Skip to main content

Animal Models of Parkinson’s Disease

  • Chapter
  • First Online:
Book cover Animal Models of Neurological Disorders

Abstract

Parkinson’s disease (PD) is late-onset, progressive neurodegenerative, and hypokinetic movement disorder characterized by relatively selective degeneration of nigrostriatal dopaminergic neurons and presence of fibrillar cytoplasmic inclusions containing α-synuclein and ubiquitin. Major pathological features of PD include degeneration of dopaminergic neurons coupled with fibrillar intracytoplasmic inclusions known as Lewy bodies, and these Lewy bodies are also found in the hypothalamus, cranial nerve motor nuclei, locus coeruleus, nucleus basalis, cerebral cortex, and central and peripheral components of the ANS. PD is presented with four primary motor manifestations: tremor at rest, rigidity, bradykinesia (or slowing of movement), and postural instability. Initially, not all patients present with all of the classic signs of PD, there may be only one or two and non-motor symptoms includes neuropsychiatric disturbances (i.e., depression, anxiety, and dementia), cognitive impairment, sleep disturbances or hallucinations, autonomic dysfunctions, fatigue, apathy, and orthostatic hypotension. It is estimated that approximately 5–10% of cases are occur or happened due to inheritable genetic mutation. The remaining 90% of newly diagnosed PD cases are of idiopathic origin. PD is a second most common age related neurodegenerative disease after Alzheimer’s disease. PD is thought to affect more than 1 million people in the USA alone, 1 of every 100 individuals, beyond the age of 55 suffered with disease. The prevalence of PD is also increases with age, affecting about 1–2% adults above the age of 60 years and 4% of above the age of 80 years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abdel-Salam OM, Omara EA, Youness ER, Khadrawy YA, Mohammed NA, Sleem AA (2014) Rotenone-induced nigrostriatal toxicity is reduced by methylene blue. J Neurorestoratol 2:65–80

    Article  Google Scholar 

  • Alam M, Schmidt WJ (2002) Rotenone destroys dopaminergic neurons and induces parkinsonian symptoms in rats. Behav Brain Res 136(1):317–324

    Article  CAS  PubMed  Google Scholar 

  • Beaudin SA, Nisam S, Smith DR (2013) Early life versus lifelong oral manganese exposure differently impairs skilled forelimb performance in adult rats. Neurotoxicol Teratol 38:36–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Betarbet R, Sherer TB, MacKenzie G, Garcia-Osuna M, Panov AV, Greenamyre JT (2000) Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat Neurosci 3(12):1301–1306

    Article  CAS  PubMed  Google Scholar 

  • Choi DY, Liu M, Hunter RL, Cass WA, Pandya JD, Sullivan PG, Shin EJ, Kim HC, Gash DM, Bing G (2009) Striatal neuroinflammation promotes Parkinsonism in rats. PLoS One 4(5):e5482

    Article  PubMed  PubMed Central  Google Scholar 

  • Elliott PJ, Close SP, Walsh DM, Hayes AG, Marriott AS (1990) Neuroleptic-induced catalepsy as a model of Parkinson’s disease II. Effect of glutamate antagonists. J Neural Transm Parkinson’s Dis Dement Sect 2(2):91–100

    Google Scholar 

  • Gupta A, Kumar A, Kulkarni SK (2011) Targeting oxidative stress, mitochondrial dysfunction and neuroinflammatory signaling by selective cyclooxygenase (COX)-2 inhibitors mitigates MPTP-induced neurotoxicity in mice. Prog Neuro-Psychopharmacol Biol Psychiatry 35(4):974–981

    Article  CAS  Google Scholar 

  • He Q, Yu W, Wu J, Chen C, Lou Z, Zhang Q, Zhao J, Wang J, Xiao B (2013) Intranasal LPS-mediated Parkinson’s model challenges the pathogenesis of nasal cavity and environmental toxins. PLoS One 8(11):e78418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heikkila RE, Nicklas WJ, Vyas I, Duvoisin RC (1985) Dopaminergic toxicity of rotenone and the 1-methyl-4-phenylpyridinium ion after their stereotaxic administration to rats: implication for the mechanism of 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine toxicity. Neurosci Lett 62(3):389–394

    Article  CAS  PubMed  Google Scholar 

  • Hritcu L (2008) Hematological disorders in 6-hydroxydopamine-induced rat model of Parkinson’s disease. Turk J Hematol 25:140–144

    CAS  Google Scholar 

  • Iseri PK, Karson A, Gullu KM, Akman O, Kokturk S, Yardýmoglu M, Erturk S, Ates N (2011) The effect of memantine in harmaline-induced tremor and neurodegeneration. Neuropharmacology 61(4):715–723

    Article  CAS  PubMed  Google Scholar 

  • Ittiyavirah SP, Ruby R (2014) Effect of hydro-alcoholic root extract of Plumbago zeylanica l alone and its combination with aqueous leaf extract of Camellia sinensis on haloperidol induced parkinsonism in wistar rats. Ann Neurosci 21(2):47

    Article  PubMed  PubMed Central  Google Scholar 

  • Kahale V, Mhaiskar A, Shelat P, Pooja RU, Gaikwad NJ, Mundhada DR (2014) To determine the Effect of Berberine on 6-OHDA induced memory impairment in Parkinson’s disease in rodents. Pharma Innov J 3(7):101–108

    CAS  Google Scholar 

  • Konno N, Tsunoda M, Nakano K (2001) The effect ofin vitro andin vivo ethylenbis dithiocarbamate fungicides on NMDA receptors in rat brain membranes. Environ Health Prev Med 6(1):54–59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar A, Kulkarni SK (2006) Effect of BR-16A (Mentat), a polyherbal formulation on drug-induced catalepsy in mice. Indian J Exp Biol 44(1):45–48

