Rosell RC, Markham PG (1994) Geminivirus-transmission and biological characterisation of Bemisia tabaci (Gennadius) biotypes from different geographic regions. Ann Appl Biol 125:311–325

    Article  Google Scholar 

  • Bing XL, Yang J, Zchori-Fein E, Wang XW, Liu SS (2013) Characterization of a newly discovered symbiont of the whitefly Bemisia tabaci (Hemiptera: Aleyrodidae). Appl Environ Microbiol 79:569–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boissot N, Urbino C, Dintinger J, Pavis C (2008) Vector and graft inoculations of potato yellow mosaic virus reveal recessive resistance in Solanum pimpinellifolium. Ann Appl Biol 152:263–269

    Article  Google Scholar 

  • Bosco D, Mason G, Accotto GP (2004) TYLCSV DNA, but not infectivity, can be transovarially inherited by the progeny of the whitefly vector Bemisia tabaci (Gennadius). Virology 323:276–283

    Article  CAS  PubMed  Google Scholar 

  • Boykin LM (2014) Bemisia tabaci nomenclature: lessons learned. Pest Manag Sci 70:1454–1459. (wileyonlinelibrary.com) doi: 10.1002/ps.3709

  • Boykin LM, Armstrong KF, Kubatko L, De Barro P (2012) Species delimitation and global biosecurity. Evol Bioinforma 8:1–37

    Article  Google Scholar 

  • Braquart-Varnier C, Lachat M, Herbinière J, Johnson M, Caubet Y, Bouchon D, Sicard M (2008) Wolbachia mediate variation of host immunocompetence. PLoS One 3:e3286

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Briddon RW, Pinner MS, Stanley J, Markham PG (1990) Geminivirus coat protein gene replacement alters insect specificity. Virology 177:85–94

    Article  CAS  PubMed  Google Scholar 

  • Brown JK (2007) The Bemisia tabaci complex: genetic and phenotypic variation and relevance to TYLCV-vector interactions. In: Czosnek H (ed) Tomato yellow leaf curl virus disease. Springer, Dordrecht, pp 25–56

    Chapter  Google Scholar 

  • Brown JK, Czosnek H (2002) Whitefly transmission of plant viruses. Adv Bot Res 36:65–76

    Article  Google Scholar 

  • Brown J, Frohlich D, Rosell R (1995) The sweetpotato or silverleaf whiteflies: biotypes of Bemisia tabaci or a species complex? Annu Rev Entomol 40:5112534

    Article  Google Scholar 

  • Bution ML, Caetano FH, Zara FJ (2008) Contribution of the Malpighian tubules for the maintenance of symbiotic microorganisms in cephalotes ants. Micron 39:1179–1183

    Article  CAS  PubMed  Google Scholar 

  • Castillo NJ, Fiallo-Olive E, Sanchez-Campos S (2011) Emerging virus diseases transmitted by whiteflies. Annu Rev Phytopathol 49:219–248

    Article  CAS  Google Scholar 

  • Cervera MT, Cabezas JA, Simon B et al (2000) Genetic relationships among biotypes of Bemisia tabaci (Hemiptera, Aleyrodidae) based on AFLP analysis. Bull Entomol Res 9:391–396

    Google Scholar 

  • Chang HH, Ku HM, Tsai WS, Chien RC, Jan FJ (2010) Identification and characterization of a mechanical transmissible begomovirus causing leaf curl on oriental melon. Eur J Plant Pathol 127:219–228

    Article  Google Scholar 

  • Chen YK, Chao HY, Shih PJ, Tsai WY, Chao CH (2016) First Report of Papaya leaf curl Guangdong virus Infecting Lisianthus in Taiwan. APS, Disease notes 100 (11): 2342

    Google Scholar 

  • Chiel E, Gottlieb Y, Zchori-Fein E, Mozes-Daube N, Katzir N, Inbar M, Ghanim M (2007) Biotype-dependent secondary symbiont communities in sympatric populations of Bemisia tabaci. Bull Entomol Res 97:407–413

