Skip to main content

Bioactivation of Calcium Phosphate Cement by Growth Factors and Their Applications

  • Chapter
  • First Online:

Part of the book series: Springer Series in Biomaterials Science and Engineering ((SSBSE,volume 9))

Abstract

Calcium phosphate cement (CPC) scaffold has been widely used as bone graft substitutes. In order to deal with formidable defects in clinic, such as critical-sized bone defects or elderly patients with low regeneration capacity, a recombinant human bone morphogenetic protein-2 (rhBMP-2) was further loaded into CPC scaffold currently. In this chapter, effects of the surface properties, microstructure, and chemical composition on the bioactivity of rhBMP-2 were carried out. The osteogenic activity of CPC/rhBMP-2 in vitro and in vivo and the underlying mechanism were reported. Additionally, the clinical application of this active CPC/rhBMP-2 scaffold was also presented. These findings will provide insightful guide for the design and fabrication of rhBMP-2-based scaffolds/implants and further promote the clinical translation of growth factor-loaded porous scaffolds for bone regeneration.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kuang G-M, Yau WP, Lu WW, Chiu KY (2014) Local application of strontium in a calcium phosphate cement system accelerates healing of soft tissue tendon grafts in anterior cruciate ligament reconstruction experiment using a rabbit model. Am J Sports Med 42:2996–3002

    Article  Google Scholar 

  2. Thormann U, Ray S, Sommer U, ElKhassawna T et al (2013) Bone formation induced by strontium modified calcium phosphate cement in critical-size metaphyseal fracture defects in ovariectomized rats. Biomaterials 34:8589–8598

    Article  Google Scholar 

  3. Dorozhkin SV, Epple M (2002) Biological and medical significance of calcium phosphates. Angew Chem Int Ed 41:3130–3146

    Article  Google Scholar 

  4. Ginebra MP, Traykova T, Planell JA (2006) Calcium phosphate cements as bone drug delivery systems: a review. J Control Release 113:102–110

    Article  Google Scholar 

  5. Guan J, Yang J, Dai J, Qin Y et al (2015) Bioinspired nanostructured hydroxyapatite/collagen three-dimensional porous scaffolds for bone tissue engineering. RSC Adv 5:36175–36184

    Article  Google Scholar 

  6. Wang Y, Ren X, Ma X, Su W et al (2015) Alginate-intervened hydrothermal synthesis of hydroxyapatite nanocrystals with nanopores. Cryst Growth Des 15:1949–1956

    Article  Google Scholar 

  7. Chen F, Lam WM, Lin CJ, Qiu GX et al (2007) Biocompatibility of electrophoretical deposition of nanostructured hydroxyapatite coating on roughen titanium surface: in vitro evaluation using mesenchymal stem cells. J Biomed Mater Res B 82B:183–191

    Article  Google Scholar 

  8. Hu R, Lin CJ, Shi HY (2007) A novel ordered nano hydroxyapatite coating electrochemically deposited on titanium substrate. J Biomed Mater Res A 80A:687–692

    Article  Google Scholar 

  9. Kim SE, Yun Y-P, Shim K-S, Park K et al (2015) Fabrication of a BMP-2-immobilized porous microsphere modified by heparin for bone tissue engineering. Colloid Surf B 134:453–460

    Article  Google Scholar 

  10. Kisiel M, Klar AS, Ventura M, Buijs J et al (2013) Complexation and sequestration of BMP-2 from an ECM mimetic hyaluronan gel for improved bone formation. Plos One 8:e78551

    Article  Google Scholar 

  11. Autefage H, Briand-Mesange F, Cazalbou S, Drouet C et al (2009) Adsorption and release of BMP-2 on nanocrystalline apatite-coated and uncoated hydroxyapatite/beta-tricalcium phosphate porous ceramics. J Biomed Mater Res B 91B:706–715

    Article  Google Scholar 

  12. Yang F, Wang J, Hou J, Guo H et al (2013) Bone regeneration using cell-mediated responsive degradable PEG-based scaffolds incorporating with rhBMP-2. Biomaterials 34:1514–1528

    Article  Google Scholar 

  13. Huang B, Yuan Y, Li T, Ding S et al (2016) Facilitated receptor-recognition and enhanced bioactivity of bone morphogenetic protein-2 on magnesium-substituted hydroxyapatite surface. Sci Rep-UK 6:24323

    Article  Google Scholar 

  14. Huang RL, Chen G, Wang WJ, Herller T et al (2015) Synergy between IL-6 and soluble IL-6 receptor enhances bone morphogenetic protein-2/absorbable collagen sponge-induced bone regeneration via regulation of BMPRIA distribution and degradation. Biomaterials 67:308–322

