Skip to main content

Animal Models of Autism

  • Chapter
  • First Online:
Animal Models of Neurological Disorders

Abstract

Autism is a neurodevelopment disorder that arises in approximately 1% of the worldwide population. Autism is a lifelong condition characterized by repetitive behavior and impaired socialization, abnormalities in communication, restricted and repetitive behavior that usually occurs in the first 3 years of life. Besides from these important symptoms, a significant number of autism individuals display higher levels of anxiety and exhibit impaired emotional learning. The most remarkable features of the social impairments in autism are defects in coordinating visual attention with others. External ear malformations are the most common physical abnormality associated with autism. About 30% individuals of autism spectrum disorder (ASD) engage in self-harming behaviors such as head banging and hand biting (Dominick et al. 2007; Johnson et al. 2007). Sir Leo Kanner in 1943 firstly described autism by as “children which are locked within them.” Around 400,000 children are affected by autism in America, with 1–2 new cases per 1,000 births in the USA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Adolphs R, Baron-Cohen S, Tranel D (2002) Impaired recognition of social emotions following amygdala damage. J Cogn Neurosci 14:1264–1274

    Article  PubMed  Google Scholar 

  • Adolphs R, Sears L, Piven J (2001) Abnormal processing of social information from faces in autism. J Cogn Neurosci 13:232–240

    Article  CAS  PubMed  Google Scholar 

  • Al-Amin MM, Rahman MM, Khan FR, Zaman F, Reza HM (2015). Astaxanthin improves behavioral disorder and oxidative stress in prenatal valproic acid-induced mice model of autism. Behav Brain Res 286:112–121

    Google Scholar 

  • Aldbass AM, Bhat RS, El-Ansary A (2013) Protective and therapeutic potency of N-acetyl-cysteine on propionic acid-induced biochemical autistic features in rats. J Neuroinflamm 10:42

    Article  CAS  Google Scholar 

  • Almeida LEF, Roby CD, Krueger BK (2014) Increased BDNF expression in fetal brain in the valproic acid model of autism. Mol Cell Neurosci 59:57–62

    Google Scholar 

  • Baharnoori M, Bhardwaj SK, Srivastava LK (2013) Effect of maternal lipopolysaccharide administration on the development of dopaminergic receptors and transporter in the rat offspring. PLoS ONE 8(1):e54439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banerjee A, Engineer C. T, Sauls et al (2014). Abnormal emotional learning in a rat model of autism exposed to valproic acid in utero Frontiers in Behavioral Neuroscience, vol. 8, article 387.doi:10.3389/fnbeh.2014.00387

  • Bassanini S, Hallene K, Battaglia G et al (2007). Early cerebrovascular and parenchymal events following prenatal exposure to the putative neurotoxin methylazoxymethanol. Neurobiol Dis 26(2):481–495

    Google Scholar 

  • Bauman ML, Kemper TL (2005) Neuroanatomic observations of the brain in autism: a review and future directions. Int J Dev Neurosci 23:183–187

    Article  PubMed  Google Scholar 

  • Bolton JL, Huff NC, Smith SH et al (2013) Maternal stress and effects of prenatal air pollution on offspring mental health outcomes in mice. Environ Health Perspect 121(9). doi:10.1289/ehp.1306560

  • Bustamante ND (2006) Autism and the potential role of immune function and prenatal. Methylmercury Expo

    Google Scholar 

  • Chauhan A, Gu F, Essa MM et al (2011) Brain region-specific deficit in mitochondrial electron transport chain complexes in children with autism. J Neurochem 117:209–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen YCJ, Guo YL, Hsu CC et al (1992) Cognitive-development of Yu-Cheng (oil disease) children prenatally exposed to heat-degraded PCBs. JAMA 268(22):3213–3218

    Article  CAS  PubMed  Google Scholar 

  • Chlodzinska N, Gajerska M, Bartkowska K et al (2011) Lipopolysaccharide injected to pregnant mice affects behavior of their offspring in adulthood. Acta Neurobiol Exp 71:519–527

    Google Scholar 

  • Curtis J. T, Chen Y, Buck DJ (2011) Chronic inorganic mercury exposure induces sex-specific changes in central TNFα expression: Importance in autism? Neurosci Lett 17, 504(1)

    Google Scholar 

  • Dominick KC, Davis NO, Lainhart J, Tager-Flusberg H, Folstein S (2007) Atypical behaviors in children with autism and children with a history of language impairment. Res Dev Disabil 28, 2:145–162