    Article  CAS  PubMed  Google Scholar 

  • Cohen S, Nitzany FE (1966) Transmission and host range of the tomato yellow leaf curl virus. Phytopathology 56:1127–1131

    Google Scholar 

  • Collar JL, Avilla C, Fereres A (1997) New correlations between aphid stylet paths and nonpersistent virus transmission. Environ Entomol 26:537–544

    Article  Google Scholar 

  • Costa HS, Brown JK (1991) Variation in biological characteristics and in esterase patterns among populations of Bemisia tabaci (Genn) and the association of one population with silverleaf symptom development. Entomol Exp Appl 61:211–219

    Article  Google Scholar 

  • Czosnek H (2008) Acquisition, circulation and transmission of begomoviruses by their whitefly vectors. In: Viruses in the environment 37/661(2). Research Signpost, Trivandrum. ISBN: 978-81-308-0235-0

    Google Scholar 

  • Czosnek H, Ghanim M (2012) Back to basics: are begomoviruses whitefly pathogens? J Integr Agric 11:225–234

    Article  Google Scholar 

  • Czosnek H, Ghanim M, Ghanim M (2002) Circulative pathway of begomoviruses in the whitefly vector Bemisia tabaci – insights from studies with tomato yellow leaf curl virus. Ann Appl Biol 140:215–231

    Article  Google Scholar 

  • De Barro PJ, Driver F, Trueman JW, Curran J (2000) Phylogenetic relationships of world populations of Bemisia tabaci (Gennadius) using ribosomal ITS1. Mol Phylogenet Evol 16:29236

    Article  CAS  Google Scholar 

  • De Barro PJ, Scott KD, Graham GC, Lange CL, Schutze MK (2003) Isolation and characterization of microsatellite loci in Bemisia tabaci. Mol Ecol Notes 3:40–43

    Article  Google Scholar 

  • De Barro PJ, Liu SS, Boykin LM, Dinsdale AB (2011) Bemisia tabaci: a statement of species status. Annu Rev Entomol 56:1–19

    Article  PubMed  CAS  Google Scholar 

  • De BPJ, Trueman JWH, Frohlich DR (2005) Bemisia argentifolii is a race of B. tabaci (Hemiptera: Aleyrodidae): the molecular genetic differentiation of B. tabaci populations around the world. Bull Entomol Res 95:193–203

    Article  Google Scholar 

  • Dennehy TJ, DeGain B, Harpold G, Brown JK, Byrne F, Morin S, Nichols RL (2006) First new world report of Q biotype of Bemisia tabaci (Gennadius) reveals high levels of resistance to insecticides. RPM Newslett 5:18–19

    Google Scholar 

  • Dennehy TJ, Degain BA, Harpold VS, Zaborac M, Morin S, Fabrick JA, Nichols RL, Brown JK, Byrne FJ, Li X (2010) Extraordinary resistance to insecticides reveals exotic Q biotype of Bemisia tabaci (Gennadius) in the New World. J Econ Entomol 103:2174–2186

    Article  CAS  PubMed  Google Scholar 

  • Dietzgen RG, Krin SM, Karyn NJ (2016) Plant virus–insect vector interactions: current and potential future research directions. Virus 8:303–324. doi:10.3390/v8110303

    Article  Google Scholar 

  • Dinsdale A, Cook L, Riginos C, Buckley YM, De Barro P (2010) Refined global analysis of Bemisia tabaci (Hemiptera: Sternorrhyncha: Aleyrodoidea: Aleyrodidae) mitochondrial cytochrome oxidase 1 to identify species level genetic boundaries. Ann Entomol Soc Am 103:196–208

    Article  Google Scholar 

  • Engelstädter J, Hurst GDD (2009) The ecology and evolution of microbes that manipulate host reproduction. Annu Rev Ecol Evol Syst 40:127–149

    Article  Google Scholar 

  • Everett KDE, Thao ML, Horn M, Dyszynski GE, Baumann P (2005) Novel chlamydiae in whiteflies and scale insects: endosymbionts ‘Candidatus Fritschea bemisiae’ strain Falk and ‘Candidatus Fritschea eriococci’ strain elm. Int J Syst Evol Microbiol 55:1581–1587