    Article  Google Scholar 

  15. Huang B, Yuan Y, Ding S, Li J et al (2015) Nanostructured hydroxyapatite surfaces-mediated adsorption alters recognition of BMP receptor IA and bioactivity of bone morphogenetic protein-2. Acta Biomater 27:275–285

    Article  Google Scholar 

  16. Kim S, Kang Y, Krueger CA, Sen M et al (2012) Sequential delivery of BMP-2 and IGF-1 using a chitosan gel with gelatin microspheres enhances early osteoblastic differentiation. Acta Biomater 8:1768–1777

    Article  Google Scholar 

  17. van de Watering FCJ, Molkenboer-Kuenen JDM, Boerman OC, van den Beucken JJJP et al (2012) Differential loading methods for BMP-2 within injectable calcium phosphate cement. J Control Release 164:283–290

    Article  Google Scholar 

  18. Kirsch T, Sebald W, Dreyer MK (2000) Crystal structure of the BMP-2-BRIA ectodomain complex. Nat Struct Biol 7:492–496

    Article  Google Scholar 

  19. Kirsch T, Nickel J, Sebald W (2000) BMP-2 antagonists emerge from alterations in the low-affinity binding epitope for receptor BMPR-II. EMBO J 19:3314–3324

    Article  Google Scholar 

  20. Chandra P, Lee SJ (2015) Synthetic extracellular microenvironment for modulating stem cell behaviors. Biomark Insights 10:105–116

    Google Scholar 

  21. Riau AK, Mondal D, Yam GHF, Setiawan M et al (2015) Surface modification of PMMA to improve adhesion to corneal substitutes in a synthetic core-skirt keratoprosthesis. ACS Appl Mater Interfaces 7:21690–21702

    Article  Google Scholar 

  22. Falconnet D, Csucs G, Grandin HM, Textor M (2006) Surface engineering approaches to micropattern surfaces for cell-based assays. Biomaterials 27:3044–3063

    Article  Google Scholar 

  23. Schwab EH, Pohl TLM, Haraszti T, Schwaerzer GK et al (2015) Nanoscale control of surface immobilized BMP-2: toward a quantitative assessment of BMP-mediated signaling events. Nano Lett 15:1526–1534

    Article  Google Scholar 

  24. Liu X, Li H, Jin Q, Ji J (2014) Surface tailoring of nanoparticles via mixed-charge monolayers and their biomedical applications. Small 10:4230–4242

    Google Scholar 

  25. Roach P, Farrar D, Perry CC (2006) Surface tailoring for controlled protein adsorption effect of topography at the nanometer scale and chemistry. J Am Chem Soc 128:3939–3945

    Article  Google Scholar 

  26. Hassel S, Schmitt S, Hartung A, Roth M et al (2003) Initiation of Smad-dependent and Smad-independent signaling via distinct BMP-receptor complexes. J Bone Joint Surg Am 85A:44–51

    Article  Google Scholar 

  27. Ishida K, Acharya C, Christiansen BA, Yik JHN et al (2013) Cartilage oligomeric matrix protein enhances osteogenesis by directly binding and activating bone morphogenetic protein-2. Bone 55:23–35

    Article  Google Scholar 

  28. Sieber C, Kopf J, Hiepen C, Knaus P (2009) Recent advances in BMP receptor signaling. Cytokine Growth F R 20:343–355

    Article  Google Scholar 

  29. Autefage H, Briand-Mesange F, Cazalbou S, Drouet C et al (2009) Adsorption and release of BMP-2 on nanocrystalline apatite-coated and uncoated hydroxyapatite/beta-tricalcium phosphate porous ceramics. J Biomed Mater Res Part B Appl Biomater 91:706–715

    Article  Google Scholar 

  30. Liu Z, Qu S, Zheng X, Xiong X et al (2014) Effect of polydopamine on the biomimetic mineralization of mussel-inspired calcium phosphate cement in vitro. Mater Sci Eng C Mater Biol Appl 44:44–51

    Article  Google Scholar 

  31. Jing Z, Xiaoyu M, Dan L, Hengsong S et al (2015) Magnesium modification of a calcium phosphate cement alters bone marrow stromal cell behavior via an integrin-mediated mechanism. Biomaterials 53:251–264

    Article  Google Scholar 

  32. Crouzier T, Fourel L, Boudou T, Albiges-Rizo C et al (2011) Presentation of BMP-2 from a soft biopolymeric film unveils its activity on cell adhesion and migration. Adv Mater 23:H111–H118

