Skip to main content

Biomimetic Ion-Substituted Calcium Phosphates

  • Chapter
  • First Online:
Developments and Applications of Calcium Phosphate Bone Cements

Part of the book series: Springer Series in Biomaterials Science and Engineering ((SSBSE,volume 9))

  • 1349 Accesses

Abstract

Biomimetic approaches have been developed to produce calcium phosphate with similar composition and/or structure with bone tissues. Template regulation and ionic substitution can endow calcium phosphate special properties and improve their interactivity with bone tissues. In this chapter, the recent progress on biomimetic ion-substituted calcium phosphate and its applications as calcium phosphate cements are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ma J, Wang J, Ai X et al (2014) Biomimetic self-assembly of apatite hybrid materials: from a single molecular template to bi-/multi-molecular templates. Biotechnol Adv 32:744–760

    Article  Google Scholar 

  2. Nudelman F, Pieterse K, George A et al (2010) The role of collagen in bone apatite formation in the presence of hydroxyapatite nucleation inhibitors. Nat Mater 9:1004–1009

    Article  Google Scholar 

  3. Colfen H (2010) Biomineralization: a crystal-clear view. Nat Mater 9:960–961

    Article  Google Scholar 

  4. Place ES, Evans ND, Stevens MM (2009) Complexity in biomaterials for tissue engineering. Nat Mater 8:457–470

    Article  Google Scholar 

  5. Cui FZ, Li Y, Ge J (2007) Self-assembly of mineralized collagen composites. Mater Sci Eng R 57:1–27

    Article  Google Scholar 

  6. Pina S, Oliveira JM, Reis RL (2015) Natural-based nanocomposites for bone tissue engineering and regenerative medicine: a review. Adv Mater 27:1143–1169

    Article  Google Scholar 

  7. Qiu ZY, Li G, Zhang YQ et al (2012) Fine structure analysis and sintering properties of Si-doped hydroxyapatite. Biomed Mater 7:045009

    Article  Google Scholar 

  8. Bohner M (2009) Silicon-substituted calcium phosphates – a critical view. Biomaterials 30:6403–6406

    Article  Google Scholar 

  9. Pietak AM, Reid JW, Stott MJ et al (2007) Silicon substitution in the calcium phosphate bioceramics. Biomaterials 28:4023–4032

    Article  Google Scholar 

  10. Kubota T, Nakamura A, Toyoura K et al (2014) The effect of chemical potential on the thermodynamic stability of carbonate ions in hydroxyapatite. Acta Biomater 10:3716–3722

    Article  Google Scholar 

  11. Antonakos A, Liarokapis E, Leventouri T (2007) Micro-Raman and FTIR studies of synthetic and natural apatites. Biomaterials 28:3043–3054

    Article  Google Scholar 

  12. Tang YZ, Chappell HF, Dove MT et al (2009) Zinc incorporation into hydroxylapatite. Biomaterials 30:2864–2872

    Article  Google Scholar 

  13. Grandjean-Laquerriere A, Laquerriere P, Jallot E et al (2006) Influence of the zinc concentration of sol-gel derived zinc substituted hydroxyapatite on cytokine production by human monocytes in vitro. Biomaterials 27:3195–3200

    Article  Google Scholar 

  14. Schumacher M, Gelinsky M (2015) Strontium modified calcium phosphate cements – approaches towards targeted stimulation of bone turnover. J Mater Chem B 3:4626–4640

    Article  Google Scholar 

  15. Ni GX, Chiu KY, Lu WW et al (2006) Strontium-containing hydroxyapatite bioactive bone cement in revision hip arthroplasty. Biomaterials 27:4348–4355

    Article  Google Scholar 

  16. Hurle K, Neubauer J, Goetz-Neunhoeffer F (2016) Influence of Sr2+ on calcium-deficient hydroxyapatite formation kinetics and morphology in partially amorphized alpha-TCP. J Am Ceram Soc 99:1055–1063

    Article  Google Scholar 

  17. Lu JX, Wei J, Yan YG et al (2011) Preparation and preliminary cytocompatibility of magnesium doped apatite cement with degradability for bone regeneration. J Mater Sci-Mater Med 22:607–615

    Article  Google Scholar 

  18. Serre CM, Papillard M, Chavassieux P et al (1998) Influence of magnesium substitution on a collagen-apatite biomaterial on the production of a calcifying matrix by human osteoblasts. J Biomed Mater Res 42:626–633