    Google Scholar 

  • Eddins D, Petro A, Pollard N et al (2008) Mercury-induced cognitive impairment in metallothionein-1/2 null mice. Neurotoxicol Teratol 30(2):88–95

    Google Scholar 

  • Ehninger D (2014) Tsc2 Haploinsufficiency has limited effects on fetal brain cytokine levels during gestational immune activation. Autism Res Treat Article ID 761279. doi:10.1155/2014/761279

  • Falluel-Morel A, Sokolowski K, SistiH M et al (2007) Developmental mercury exposure elicits acute hippocampal cell death, reductions in neurogenesis, and severe learning deficits during puberty. J Neurochem 103(5):1968–1981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foley AG, Gannon S, Rombach-Mullan N et al (2012) Class I histone deacetylase inhibition ameliorates social cognition and cell adhesion molecule plasticity deficits in a rodent model of autism spectrum disorder. Neuropharmacology 63(4):750–760

    Article  CAS  PubMed  Google Scholar 

  • Foley KA, Ossenkopp K, Kavaliers M et al (2014) Pre- and neonatal exposure to lipopolysaccharide or the enteric metabolite, propionic acid, alters development and behavior in adolescent rats in a sexually dimorphic manner. PLoS ONE 9(1):e87072

    Article  PubMed  PubMed Central  Google Scholar 

  • Ida-Eto M, Oyabu A, Ohkawara T et al (2012) Prenatal exposure to organomercury, thimerosal, persistently impairs the serotonergic and dopaminergic systems in the rat brain: Implications for association with developmental disorders. Brain Dev. doi:10.1016/j.braindev.2012.05.004

    PubMed  Google Scholar 

  • Jacobson JL, Jacobson SW (2003) Prenatal exposure to polychlorinated biphenyls and attention at school age. J Pediatr 143(6):780–788

    Article  CAS  PubMed  Google Scholar 

  • Johnson CP, Myers SM, Lipkin PH et al (2007) Identification and evaluation of children with autism spectrum disorders. Pediatrics 120(5):1183–1215

    Article  PubMed  Google Scholar 

  • Jolous-Jamshidi B, Cromwell HC, McFarland AM et al (2010) Perinatal exposure to polychlorinated biphenyls alters social behaviors in rats. Toxicol Lett 199(2):136–143

    Google Scholar 

  • Jones KL, Smith DW (1975) The fetal alcohol syndrome. Teratology 12:1–10

    Article  CAS  PubMed  Google Scholar 

  • Kern JK, Geier DA, Audhya T et al (2012) Evidence of parallels between mercury intoxication and the brain pathology in autism. Acta Neurobiol Exp 72:113–153

    Google Scholar 

  • Kim KC, Kim P, Go HS (2011) The critical period of valproate exposure to induce autistic symptoms in Sprague–Dawley rats. Toxicol Lett 201:137–14

    Google Scholar 

  • Kinney DK, Munir KM, Crowley DJ et al (2008) Prenatal stress and risk for autism. Neurosci Biobehav Rev 32(8):1519–1532

    Article  PubMed  PubMed Central  Google Scholar 

  • Kinnunen AK, Koenig JI, Bilbe G (2003) Repeated variable prenatal stress alters pre- and postsynaptic gene expression in the rat frontal pole. J Neurochem 86:736–748

    Article  CAS  PubMed  Google Scholar 

  • Kirsten TB, Lippi LL, Bevilacqua E et al (2013) LPS exposure increases maternal corticosterone levels, causes placental injury and increases IL-1Β levels in adult rat offspring: relevance to autism. PLoS ONE 8(12):e82244

    Google Scholar 

  • Koenig JI, Elmer GI, Shepard PD et al (2005) Prenatal exposure to a repeated variable stress paradigm elicits behavioral and neuroendocrinological changes in the adult offspring: potential relevance to schizophrenia. Behav Brain Res 156:251–261

    Article  PubMed  Google Scholar 

  • Mattson SN, Riley EP, Delis DC et al (1996) Verbal learning and memory in children with fetal alcohol syndrome. Alcohol Clin Exp Res 20:810–816

    Article  CAS  PubMed  Google Scholar 

  • Middleton FA, Varlinskaya EI, Mooney SM (2012) Molecular substrates of social avoidance seen following prenatal ethanol exposure and its reversal by social enrichment. Dev Neurosci 34(2–3):115–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyazaki K, Narita N, Narita M (2005) Maternal administration of thalidomide or valproic acid causes abnormal serotonergic neurons in the offspring: implication for pathogenesis of autism. Int J Dev Neurosci 23:287–297