    Article  Google Scholar 

  33. Khang D, Choi J, Im YM, Kim YJ et al (2012) Role of subnano-, nano- and submicron-surface features on osteoblast differentiation of bone marrow mesenchymal stem cells. Biomaterials 33:5997–6007

    Article  Google Scholar 

  34. Dolatshahi-Pirouz A, Jensen T, Foss M, Chevallier J et al (2009) Enhanced surface activation of fibronectin upon adsorption on hydroxyapatite. Langmuir 25:2971–2978

    Article  Google Scholar 

  35. Boix T, Gomez-Morales J, Torrent-Burgues J, Monfort A et al (2005) Adsorption of recombinant human bone morphogenetic protein rhBMP-2m onto hydroxyapatite. J Inorg Biochem 99:1043–1050

    Article  Google Scholar 

  36. Hollister SJ (2005) Porous scaffold design for tissue engineering. Nat Mater 4:524

    Article  Google Scholar 

  37. Karageorgiou V, Kaplan D (2005) Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26:5491

    Article  Google Scholar 

  38. Yoshizawa S, Brown A, Barchowsky A, Sfeir C (2014) Magnesium ion stimulation of bone marrow stromal cells enhances osteogenic activity, simulating the effect of magnesium alloy degradation. Acta Biomater 10:2834–2842

    Article  Google Scholar 

  39. Zhang J, Ma X, Lin D, Shi H et al (2015) Magnesium modification of a calcium phosphate cement alters bone marrow stromal cell behavior via an integrin-mediated mechanism. Biomaterials 53:251–264

    Article  Google Scholar 

  40. Wu F, Wei J, Guo H, Chen F et al (2008) Self-setting bioactive calcium–magnesium phosphate cement with high strength and degradability for bone regeneration. Acta Biomater 4:1873–1884

    Article  Google Scholar 

  41. Yang CX, Yuan GY, Zhang J, Tang Z et al (2010) Effects of magnesium alloys extracts on adult human bone marrow-derived stromal cell viability and osteogenic differentiation. Biomed Mater 5:045005

    Article  Google Scholar 

  42. Ding S, Zhang J, Tian Y, Huang B et al (2016) Magnesium modification up-regulates the bioactivity of bone morphogenetic protein-2 upon calcium phosphate cement via enhanced BMP receptor recognition and Smad signaling pathway. Colloids Surf B: Biointerfaces 145:140–151

    Article  Google Scholar 

  43. Kopf J, Paarmann P, Hiepen C, Horbelt D et al (2014) BMP growth factor signaling in a biomechanical context. Biofactors 40:171–187

    Article  Google Scholar 

  44. Hartung A, Bitton-Worms K, Rechtman MM, Wenzel V et al (2006) Different routes of bone morphogenic protein (BMP) receptor endocytosis influence BMP signaling. Mol Cell Biol 26:7791–7805

    Article  Google Scholar 

  45. Zhao QH, Qian JC, Zhou HJ, Yuan Y et al (2010) In vitro osteoblast-like and endothelial cells’ response to calcium silicate/calcium phosphate cement. Biomed Mater 5:035004

    Article  Google Scholar 

  46. Guo H, Wei J, Yuan Y, Liu CS (2007) Development of calcium silicate/calcium phosphate cement for bone regeneration. Biomed Mater 2:S153

    Article  Google Scholar 

  47. Crouzier T, Sailhan F, Becquart P, Guillot R et al (2011) The performance of BMP-2 loaded TCP/HAP porous ceramics with a polyelectrolyte multilayer film coating. Biomaterials 32:7543–7554

    Article  Google Scholar 

  48. Zhang J, Zhou HJ, Yang K, Yuan Y et al (2013) RhBMP-2-loaded calcium silicate/calcium phosphate cement scaffold with hierarchically porous structure for enhanced bone tissue regeneration. Biomaterials 34:9381–9392

    Article  Google Scholar 

  49. Oliveira AF, Gemming S, Seifert G (2011) Conformational analysis of aqueous BMP-2 using atomistic molecular dynamics simulations. J Phys Chem B 115:1122–1130

    Article  Google Scholar 

  50. Habibovic P, Sees TM, van den Doel MA, van Blitterswijk CA et al (2006) Osteoinduction by biomaterials – physicochemical and structural influences. J Biomed Mater Res A 77A:747–762

    Article  Google Scholar 

  51. Lim TC, Chian KS, Leong KF (2010) Cryogenic prototyping of chitosan scaffolds with controlled micro and macro architecture and their effect on in vivo neo-vascularization and cellular infiltration. J Biomed Mater Res Part A 94:1303–1311