    Article  Google Scholar 

  19. Zhao HS, He W, Wang YJ et al (2008) Biomimetic synthesis and characterization of hydroxyapatite crystal with low phase transformation temperature. J Chem Eng Data 53:2735–2738

    Article  Google Scholar 

  20. Carrodeguas RG, De Aza S (2011) Alpha-Tricalcium phosphate: synthesis, properties and biomedical applications. Acta Biomater 7:3536–3546

    Article  Google Scholar 

  21. Boanini E, Gazzano M, Bigi A (2010) Ionic substitutions in calcium phosphates synthesized at low temperature. Acta Biomater 6:1882–1894

    Article  Google Scholar 

  22. Bow JS, Liou SC, Chen SY (2004) Structural characterization of room-temperature synthesized nano-sized beta-tricalcium phosphate. Biomaterials 25:3155–3161

    Article  Google Scholar 

  23. Kumta PN, Sfeir C, Lee DH et al (2005) Nanostructured calcium phosphates for biomedical applications: novel synthesis and characterization. Acta Biomater 1:65–83

    Article  Google Scholar 

  24. Schumacher M, Henss A, Rohnke M et al (2013) A novel and easy-to-prepare strontium(II) modified calcium phosphate bone cement with enhanced mechanical properties. Acta Biomater 9:7536–7544

    Article  Google Scholar 

  25. Gisep A, Wieling R, Bohner M et al (2003) Resorption patterns of calcium-phosphate cements in bone. J Biomed Mater Res A 66A:532–540

    Article  Google Scholar 

  26. Li YW, Leong JCY, Lu WW et al (2000) A novel injectable bioactive bone cement for spinal surgery: a developmental and preclinical study. J Biomed Mater Res 52:164–170

    Article  Google Scholar 

  27. Kirschner HJ, Obermayr F, Schaefer J et al (2012) Treatment of benign bone defects in children with silicate-substituted calcium phosphate (SiCaP). Eur J Pediatr Surg 22:143–147

    Article  Google Scholar 

  28. Rokita E, Hermes C, Nolting HF et al (1993) Substitution of calcium by strontium within selected calcium phosphates. J Cryst Growth 130:543–552

    Article  Google Scholar 

  29. Bigi A, Boanini E, Capuccini C et al (2007) Strontium-substituted hydroxyapatite nanocrystals. Inorg Chim Acta 360:1009–1016

    Article  Google Scholar 

  30. Saintjean SJ, Camiré CL, Nevsten P et al (2005) Study of the reactivity and in vitro bioactivity of Sr-substituted α-TCP cements. J Mater Sci Mater M 16:993–1001

    Article  Google Scholar 

  31. Bigi A, Foresti E, Gandolfi M et al (1997) Isomorphous substitutions in β-tricalcium phosphate: the different effects of zinc and strontium. J Inorg Biochem 66:259–265

    Article  Google Scholar 

  32. Chulián MF (2011) Strontium ions substitution in brushite crystals: the role of strontium chloride. J Func Biomater 2:31–38

    Article  Google Scholar 

  33. Pan HB, Li ZY, Lam WM et al (2009) Solubility of strontium-substituted apatite by solid titration. Acta Biomater 5:1678–1685

    Article  Google Scholar 

  34. Christoffersen J, Christoffersen MR, Kolthoff N et al (1997) Effects of strontium ions on growth and dissolution of hydroxyapatite and on bone mineral detection. Bone 20:47–54

    Article  Google Scholar 

  35. Kuang GM, Yau WP, Wu J et al (2015) Strontium exerts dual effects on calcium phosphate cement: accelerating the degradation and enhancing the osteoconductivity both in vitro and in vivo. J Biomed Mater Res Part A 103:1613–1621

    Article  Google Scholar 

  36. Ginebra MP, Fernández E, Boltong MG et al (1994) Compliance of an apatitic calcium phosphate cement with the short-term clinical requirements in bone surgery, orthopaedics and dentistry. Clin Mater 17:99–104

    Article  Google Scholar 

  37. Guan-Ming K, Yau WP, Lam WM et al (2012) An effective approach by a chelate reaction in optimizing the setting process of strontium-incorporated calcium phosphate bone cement. J Biomed Mater Res B 100:778–787

    Google Scholar 

  38. Panzavolta S, Torricelli P, Sturba L et al (2008) Setting properties and in vitro bioactivity of strontium-enriched gelatin–calcium phosphate bone cements. J Biomed Mater Res A 84:965–972