    Article  CAS  PubMed  Google Scholar 

  • Frohlich D, Torres-Jerez I, Bedford ID, Markham PG, Brown JK (1999) A phylogeographic analysis of the Bemisia tabaci species complex based on mitochondrial DNA markers. Mol Ecol 8:1593–1602

    Article  Google Scholar 

  • Frydman HM, Li JM, Robson DN, Wieschaus E (2006) Somatic stem cell niche tropism in Wolbachia. Nature 441:509–512

    Article  CAS  PubMed  Google Scholar 

  • Fukatsu T, Tsuchida T, Nikoh N, Kawal R, Koga R (2001) Spiroplasma symbiont of the Pea Aphid Acyrthosiphon pisum (Insecta: Homoptera). Appl Environ Microbiol 67:1284–1291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gawell NJ, Bartlett AC (1993) Characterization of differences between whiteflies using RAPD-PCR. Insect Mol Biol 2:33–38

    Article  Google Scholar 

  • Ghanim M, Czosnek H (2000) Tomato yellow leaf curl geminivirus (TYLCV-Is) is transmitted among whiteflies (Bemisia tabaci) in a sex-related manner. J Virol 74:4738–4745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghanim M, Czosnek H (2015) Interactions between the whitefly Bemisia tabaci and begomoviruses: biological and genomic perspectives. In: Czosnek H, Ghanim M (eds) Management of insect pests to agriculture. Springer. doi:10.1007/978-3-319-24049-7_7

  • Ghanim M, Morin S, Zeidan M, Czosnek H (1998) Evidence for transovarial transmission of tomato yellow leaf curl virus by its vector the whitefly Bemisia tabaci. Virology 240:295–303

    Article  CAS  PubMed  Google Scholar 

  • Ghanim M, Morin S, Czosnek H (2001) Rate of tomato yellow leaf curl virus (TYLCV)translocation in the circulative transmission pathway of its vector, the whitefly Bemisia tabaci. Phytopathology 91:188–196

    Article  CAS  PubMed  Google Scholar 

  • Ghanim M, Sobol I, Ghanim M, Czosnek H (2007) Horizontal transmission of begomoviruses between Bemisia tabaci biotypes. Arthropod Plant Interact 1:195–204

    Article  Google Scholar 

  • Gottlieb Y, Ghanim M, Chiel E, Gerling D, Portnoy V, Steinberg S, Tzuri G, Horowitz AR, Belausov E, Mozes-Daube N, Kontsedalov S, Gershon M, Gal S, Katzir N, Zchori-Fein E (2006) Identification and localization of a Rickettsia sp. in Bemisia tabaci (Homoptera: Aleyrodidae). Appl Environ Microbiol 72:3646–3652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gottlieb Y, Ghanim M, Gueguen G, Kontsedalov S, Vavre F, Fleury F, Zchori-Fein E (2008) Inherited intracellular ecosystem: symbiotic bacteria share bacteriocytes in whiteflies. FASEB J 22:2591–2599

    Article  CAS  PubMed  Google Scholar 

  • Gottlieb Y, Zchori-Fein E, Mozes-Daube N, Kontsedalov S, Skaljac M, Brumin N, Sobol I, Czosnek H, Vavre F, Fleury F, Ghanim M (2010) The transmission efficiency of tomato yellow leaf curl virus is correlated with the presence of a specific symbiotic bacterium species. J Virol 84:9310–9317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Götz M, Popovski S, Kollenberg M, Gorovits R, Brown JK, Cicero JM, Czosnek H, Winter S, Ghanim M (2012) Implication of Bemisia tabaci heat shock protein 70 in begomovirus- whitefly interactions. J Virol 86:13241–13252

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gutiérrez S, Michalakis Y, Munster M, Blanc S (2013) Plant feeding by insect vectors can affect life cycle, population genetics and evolution of plant viruses. Funct Ecol 27:610–622