    Google Scholar 

  52. Guo S, Wang L, Lu A, Lu T et al (2010) Inhibition mechanism of lanthanum ion on the activity of horseradish peroxidase in vitro. Spectrochim Acta A Mol Biomol Spectrosc 75:936–940

    Article  Google Scholar 

  53. Dong X, Wang Q, Wu T, Pan H (2007) Understanding adsorption-desorption dynamics of BMP-2 on hydroxyapatite (001) surface. Biophys J 93:750–759

    Article  Google Scholar 

  54. Visser R, Arrabal PM, Becerra J, Rinas U et al (2009) The effect of an rhBMP-2 absorbable collagen sponge-targeted system on bone formation in vivo. Biomaterials 30:2032–2037

    Article  Google Scholar 

  55. Li B, Yoshii T, Hafeman AE, Nyman JS et al (2009) The effects of rhBMP-2 released from biodegradable polyurethane/microsphere composite scaffolds on new bone formation in rat femora. Biomaterials 30:6768–6779

    Article  Google Scholar 

  56. Dai C, Guo H, Lu J, Shi J et al (2011) Osteogenic evaluation of calcium/magnesium-doped mesoporous silica scaffold with incorporation of rhBMP-2 by synchrotron radiation-based μCT. Biomaterials 32:8506–8517

    Article  Google Scholar 

  57. Hench LL, Polak JM (2002) Third-generation biomedical materials. Science 295:1014–1017

    Article  Google Scholar 

  58. Yuan H, Fernandes H, Habibovic P, de Boer J et al (2010) Osteoinductive ceramics as a synthetic alternative to autologous bone grafting. Proc Natl Acad Sci U S A 107:13614–13619

    Article  Google Scholar 

  59. Tagil M (2014) Bone substitutes, grafts and cement. In: Hove LM, Lindau T, Hølmer P (eds) Distal radius fractures. Springer, Berlin, pp 233–239

    Google Scholar 

  60. Smith CA, Richardson SM, Eagle MJ, Rooney P et al (2015) The use of a novel bone allograft wash process to generate a biocompatible, mechanically stable and osteoinductive biological scaffold for use in bone tissue engineering. J Tissue Eng Regen Med 9:595–604

    Article  Google Scholar 

  61. Dumic-Cule I, Pecina M, Jelic M, Jankolija M et al (2015) Biological aspects of segmental bone defects management. Int Orthop 39:1005–1011

    Article  Google Scholar 

  62. Aponte-Tinao L, Ayerza M, Muscolo DL, Farfalli G (2016) What are the risk factors and management options for infection after reconstruction with massive bone allografts? Clin Orthop Relat Res 474:669–673

    Article  Google Scholar 

  63. Lee I, Chung C, Lee K, Kwon S-S et al (2015) Incidence and risk factors of allograft bone failure after calcaneal lengthening. Clin Orthop Relat Res 473:1765–1774

    Article  Google Scholar 

  64. Yunus Basha R, Sampath Kumar TS, Doble M (2015) Design of biocomposite materials for bone tissue regeneration. Mater Sci Eng C Mater Biol Appl 57:452–463

    Article  Google Scholar 

  65. Tian B, Liu J, Dvir T, Jin L et al (2012) Macroporous nanowire nanoelectronic scaffolds for synthetic tissues. Nat Mater 11:986–994

    Article  Google Scholar 

  66. Kraehenbuehl TP, Langer R, Ferreira LS (2011) Three-dimensional biomaterials for the study of human pluripotent stem cells. Nat Methods 8:731–736

    Article  Google Scholar 

  67. Cancedda R, Giannoni P, Mastrogiacomo M (2007) A tissue engineering approach to bone repair in large animal models and in clinical practice. Biomaterials 28:4240–4250

    Article  Google Scholar 

  68. Shayesteh YS, Khojasteh A, Soleimani M, Alikhasi M et al (2008) Sinus augmentation using human mesenchymal stem cells loaded into a β-tricalcium phosphate/hydroxyapatite scaffold. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 106:203–209

    Article  Google Scholar 

  69. Kokemueller H, Spalthoff S, Nolff M, Tavassol F et al (2010) Prefabrication of vascularized bioartificial bone grafts in vivo for segmental mandibular reconstruction: experimental pilot study in sheep and first clinical application. Int J Oral Maxillofac Surg 39:379–387