    Article  Google Scholar 

  39. Tao Y, Li DX, Li YB (2013) Effect of substitutional Sr ion on mechanical properties of calcium phosphate bone cement. J Wuhan Univ Technol 28:741–745

    Article  Google Scholar 

  40. Gbureck U, Barralet JE, Radu L et al (2004) Amorphous α-Tricalcium phosphate: preparation and aqueous setting reaction. J Am Ceram Soc 87:1126–1132

    Article  Google Scholar 

  41. D’Onofrio A, Kent NW, Shahdad SA et al (2016) Development of novel strontium containing bioactive glass based calcium phosphate cement. Dent Mater 32:703–712

    Article  Google Scholar 

  42. Torres PMC, Gouveia S, Olhero S et al (2015) Injectability of calcium phosphate pastes: effects of particle size and state of aggregation of beta-tricalcium phosphate powders. Acta Biomater 21:204–216

    Article  Google Scholar 

  43. Low KL, Tan SH, Zein SHS et al (2010) Calcium phosphate-based composites as injectable bone substitute materials. J Biomed Mater Res B 94:273–286

    Google Scholar 

  44. Pina S, Torres PMC, Ferreira JMF (2010) Injectability of brushite-forming Mg-substituted and Sr-substituted alpha-TCP bone cements. J Mater Sci Mater Med 21:431–438

    Article  Google Scholar 

  45. Baier M, Staudt P, Klein R et al (2012) Strontium enhances osseointegration of calcium phosphate cement: a histomorphometric pilot study in ovariectomized rats. J Orthop Surg Res 8:1–8

    Google Scholar 

  46. Guo D, Xu K, Zhao X et al (2005) Development of a strontium-containing hydroxyapatite bone cement. Biomaterials 26:4073–4083

    Article  Google Scholar 

  47. Schumacher M, Wagner AS, Kokesch-Himmelreich J et al (2016) Strontium substitution in apatitic CaP cements effectively attenuates osteoclastic resorption but does not inhibit osteoclastogenesis. Acta Biomater 37:184–194

    Article  Google Scholar 

  48. Schumacher M, Lode A, Helth A et al (2013) A novel strontium(II)-modified calcium phosphate bone cement stimulates human-bone-marrow-derived mesenchymal stem cell proliferation and osteogenic differentiation in vitro. Acta Biomater 9:9547–9557

    Article  Google Scholar 

  49. Kannan S, Goetz-Neunhoeffer F, Neubauer J et al (2009) Rietveld structure and in vitro analysis on the influence of magnesium in biphasic (hydroxyapatite and β-tricalcium phosphate) mixtures. J Biomed Mater Res B 90B:404–411

    Article  Google Scholar 

  50. Pina S, Ferreira JMF (2010) Brushite-forming Mg-, Zn- and Sr-substituted bone cements for clinical applications. Dent Mater 3:519–535

    Google Scholar 

  51. Goldberg MA, Smirnov VV, Antonova OS et al (2016) Magnesium-substituted calcium phosphate cements with (Ca + Mg)/P=2. Dokl Chem 467:100–104

    Article  Google Scholar 

  52. Yu T, Ye JD, Zhang M (2013) Effect of magnesium doping on hydration morphology and mechanical property of calcium phosphate cement under non-calcined synthesis condition. J Am Ceram Soc 96:1944–1950

    Article  Google Scholar 

  53. Teterina AY, Egorov AA, Fedotov AY et al (2016) Bone cements in the calcium phosphate-chitosan systems containing magnesium and zinc. Dokl Chem 468:199–201

    Article  Google Scholar 

  54. Saleh AT, Ling LS, Hussain R (2016) Injectable magnesium-doped brushite cement for controlled drug release application. J Mater Sci 51:7427–7439

    Article  Google Scholar 

  55. Landi E, Logroscino G, Proietti L et al (2008) Biomimetic Mg-substituted hydroxyapatite: from synthesis to in vivo behaviour. J Mater Sci Mater Med 19:239–247

    Article  Google Scholar 

  56. Bohner M, Tiainen H, Michel P et al (2015) Design of an inorganic dual-paste apatite cement using cation exchange. J Mater Sci Mater Med 26:63

    Article  Google Scholar 

  57. Suzuki T, Hatsushika T, Hayakawa Y (1981) Synthetic hydroxyapatites employed as inorganic cation-exchangers. J Chem Soc Faraday Trans 5:1059–1062