    Article  Google Scholar 

  • Höfer P, Bedford ID, Markham PG, Jeske H, Frischmuth T (1997) Coat protein gene replacement results in whitefly transmission of an insect nontransmissible geminivirus isolate. Virology 236:288–295

    Article  PubMed  Google Scholar 

  • Hogenhout SA, Ammar ED, Whitfield AE, Redinbaugh MG (2008) Insect vector interactions with persistently transmitted viruses. Annu Rev Phytopathol 46:327–359

    Article  CAS  PubMed  Google Scholar 

  • Hohnle M, Höfer P, Bedford ID, Briddon RW, Markham PG, Frischmuth T (2001) Exchange of three amino acids in the coat protein results in efficient whitefly transmission of a nontransmissible Abutilon mosaic virus isolate. Virology 290:164–171

    Article  CAS  PubMed  Google Scholar 

  • Horowitz AR, Ishaaya I (2014) Dynamics of biotypes B and Q of the whitefly Bemisia tabaci and its impact on insecticide resistance. Pest Manag Sci 70:1568–1572

    Article  CAS  PubMed  Google Scholar 

  • Horowitz AR, Kontsedalov S, Khasdan V, Ishaaya I (2005) Biotypes B and Q of Bemisia tabaci and their relevance to neonicotinoid and pyriproxyfen resistance. Arch Insect Biochem Physiol 58:216–225

    Article  CAS  PubMed  Google Scholar 

  • Hunter WB, Hiebert E, Webb E (1998) Location of geminiviruses in the whitefly Bemisia tabaci (Homoptera: Aleyrodidae). Plant Dis 82(10):1147–1151

    Article  Google Scholar 

  • Idriss M, Abdallah N, Aref N, Haridy G, Madkour M (1997) Biotypes of the castor bean whitefly Trialeurodes ricini (Misra) (Hom., Aleyrodidae) in Egypt: biochemical characterization and efficiency of geminivirus transmission. J Appl Entomol 121(9/10):501–509

    Article  CAS  Google Scholar 

  • Jamsari LS, Haslin PU, Friedrich H, Wolfgang N, Istino F (2015) Injection technique could as a new promising method for artificial infection of Geminivirus particles in chili pepper (Capsicum annum L.) Asian J Agric Res 9(1):23–32

    Article  Google Scholar 

  • Jiang YX, de Blas C, Barrios L, Fereres A (2000) Correlation between whitefly (Homoptera: Aleyrodidae) feeding behavior and transmission of tomato yellow leaf curl virus. Ann Entomol Soc Am 93:573–579

    Article  Google Scholar 

  • Jiu M, Zhou XP, Liu SS (2006) Acquisition and transmission of two begomoviruses by the B and a non-B biotype of Bemisia tabaci from Zhejiang. China J Phytopathol 154:587–591

    Article  CAS  Google Scholar 

  • Johnson DD, Walker GP, Creamer R (2002) Stylet penetration behavior resulting in inoculation of a semipersistently transmitted closterovirus by the whitefly Bemisia argentifolii. Entomol Exp Appl 102:115–123

    Article  Google Scholar 

  • Kanakala S, Ghanim M (2016) Implication of the whitefly Bemisia tabaci cyclophilin B protein in the transmission of tomato yellow leaf curl virus. Front Plant Sci 7:1702. doi:10.3389/fpls.2016.01702

    Article  PubMed  PubMed Central  Google Scholar 

  • Kil EJ, Kim S, Lee YJ, Byun HS, Park J, Seo H, Kim CS et al (2016) Tomato yellow leaf curl virus (TYLCV-IL): a seed-transmissible geminivirus in tomatoes. Sci Rep 6:19013. doi:10.1038/srep19013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kliot A, Cilia M, Czosnek H, Ghanim M (2014) Implication of the bacterial endosymbiont rickettsia spp. in interactions of the whitefly Bemisia tabaci with tomato yellow leaf curl virus. J Virol 88:5652–5660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kothandaraman SV, Devadason A, Malathi VG (2016) Seed-borne nature of a begomovirus, Mung bean yellow mosaic virus in black gram. Appl Microbiol Biotechnol 100:1925–1933. doi:10.1007/s00253-015-7188-7