    Article  Google Scholar 

  70. Bose S, Tarafder S (2012) Calcium phosphate ceramic systems in growth factor and drug delivery for bone tissue engineering: a review. Acta Biomater 8:1401–1421

    Article  Google Scholar 

  71. Pan W, Li D, Wei Y, Hu Y et al (2013) Tendon-to-bone healing using an injectable calcium phosphate cement combined with bone xenograft/BMP composite. Biomaterials 34:9926–9936

    Article  Google Scholar 

  72. Vallet-Regi M, Ruiz-Hernandez E (2011) Bioceramics: from bone regeneration to cancer nanomedicine. Adv Mater 23:5177–5218

    Article  Google Scholar 

  73. Anderson JM, Patterson JL, Vines JB, Javed A et al (2011) Biphasic peptide amphiphile nanomatrix embedded with hydroxyapatite nanoparticles for stimulated osteoinductive response. ACS Nano 5:9463–9479

    Article  Google Scholar 

  74. Facca S, Cortez C, Mendoza-Palomares C, Messadeq N et al (2010) Active multilayered capsules for in vivo bone formation. Proc Natl Acad Sci U S A 107:3406–3411

    Article  Google Scholar 

  75. Schindeler A, McDonald MM, Bokko P, Little DG (2008) Bone remodeling during fracture repair: the cellular picture. Semin Cell Dev Biol 19:459–466

    Article  Google Scholar 

  76. Hunziker EB, Enggist L, Kuffer A, Buser D et al (2012) Osseointegration: the slow delivery of BMP-2 enhances osteoinductivity. Bone 51:98–106

    Article  Google Scholar 

  77. Li L, Zhou G, Wang Y, Yang G et al (2015) Controlled dual delivery of BMP-2 and dexamethasone by nanoparticle-embedded electrospun nanofibers for the efficient repair of critical-sized rat calvarial defect. Biomaterials 37:218–229

    Article  Google Scholar 

  78. Bessa PC, Casal M, Reis RL (2008) Bone morphogenetic proteins in tissue engineering: the road from laboratory to clinic, part II (BMP delivery). J Tissue Eng Regen Med 2:81–96

    Article  Google Scholar 

  79. Geiger M, Li RH, Friess W (2003) Collagen sponges for bone regeneration with rhBMP-2. Adv Drug Deliv Rev 55:1613–1629

    Article  Google Scholar 

  80. Hsu WK, Wang JC (2008) The use of bone morphogenetic protein in spine fusion. Spine J 8:419–425

    Article  Google Scholar 

  81. Jonkheijm P, Weinrich D, Schroder H, Niemeyer CM et al (2008) Chemical strategies for generating protein biochips. Angew Chem Int Ed 47:9618–9647

    Article  Google Scholar 

  82. Lee JS, Suarez-Gonzalez D, Murphy WL (2011) Mineral coatings for temporally controlled delivery of multiple proteins. Adv Mater 23:4279–4284

    Article  Google Scholar 

  83. Shah NJ, Hyder MN, Moskowitz JS, Quadir MA et al (2013) Surface-mediated bone tissue morphogenesis from tunable nanolayered implant coatings. Sci Transl Med 5:10

    Article  Google Scholar 

  84. Kim RY, Oh JH, Lee BS, Seo YK et al (2014) The effect of dose on rhBMP-2 signaling, delivered via collagen sponge, on osteoclast activation and in vivo bone resorption. Biomaterials 35:1869–1881

    Article  Google Scholar 

  85. Conde MCM, Chisini LA, Demarco FF, Nör JE et al (2015) Stem cell-based pulp tissue engineering: variables enrolled in translation from the bench to the bedside, a systematic review of literature. Int Endod J 49:543–550

    Article  Google Scholar 

  86. Lin D, Zhang J, Bai F, Cao XH et al (2016) Fabrication and clinical application of easy-to-operate pre-cured CPC/rhBMP-2 micro-scaffolds for bone regeneration. Am J Transl Res 8:1379–1396

    Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Basic Research Program of China (973 Program, No. 2012CB933600), the 111 Project (B14018), and the National Natural Science Foundation of China (Nos. 31100679, 31330028, and 31470924).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Yuan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Ma, Y., Huang, B., Lin, D., Yuan, Y., Liu, C. (2018). Bioactivation of Calcium Phosphate Cement by Growth Factors and Their Applications. In: Liu, C., He, H. (eds) Developments and Applications of Calcium Phosphate Bone Cements. Springer Series in Biomaterials Science and Engineering, vol 9. Springer, Singapore. https://doi.org/10.1007/978-981-10-5975-9_6

Download citation

Publish with us

Policies and ethics