    Article  CAS  PubMed  Google Scholar 

  • Morgan CP, Bale TL (2011) Early prenatal stress epigenetically programs dysmasculinization in second-generation offspring via the paternal lineage. J Neurosci 17, 31(33):11748–11755

    Google Scholar 

  • Narita M, Oyabu A, Imura Y et al (2010) Nonexploratory movement and behavioral alterations in a thalidomide or valproic acid-induced autism model rat. Neurosci Res 66(1):2–6

    Article  CAS  PubMed  Google Scholar 

  • Narita N, Kato M, Tazoe M et al (2002) Increased monoamine concentration in the brain and blood of fetal thalidomide- and valproic acid-exposed rat: putative animal models for autism. Pediatr Res 52(4):576–579

    CAS  PubMed  Google Scholar 

  • Oyabu A, Tashiro Y, Oyama T et al (2013) Morphology of the facial motor nuclei in a rat model of autism during early development. Int J Dev Neurosci 31:138–144

    Article  PubMed  Google Scholar 

  • Patterson PH (2011) Maternal infection and immune involvement in autism. Trends Mol Med 17(7)

    Google Scholar 

  • Penteado S, Gomes COM, Kirsten T et al (2013) Prenatal lipopolysaccharide increases maternal behavior, decreases maternal odor preference, and induces Lipopolysaccharide hyporesponsiveness. Psychol Neurosci 6(1):31–38

    Article  CAS  Google Scholar 

  • Poirier GL, Imamura N, Zanoletti O et al (2014) Social deficits induced by peripubertal stress in rats are reversed by resveratrol. J Psychiatr Res 57(2014):157–164

    Article  PubMed  Google Scholar 

  • Pragnya B, Kameshwari JSL, Veeresh B (2014) Ameliorating effect of piperine on behavioral abnormalities and oxidative markers in sodium valproate induced autism in BALB/C mice. Behav Brain Res 270:86–94

    Article  CAS  PubMed  Google Scholar 

  • Richetto J, Calabrese F, Meye U et al (2013) Prenatal versus postnatal maternal factors in the development of infection-induced working memory impairments in mice. Brain Behav Immun 33:190–200

    Article  CAS  PubMed  Google Scholar 

  • Rodier PM, Ingram JL, Tisdale B et al (1996) Embryological origin for autism: developmental anomalies of the cranial nerve motor nuclei. J Comp Neurol 370:247–261

    Article  CAS  PubMed  Google Scholar 

  • Sabers A, Bertelsen FCB, Scheel-Kruger J et al (2015) Corrigendum to “Long-term valproic acid exposure increases the number of neocortical neurons in the developing rat brain” A possible new animal model of autism. Neurosci Lett 588:203–207

    Article  CAS  PubMed  Google Scholar 

  • Shi L, Smith SEP, Malkova N et al (2009) Activation of the maternal immune system alters cerebellar development in the offspring. Brain Behav Immun 23(1):116–123

    Article  PubMed  Google Scholar 

  • Smith SEP, Li J, Garbett K et al (2007) Maternal immune activation alters fetal brain development through Interleukin-6J. Neurosci 27(40):10695–10702

    Article  CAS  Google Scholar 

  • Takuma K, Hara Y, Kataoka S et al (2014) Chronic treatment with valproic acid or sodium butyrate attenuates novel object recognition deficits and hippocampal dendritic spine loss in a mouse model of autism. Pharmacol Biochem Behav 126:43–49

    Article  CAS  PubMed  Google Scholar 

  • Tzanoulinou S, Garcia-Mompo C, Castillo-Gomez E et al (2014) Long-term behavioral programming induced by peripuberty stress in rats is accompanied by GABAergic-related alterations in the Amygdala. Plosone 9(4):e94666

    Article  Google Scholar 

  • Wilson CA, Vazdarjanova A, Terry AV (2013) Exposure to variable prenatal stress in rats: effects on anxietyrelated behaviors, innate and contextual fear, and fear extinction. Behav Brain Res 1(238):279–288

    Article  Google Scholar 

  • Winneke G (2011) Developmental aspects of environmental neurotoxicology: lessons from lead and polychlorinated biphenyls. J Neurol Sci 308(1–2):9–15

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Puneet Kumar Bansal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharma, N., Jamwal, S., Bansal, P.K. (2017). Animal Models of Autism. In: Bansal, P., Deshmukh, R. (eds) Animal Models of Neurological Disorders. Springer, Singapore. https://doi.org/10.1007/978-981-10-5981-0_15

Download citation

Publish with us

Policies and ethics