    Article  CAS  PubMed  Google Scholar 

  • Lapidot M, Friedmann M, Pilowsky M, Ben-Joseph R, Cohen S (2001) Effect of host plant resistance to tomato yellow leaf curl virus (TYLCV) on virus acquisition and transmission by its whitefly vector. Phytopathology 91:1209–1213

    Article  CAS  PubMed  Google Scholar 

  • Lee W, Park J, Lee G-S, Lee S, Akimoto S (2013) Taxonomic status of the Bemisia tabaci complex (Hemiptera: Aleyrodidae) and reassessment of the number of its constituent species. PLoS One 8:e63817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Legarrea S, Barman A, Marchant W, Diffie S, Srinivasan R (2015) Temporal effects of a begomovirus infection and host plant resistance on the preference and development of an insect vector, Bemisia tabaci, and implications for epidemics. PLoS One 10(11):e0142114. doi:10.1371/journal.pone.0142114

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lisha VS, Antony B, Palaniswami MS, Henneberry TJ (2003) Bemisia tabaci (Genn.) biotypes in India. J Econ Entomol 96:322–327

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Bedford ID, Briddon RW, Markham PG (1997) Efficient whitefly transmission of African cassava mosaic geminivirus requires sequences from both genomic components. J Gen Virol 78:1791–1794

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Zhao H, Jiang K, Zhou XP, Liu SS (2009) Differential indirect effects of two plant viruses on an invasive and an indigenous whitefly vector :implications for competitive displacement. Ann Appl Biol 155:439–448

    Article  Google Scholar 

  • Liu SS, Colvin J, De Barro PJ (2012) Species concepts as applied to the whitefly Bemisia tabaci systematics: how many species are there? J Integr Agric 11:176–186

    Article  Google Scholar 

  • Lopez C, Ferriol M, Pico MB (2015) Mechanical transmission of tomato leaf curl New Delhi virus to cucurbit germplasm: selection of tolerance sources in Cucumis melo. Euphytica 204:679–691

    Article  Google Scholar 

  • Macaluso KR, Pornwiroon W, Popov VL, Foil LD (2008) Identification of Rickettsia felis in the salivary glands of cat fleas. Vector-Borne Zoonot 8:391–396

    Article  Google Scholar 

  • Martin B, Collar JL, Tjallingii WF, Fereres A (1997) Intracellular ingestion and salivation by aphids may cause the acquisition and inoculation of non-persistently transmitted plant viruses. J GenVirol 78(10):2701–2705

    CAS  Google Scholar 

  • Matsuura S, Hoshino S (2009) Effect of tomato yellow leaf curl disease on reproduction of Bemisia tabaci Q biotype (Hemiptera: Aleyrodidae) on tomato plants. Appl Entomol Zool 44:143–148

    Article  Google Scholar 

  • McKenzie CL (2002) Effect of Tomato mottle virus (ToMoV) on Bemisia tabaci biotype B (Homoptera: Aleyrodidae) oviposition and adult survivorship on healthy tomato. Fla Entomol 85:367–368

    Article  Google Scholar 

  • Moran NA (2007) Symbiosis as an adaptive process and source of phenotypic complexity. Proc Natl Acad Sci USA 104:8627–8633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moran NA, Plague GR, Sandstrom JP, Wilcox JL (2003) A genomic perspective on nutrient provising by bacterial symbionts of insects. Proc Natl Acad Sci U S A 100:14543–14548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moreno-Delafuente A, Garzo E, Moreno A, Fereres A (2013) A plant virus manipulates the behavior of its whitefly vector to enhance its transmission efficiency and spread. PLoS One 8(4):e61543. doi:10.1371/journal.pone.0061543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morin S, Ghanim M, Zeidan M, Czosnek H, Verbeek M, van den Heuvel JFJM (1999) A GroEL homologue from endosymbiotic bacteria of the whitefly Bemisia tabaci is implicated in the circulative transmission of tomato yellow leaf curl virus. Virology 256:75–84