    Article  Google Scholar 

  58. Klammert U, Reuther T, Blank M et al (2010) Phase composition, mechanical performance and in vitro biocompatibility of hydraulic setting calcium magnesium phosphate cement. Acta Biomater 6:1529–1535

    Article  Google Scholar 

  59. Liu W, Dong Z, Huan Z et al (2015) Novel tricalcium silicate/magnesium phosphate composite bone cement having high compressive strength, in vitro bioactivity and cytocompatibility. Acta Biomater 21:217–227

    Article  Google Scholar 

  60. Chen FP, Song ZY, Liu CS (2015) Fast setting and anti-washout injectable calcium-magnesium phosphate cement for minimally invasive treatment of bone defects. J Mater Chem B 3:9173–9181

    Article  Google Scholar 

  61. Pina S, Olhero SM, Gheduzzi S et al (2009) Influence of setting liquid composition and liquid-to-powder ratio on properties of a Mg-substituted calcium phosphate cement. Acta Biomater 5:1233–1240

    Article  Google Scholar 

  62. Zhang J, Ma XY, Lin D et al (2015) Magnesium modification of a calcium phosphate cement alters bone marrow stromal cell behavior via an integrin-mediated mechanism. Biomaterials 53:251–264

    Article  Google Scholar 

  63. Spadaro JA, Becker RO, Bachman CH (1970) The distribution of trace metal ions in bone and tendon. Calcif Tissue Res 6:49–54

    Article  Google Scholar 

  64. Ito A, Sogo Y, Kamo M et al (2003) Zinc-containing alpha-tricalcium phosphate cement for stimulating bone formation: a preliminary study. J Dental Res 82:B278

    Article  Google Scholar 

  65. Li X, Sogo Y, Ito A et al (2009) The optimum zinc content in set calcium phosphate cement for promoting bone formation in vivo. Mat Sci Eng C-Bio S 29:969–975

    Article  Google Scholar 

  66. Ito A, Ojima K, Naito H et al (2000) Preparation, solubility, and cytocompatibility of zinc-releasing calcium phosphate ceramics. J Biomed Mater Res 50:178–183

    Article  Google Scholar 

  67. Kannan S, Goetz-Neunhoeffer F, Neubauer J et al (2009) Synthesis and structure refinement of zinc-doped β-tricalcium phosphate powders. J Am Ceram Soc 92:1592–1595

    Article  Google Scholar 

  68. Hattori Y, Mori H, Chou J et al (2016) Mechanochemical synthesis of zinc-apatitic calcium phosphate and the controlled zinc release for bone tissue engineering. Drug Dev Ind Pharm 42:595–601

    Article  Google Scholar 

  69. Horiuchi S, Asaoka K, Tanaka E (2009) Development of a novel cement by conversion of hopeite in set zinc phosphate cement into biocompatible apatite. Biomed Mater Eng 19:121–131

    Google Scholar 

  70. Walczyk D, Malina D, Krol M et al (2016) Physicochemical characterization of zinc-substituted calcium phosphates. Bull Mater Sci 39:525–535

    Article  Google Scholar 

  71. Miyaji F, Kono Y, Suyama Y (2005) Formation and structure of zinc-substituted calcium hydroxyapatite. Mater Res Bull 40:209–220

    Article  Google Scholar 

  72. Ren F, Xin R, Xiang G et al (2009) Characterization and structural analysis of zinc-substituted hydroxyapatites. Acta Biomater 5:3141–3149

    Article  Google Scholar 

  73. Sogo Y, Ito A, Kamo M et al (2004) Hydrolysis and cytocompatibility of zinc-containing α-tricalcium phosphate powder. Mater Sci Eng C 24:709–715

    Article  Google Scholar 

  74. † SP, † SIV, Torres PMC et al (2010) In vitro performance assessment of new brushite-forming Zn- and ZnSr-substituted β-TCP bone cements. J Biomed Mater Res B 94B: 414–420

    Google Scholar 

  75. Vahabzadeh S, Bandyopadhyay A, Bose S et al (2015) IGF-loaded silicon and zinc doped brushite cement: physico-mechanical characterization and in vivo osteogenesis evaluation. Integr Biol-Uk 7:1561–1573

    Article  Google Scholar 

  76. Pina S, Vieira SI, Rego P et al (2010) Biological responses of brushite-forming Zn- and ZnSr- substituted beta-tricalcium phosphate bone cements. Eur Cell Mater 20:162–177

