Skip to main content

Self-Setting Calcium Orthophosphate (CaPO4) Formulations

  • Chapter
  • First Online:
Developments and Applications of Calcium Phosphate Bone Cements

Part of the book series: Springer Series in Biomaterials Science and Engineering ((SSBSE,volume 9))

Abstract

In the early 1980s, researchers discovered self-setting calcium orthophosphate (CaPO4) cements, which are bioactive and biodegradable grafting bioceramics in the form of a powder and a liquid. After mixing, both phases form pastes of variable viscosity, which set and harden forming most commonly a non-stoichiometric calcium-deficient hydroxyapatite (CDHA) or brushite and rarely monetite with possible admixtures of unreacted compounds. As CDHA, brushite and monetite appear to be biocompatible, bioresorbable, and osteoconductive (therefore, in vivo they can be replaced with a newly forming bone), self-setting CaPO4 formulations come out to be very promising bioceramics for bone grafting. Furthermore, due to their moldability, such formulations possess an easy manipulation and a nearly perfect adaptation to the complex shapes of bone defects, followed by gradual bioresorption and new bone formation, which are additional distinctive advantages. Unfortunately, the mechanical properties of the ordinary self-setting CaPO4 formulations are poor; therefore, reinforced ones have been introduced. The latter might be described as CaPO4 concretes. In addition, porous formulations have been developed. The discovery of self-setting properties opened up a new era in the medical application of CaPO4, and many commercial trademarks have been introduced as a result. Many more formulations are still in experimental stages. Currently such formulations are widely used as synthetic bone grafts, with several advantages, such as moldability, pourability, and injectability. Moreover, their low-temperature setting reactions and intrinsic porosity allow loading by drugs, biomolecules, and even cells for tissue engineering purposes. In this chapter, an insight into the self-setting CaPO4 formulations, as excellent bioceramics suitable for both dental and bone grafting applications, has been provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brinker MR, O’Connor DP (2004) The incidence of fractures and dislocations referred for orthopaedic services in a capitated population. J Bone Joint Surg Am 86A:290–297

    Article  Google Scholar 

  2. Smith ZA, Fessler RG (2012) Paradigm changes in spine surgery – evolution of minimally invasive techniques. Nat Rev Neurol 8:443–450

    Google Scholar 

  3. Glimcher MJ (2006) Bone: nature of the calcium phosphate crystals and cellular, structural, and physical chemical mechanisms in their formation. Rev Mineral Geochem 64:223–282

    Article  Google Scholar 

  4. Bohner M (2000) Calcium orthophosphates in medicine: from ceramics to calcium phosphate cements. Injury 31(Suppl 4):S-D37–S-D47

    Article  Google Scholar 

  5. Bohner M (2001a) Physical and chemical aspects of calcium phosphates used in spinal surgery. Eur Spine J 10:S114–S121

    Article  Google Scholar 

  6. Dorozhkin SV (2013a) Self-Setting calcium orthophosphate formulations. J Funct Biomater 4:209–311

    Article  Google Scholar 

  7. Dorozhkin SV (2016a) Calcium orthophosphates (CaPO4): occurrence and properties. Prog Biomater 5:9–70

    Article  Google Scholar 

  8. Dorozhkin SV (2012a) Calcium orthophosphates and human beings A historical perspective from the 1770s until 1940. Biomatter 2:53–70

    Article  Google Scholar 

  9. Dorozhkin SV (2013b) A detailed history of calcium orthophosphates from 1770-s till 1950. Mater Sci Eng C 33:3085–3110

    Article  Google Scholar 

  10. Kingery WD II (1950) Cold setting properties. J Am Ceram Soc 33:242–246

    Article  Google Scholar 

  11. Driskell TD, Heller AL, Koenigs JF (1975) Dental treatments. US Patent No 3913229, Oct 21

    Google Scholar 

  12. Monma H, Kanazawa T (1976) The hydration of α-tricalcium phosphate. J Ceram Soc Jpn 84:209–213

    Google Scholar 

  13. LeGeros RZ, Chohayeb A, Shulman A (1982) Apatitic calcium phosphates: possible dental restorative materials. J Dent Res 61(Spec Iss):343