    Article  CAS  PubMed  Google Scholar 

  • Morin S, Ghanim M, Sobol I, Czosnek H (2000) The GroEL protein of the whitefly Bemisia tabaci interacts with the coat protein of transmissible and non-transmissible begomoviruses in the yeast two-hybrid system. Virology 276:404–416

    Article  CAS  PubMed  Google Scholar 

  • Muniyappa V, Venkatesh HM, Ramappa HK, Kulkarni RS, Zeidan M, Tarba CY, Ghanim M, Czosnek H (2000) Tomato leaf curl virus from Bangalore (ToLCV-Ban4): sequence comparison with Indian ToLCV isolates, detection in plants and insects, and vector relationships. Arch Virol 145:1583

    Article  CAS  PubMed  Google Scholar 

  • Murant AF, Goold RA (1968) Purification properties and transmission of parsnip yellow fleck, a semi-persistent, aphid-borne virus. Ann Appl Biol 62:123–137

    Article  Google Scholar 

  • Nault LR (1997) Arthropod transmission of plant viruses: a new synthesis. Ann Entomol Soc Am 90:521–541

    Article  Google Scholar 

  • Ng JC, Falk BW (2006) Virus-vector interactions mediating nonpersistent and semipersistent transmission of plant viruses. Annu Rev Phytopathol 44:183–212

    Article  CAS  PubMed  Google Scholar 

  • Nirgianaki A, Banks GK, Frohlich DR, Veneti Z, Braig HR, Miller TA, Bedford ID, Markham PG, Savakis C, Bourtzis K (2003) Wolbachia infections of the whitefly Bemisia tabaci. Curr Microbiol 47:93–101

    Article  CAS  PubMed  Google Scholar 

  • Noris E, Vaira AM, Caciagli P, Masenga V, Gronenborn B, Accotto GP (1998) Amino acids in the capsid protein of tomato yellow leaf curl virus that are crucial for systemic infection, particle formation, and insect transmission. J Virol 72:10050–10057

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oliver KM, Russell JA, Moran NA, Hunter MS (2003) Facultative bacterial symbionts in aphids confer resistance to parasitic wasps. Proc Natl Acad Sci U S A 100:1803–1807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan H, Chu D, Liu B, Shi X, Guo L, Xie W et al (2013) Differential effects of an exotic plant virus on its two closely related vectors. SciRep 3:2230. doi:10.1038/srep02230PMID:23864010

    Google Scholar 

  • Pollard DG (1955) Feeding habits of the cotton whitefly. Ann Appl Biol 43:664–671

    Article  Google Scholar 

  • Polston JE, De Barro P, Boykin LM (2014) Transmission specificities of plant viruses with the newly identified species of the Bemisia tabaci species complex. Pest Manag Sci 70:1547–1552

    Article  CAS  PubMed  Google Scholar 

  • Rosen R, Kanakala S, Kliot A, Britto CP, Basheer AF, Nadine SM, Elimelech M, Kontsedalov S, Lebedev G, Michelle C, Ghanim M (2015) Persistent, circulative transmission of begomoviruses by whitefly vectors. Curr Opin Virol 15:1–8

    Article  PubMed  Google Scholar 

  • Rubinstein G, Czosnek HG (1997) Long-term association of tomato yellow leafcurl virus (TYLCV) with its whitefly vector Bemisia tabaci: effect on the insecttransmission capacity, longevity and fecundity. J Gen Virol 78:2683–2689

    Article  CAS  PubMed  Google Scholar 

  • Saha A, Saha B, Saha D (2014) Molecular detection and partial characterization of a begomovirus causing leaf curl disease of potato in sub-Himalayan West Bengal. India J Environ Biol 35:601–606

    PubMed  Google Scholar 

  • Sindhu JS, Mann RS, Butter NS (2009) Deleterious effects of cotton leaf curl virus on longevity and fecundity of whitefly, Bemisia tabaci (Gennadius). J Entomol 6(1):62–66

    Article  Google Scholar 

  • Sinisterra XH, McKenzie C, Hunter WB, Powell CA, Shatters RG (2005) Differential transcriptional activity of plant-pathogenic begomoviruses in their whitefly vector (Bemisia tabaci, Gennadius: Hemiptera Aleyrodidae). J Gen Virol 86:1525–1532