    PubMed  Google Scholar 

  • Levesque S, Surace MJ, McDonald J, Block ML (2011) Air pollution & the brain: subchronic diesel exhaust exposure causes neuroinflammation and elevates early markers of neurodegenerative disease. J Neuroinflammation 8(1):1

    Google Scholar 

  • Meredith GE, Sonsalla PK, Chesselet MF (2008) Animal models of Parkinson’s disease progression. Acta Neuropathol 115(4):385–398

    Article  PubMed  PubMed Central  Google Scholar 

  • Moszczynska A, Yamamoto BK (2011) Methamphetamine oxidatively damages parkin and decreases the activity of 26S proteasome in vivo. J Neurochem 116(6):1005–1017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naidu PS, Singh A, Kulkarni SK (2003) Quercetin, a bioflavonoid, attenuates haloperidol-induced orofacial dyskinesia. Neuropharmacology 44:1100–1106

    Google Scholar 

  • Ngwa HA, Kanthasamy A, Jin H, Anantharam V, Kanthasamy AG (2014) Vanadium exposure induces olfactory dysfunction in an animal model of metal neurotoxicity. Neurotoxicology 43:73–81

    Article  CAS  PubMed  Google Scholar 

  • Nicholas AP (2007) Levodopa-induced hyperactivity in mice treated with 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine. Mov Disord 22(1):99–104

    Article  PubMed  Google Scholar 

  • Noworyta-Sokolowska K, Gorska A, Golembiowska K (2013) LPS-induced oxidative stress and inflammatory reaction in the rat striatum pharmacological reports, vol 65, pp 863–869

    Google Scholar 

  • Ordoñez-Librado JL, Anaya-Martínez V, Gutierrez-Valdez AL, Colín-Barenque L, Montiel-Flores E, Avila-Costa MR (2010) Manganese inhalation as a Parkinson disease model. Parkinson’s Disease, 2011

    Google Scholar 

  • Robinson TE, Yew J, Paulson PE, Camp DM (1990) The long-term effects of neurotoxic doses of methamphetamine on the extracellular concentration of dopamine measured with microdialysis in striatum. Neurosci Lett 110(1):193–198

    Article  CAS  PubMed  Google Scholar 

  • Sharma S, Deshmukh R (2015) Vinpocetine attenuates MPTP-induced motor deficit and biochemical abnormalities in Wistar rats. Neuroscience 286:393–403

    Article  CAS  PubMed  Google Scholar 

  • Sharma N, Nehru B (2013) Beneficial effect of vitamin E in rotenone induced model of PD: behavioural, neurochemical and biochemical study. Exp Neurobiol 22(3):214–223

    Article  PubMed  PubMed Central  Google Scholar 

  • Sherer TB, Betarbet R, Testa CM, Seo BB, Richardson JR, Kim JH, Miller GW, Yagi T, Matsuno-Yagi A, Greenamyre JT (2003) Mechanism of toxicity in rotenone models of Parkinson’s disease. J Neurosci 23(34):10756–10764

    CAS  PubMed  Google Scholar 

  • Swarnkar S, Goswami P, Kamat PK, Patro IK, Singh S, Nath C (2013) Rotenone-induced neurotoxicity in rat brain areas: a study on neuronal and neuronal supportive cells. Neuroscience 230:172–183

    Article  CAS  PubMed  Google Scholar 

  • Thiruchelvam M, Prokopenko O, Cory-Slechta DA, Richfield EK, Buckley B, Mirochnitchenko O (2005) Overexpression of superoxide dismutase or glutathione peroxidase protects against the paraquat+ manebinduced Parkinson disease phenotype. J Biol Chem 280:22530–22539

    Google Scholar 

  • Ungerstedt U (1968) 6-Hydroxy-dopamine induced degeneration of central monoamine neurons. Eur J Pharmacol 5(1):107–110

    Article  CAS  PubMed  Google Scholar 

  • Wang AL, Liou YM, Pawlak CR, Ho YJ (2010) Involvement of NMDA receptors in both MPTP-induced neuroinflammation and deficits in episodic-like memory in Wistar rats. Behav Brain Res 208(1):38–46

    Article  PubMed  Google Scholar 

  • Xiong P, Chen X, Guo C, Zhang N, Ma B (2012) Baicalin and deferoxamine alleviate iron accumulation in different brain regions of Parkinson’s disease rats. Neural Regeneration Res 7(27):2092

    CAS  Google Scholar 

  • Zhang J, Stanton DM, Nguyen XV, Liu M, Zhang Z, Gash D, Bing G (2005) Intrapallidal lipopolysaccharide injection increases iron and ferritin levels in glia of the rat substantia nigra and induces locomotor deficits. Neuroscience 135(3):829–838

    Article  CAS  PubMed  Google Scholar 

  • Zheng W, Zhao Q, Slavkovich V, Aschner M, Graziano JH (1999) Alteration of iron homeostasis following chronic exposure to manganese in rats. Brain Res 833(1):125–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Puneet Kumar Bansal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharma, N., Jamwal, S., Singh, S., Gill, H.K., Bansal, P.K. (2017). Animal Models of Parkinson’s Disease. In: Bansal, P., Deshmukh, R. (eds) Animal Models of Neurological Disorders. Springer, Singapore. https://doi.org/10.1007/978-981-10-5981-0_3

Download citation

Publish with us

Policies and ethics