    Article  Google Scholar 

  77. Gbureck U, Knappe O, Grover LM et al (2005) Antimicrobial potency of alkali ion substituted calcium phosphate cements. Biomaterials 26:6880–6886

    Article  Google Scholar 

  78. Gbureck U, Thull R, Barralet JE (2005) Alkali ion substituted calcium phosphate cement formation from mechanically activated reactants. J Mater Sci-Mater Med 16:423–427

    Article  Google Scholar 

  79. Gildenhaar R, Berger G, Lehmann E et al (2008) Development of alkali containing calcium phosphate cements. In: Daculsi G, Layrolle P (ed) Bioceramics 20:331–334

    Google Scholar 

  80. Driessens FCM, Boltong MG, Maeyer EAPD et al (2002) The Ca/P range of nanoapatitic calcium phosphate cements. Biomaterials 23:4011–4017

    Article  Google Scholar 

  81. Berger G, Ullner C, Neumann G et al (2006) New characterization of setting times of alkali containing calcium phosphate cements by using an automatically working device according to Gillmore needle test. In: Nakamura T, Yamashita K, Neo M (eds) Bioceramics 18:825–828

    Google Scholar 

  82. Suzuki Y, Hayashi M, Yasukawa T et al (2015) Development of a novel fluorapatite-forming calcium phosphate cement with calcium silicate: in vitro and in vivo characteristics. Dent Mater J 34:263–269

    Article  Google Scholar 

  83. Ma J, Wang YH, Zhou L et al (2013) Preparation and characterization of selenite substituted hydroxyapatite. Mat Sci Eng C Mater 33:440–445

    Article  Google Scholar 

  84. Wang YH, Ma J, Zhou L et al (2012) Dual functional selenium-substituted hydroxyapatite. Interface focus 2:378–386

    Article  Google Scholar 

  85. Wang Y, Hao H, Liu H et al (2015) Selenite-releasing bone mineral nanoparticles retard bone tumor growth and improve healthy tissue functions in vivo. Adv Healthc Mater 4:1813–1818

    Article  Google Scholar 

  86. Huang SH, Chen YJ, Kao CT et al (2015) Physicochemical properties and biocompatibility of silica doped beta-tricalcium phosphate for bone cement. J Dental Sci 10:282–290

    Article  Google Scholar 

  87. Gong T, Wang Z, Zhang Y et al (2016) A comprehensive study of osteogenic calcium phosphate silicate cement: material characterization and in vitro/in vivo testing. Adv Healthc Mater 5:457–466

    Article  Google Scholar 

  88. Zheng JJ, Xiao Y, Gong TX et al (2016) Fabrication and characterization of a novel carbon fiber-reinforced calcium phosphate silicate bone cement with potential osteo-inductivity. Biomed Mater 11:015003

    Article  Google Scholar 

  89. Daculsi G (1998) Biphasic calcium phosphate concept applied to artificial bone, implant coating and injectable bone substitute. Biomaterials 19:1473–1478

    Article  Google Scholar 

  90. Gomes S, Renaudin G, Mesbah A et al (2010) Thorough analysis of silicon substitution in biphasic calcium phosphate bioceramics: a multi-technique study. Acta Biomater 6:3264–3274

    Article  Google Scholar 

  91. Reid JW, Pietak A, Sayer M et al (2005) Phase formation and evolution in the silicon substituted tricalcium phosphate/apatite system. Biomaterials 26:2887–2897

    Article  Google Scholar 

  92. Gandolfi MG, Spagnuolo G, Siboni F et al (2015) Calcium silicate/calcium phosphate biphasic cements for vital pulp therapy: chemical-physical properties and human pulp cells response. Clin Oral Investig 19:2075–2089

    Article  Google Scholar 

  93. Radwan MM, Abd El-Hamid HK, Mohamed AF (2015) Influence of saline solution on hydration behavior of beta-dicalcium silicate in comparison with biphasic calcium phosphate/hydroxyapatite bio-ceramics. Mater Sci Eng C-Mater Biol Appl 57:355–362

    Article  Google Scholar 

  94. Li CD, Gao L, Chen FP et al (2015) Fabrication of mesoporous calcium silicate/calcium phosphate cement scaffolds with high mechanical strength by freeform fabrication system with micro-droplet jetting. J Mater Sci 50:7182–7191