    Article  CAS  PubMed  Google Scholar 

  • Sloan DB, Moran NA (2012) Endosymbiotic bacteria as a source of carotenoids in whiteflies. Biol Lett 8:986–989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su Q, Xie W, Wang S, Wu Q, Ghanim M et al (2014) Location of symbionts in the whitefly Bemisia tabaci affects their densities during host development and environmental stress. PLoS One 9(3):e91802. doi:10.1371/journal.pone.0091802

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sylvester ES (1980) Circulative and propagative virus transmission by aphids. Annu Rev Entomol 25:257–286

    Article  Google Scholar 

  • Tsuchida T, Koga R, Shibao H, Matsumoto T, Fukatsu T (2002) Diversity and geographic distribution of secondary endosymbiotic bacteria in natural populations of the pea aphid, Acyrthosiphon pisum. Mol Ecol 11:2123–2135

    Article  CAS  PubMed  Google Scholar 

  • Tsuchida T, Koga R, Fukatsu T (2004) Host plant specialization governed by facultative symbiont. Science 303:1989

    Article  CAS  PubMed  Google Scholar 

  • Wang DD, Maule AJ (1994) A model for seed transmission of a plant virus: genetic and structural analyses of pea embryo invasion by pea seed-borne mosaic virus. Plant Cell 6:777–787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang HL, Yang J, Boykin LM, Zhao QY, Wang YJ, Liu SS, Wang XW (2014) Developing conversed microsatellite markers and their implications in evolutionary analysis of the Bemisia tabaci complex. Sci Rep 4:6351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watson MA, Roberts FM (1939) A comparative study of the transmission of Hyoccyamus virus 3, potato virus Y, and cucumber virus 1, by the vectors Myzus persicae (Sulz.), M. circumflexus (Buckton) and Macrosiphum gei (Koch). Pro R Soc Lond Ser B 127:543–576

    Article  Google Scholar 

  • Weeks AR, Velten R, Stouthamer R (2003) Incidence of a new sex-ratiodistorting endosymbiotic bacterium among arthropods. Proc Biol Sci 270:1857–1865

    Article  PubMed  PubMed Central  Google Scholar 

  • Wege C, Pohl D (2007) Abutilon mosaic virus DNA B component supports mechanical virus transmission, but does not counteract begomoviral phloem limitation in transgenic plants. Virology 365:173–186

    Article  CAS  PubMed  Google Scholar 

  • Xiao N, Pan LL, Chang RZ, Hong WS, Liu SS (2016) Differential tolerance capacity to unfavourable low and high temperatures between two invasive whiteflies. Sci Rep 6:24306. doi:10.1038/srep24306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zang L, Jiang T, Xu J, Liu S, Zhang Y (2006) SCAR molecular markers of the B biotype and two non-B populations of the whiteßy, Bemisia tabaci (Hemiptera: Aleyrodidae). China J Agric Biotechnol 3:189–194

    Article  CAS  Google Scholar 

  • Zchori-Fein E, Brown JK (2002) Diversity of prokaryotes associated with Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae). Ann Entomol Soc Am 95:711–718

    Article  Google Scholar 

  • Zchori-Fein E, Lahav T, Freilich S (2014) Variations in the identity and complexity of endosymbiont combinations in whitefly hosts. Front Microbiol 5:1–7

    Article  Google Scholar 

  • Zhang H, Ma XY, Qian YJ, Zhou XP (2010) Molecular characterization and infectivity of papaya leaf curl China virus infecting tomato in China. J Zhejiang Univ-Sci B (Biomed Biotechnol) 11(2):109–114

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sangeeta Saxena .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Varun, P., Saxena, S. (2017). Transmission of Begomoviruses. In: Saxena, S., Tiwari, A. (eds) Begomoviruses: Occurrence and Management in Asia and Africa. Springer, Singapore. https://doi.org/10.1007/978-981-10-5984-1_4

Download citation

Publish with us

Policies and ethics