    Article  Google Scholar 

  95. Dawood AE, Manton DJ, Parashos P et al (2015) The physical properties and ion release of CPP-ACP-modified calcium silicate-based cements. Aust Dent J 60:434–444

    Article  Google Scholar 

  96. Kawamura H, Ito A, Miyakawa S et al (2000) Stimulatory effect of zinc-releasing calcium phosphate implant on bone formation in rabbit femora. J Biomed Mater Res 50:184–190

    Article  Google Scholar 

  97. Davies E, Muller KH, Wong WC et al (2014) Citrate bridges between mineral platelets in bone. P Natl Acad Sci USA 111:E1354–E1363

    Article  Google Scholar 

  98. Liu X, Wang XM, Chen Z et al (2010) Injectable bone cement based on mineralized collagen. J Biomed Mater Res B 94:72–79

    Google Scholar 

  99. Cuzmar E, Perez RA, Manzanares MC et al (2015) In vivo osteogenic potential of biomimetic hydroxyapatite/collagen microspheres: comparison with injectable cement pastes. PLoS One 10

    Google Scholar 

  100. Dasgupta S, Bandyopadhyay A, Bose S (2009) Reverse micelle-mediated synthesis of calcium phosphate nanocarriers for controlled release of bovine serum albumin. Acta Biomater 5:3112–3121

    Article  Google Scholar 

  101. Wang J, Yu F, Qu L et al (2010) Study of synthesis of nano-hydroxyapatite using a silk fibroin template. Biomed Mater 5:041002

    Article  Google Scholar 

  102. Huang X, Liu X, Liu S et al (2014) Biomineralization regulation by nano-sized features in silk fibroin proteins: synthesis of water-dispersible nano-hydroxyapatite. J Biomed Mater Res B 102:1720–1729

    Article  Google Scholar 

  103. Spoerke ED, Anthony SG, Stupp SI (2009) Enzyme directed templating of artificial bone mineral. Adv Mater 21:425–430

    Article  Google Scholar 

  104. Wang JL, Yang GJ, Wang YF et al (2015) Chimeric protein template-induced shape control of bone mineral nanoparticles and its impact on mesenchymal stem cell fate. Biomacromolecules 16:1987–1996

    Article  Google Scholar 

  105. Ma J, Qin J (2015) Graphene-like zinc substituted hydroxyapatite. Cryst Growth Des 15:1273–1279

    Article  Google Scholar 

  106. Qin J, Zhong Z, Ma J (2016) Biomimetic synthesis of hybrid hydroxyapatite nanoparticles using nanogel template for controlled release of bovine serum albumin. Mater Sci Eng C 62:377–383

    Article  Google Scholar 

  107. Ruan QC, Liberman D, Zhang YZ et al (2016) Assembly of layered monetite-chitosan nanocomposite and its transition to organized hydroxyapatite. ACS Biomater Sci Eng 2:1049–1058

    Article  Google Scholar 

  108. Sugawara A, Yamane S, Akiyoshi K (2006) Nanogel-templated mineralization: polymer-calcium phosphate hybrid nanomaterials. Macromol Rapid Commun 27:441–446

    Article  Google Scholar 

  109. Panzavolta S, Bracci B, Rubini K et al (2011) Optimization of a biomimetic bone cement: role of DCPD. J Inorg Biochem 105:1060–1065

    Article  Google Scholar 

  110. Zhou YZ, Cao Y, Liu W et al (2012) Polydopamine-induced tooth remineralization. ACS Appl Mater Interfaces 4:6900–6909

    Google Scholar 

  111. Ko E, Yang K, Shin J et al (2013) Polydopamine-assisted osteoinductive peptide immobilization of polymer scaffolds for enhanced bone regeneration by human adipose-derived stem cells. Biomacromolecules 14:3202–3213

    Article  Google Scholar 

  112. Kang T, Hua XL, Liang PQ et al (2016) Synergistic reinforcement of polydopamine-coated hydroxyapatite and BMP2 biomimetic peptide on the bioactivity of PMMA-based cement. Compos Sci Technol 123:232–240

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengmin Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Ma, J., Tan, S., Zhang, S. (2018). Biomimetic Ion-Substituted Calcium Phosphates. In: Liu, C., He, H. (eds) Developments and Applications of Calcium Phosphate Bone Cements. Springer Series in Biomaterials Science and Engineering, vol 9. Springer, Singapore. https://doi.org/10.1007/978-981-10-5975-9_8

Download citation

Publish with us

Policies and ethics