    Google Scholar 

  14. Brown WE, Chow LC (1983) A new calcium phosphate setting cement. J Dent Res 62(Spec Iss):672

    Google Scholar 

  15. Brown WE, Chow LC (1986) A new calcium phosphate water-setting cement. In: Brown PW (ed) Cements research progress. Westerville, American Ceramic Society

    Google Scholar 

  16. Brown WE, Chow LC (1985) Dental restorative cement pastes. US Patent No 4518430, May 21

    Google Scholar 

  17. Gruninger SE, Siew C, Chow LC, O’Young A, Tsao NK, Brown WE (1984) Evaluation of the biocompatibility of a new calcium phosphate setting cement. J Dent Res 63(Spec Iss):200

    Google Scholar 

  18. Cheng HC, Chu KT, Teng NC, Tsai HL, Ou KL, Ou SF (2014) The effect of pH value on phase transformation of calcium phosphate cement. Int J Appl Ceram Technol 11:364–370

    Article  Google Scholar 

  19. Driessens FCM, Planell JA, Gil FJ (1995) Calcium phosphate bone cements. In: Wise DL, Trantolo DJ, Altobelli DE, Yaszemski MJ, Gresser JD, Schwarz ER (eds) Encyclopedic handbook of biomaterials and bioengineering, part B, applications. Marcel Dekker, New York

    Google Scholar 

  20. Tofighi A (2012) Calcium phosphate bone cement (CPBC): development, commercialization and future challenges. Key Eng Mater 493–494:349–354

    Google Scholar 

  21. Schumache M, Henß A, Rohnke M, Gelinsky MA (2013) novel and easy-to-prepare strontium (II) modified calcium phosphate bone cement with enhanced mechanical properties. Acta Biomater 9:7536–7544

    Article  Google Scholar 

  22. Bolarinwa A, Gbureck U, Purnell P, Bold M, Grover LM (2010) Cement casting of calcium pyrophosphate based bioceramics. Adv Appl Ceram 109:291–295

    Article  Google Scholar 

  23. Grover LM, Wright AJ, Gbureck U, Bolarinwa A, Song J, Liu Y, Farrar DF, Howling G, Rose J, Barralet JE (2013) The effect of amorphous pyrophosphate on calcium phosphate cement resorption and bone generation. Biomaterials 34:6631–6637

    Article  Google Scholar 

  24. Schmitz JP, Hollinger JO, Milan SB (1999) Reconstruction of bone using calcium phosphate bone cements: a critical review. J Oral Maxillofac Surg 57:1122–1126

    Article  Google Scholar 

  25. Espanol M, Perez RA, Montufar EB, Marichal C, Sacco A, Ginebra MP (2009) Intrinsic porosity of calcium phosphate cements and its significance for drug delivery and tissue engineering applications. Acta Biomater 5:2752–2762

    Article  Google Scholar 

  26. Cardoso HAI, Motisuke M, Zavaglia CAC (2012a) The influence of three additives on the setting reaction kinetics and mechanical strength evolution of α-tricalcium phosphate cements. Key Eng Mater 493–494:397–402

    Google Scholar 

  27. Vieira RS, Coelho WT, Thürmer MB, Fernandes JM, Santos LA (2012) Evaluation of α-tricalcium phosphate cement obtained at different temperatures. Mater Sci Forum 727–728:1187–1192

    Article  Google Scholar 

  28. Varma NP, Garai S, Sinha A (2012) Synthesis of injectable and cohesive nano hydroxyapatite scaffolds. J Mater Sci Mater Med 23:913–919

    Article  Google Scholar 

  29. Rabiee SM (2013) Development of hydroxyapatite bone cement for controlled drug release via tetracycline hydrochloride. Bull Mater Sci 36:171–174

    Article  Google Scholar 

  30. Matsuya S, Maruta M, Tsuru K, Ishikawa K (2013) Preparation of carbonate apatite cement based on α-TCP. Key Eng Mater 529–530:197–201

    Google Scholar 

  31. Cahyanto A, Maruta M, Tsuru K, Matsuya S, Ishikawa K (2013a) Basic properties of carbonate apatite cement consisting of vaterite and dicalcium phosphate anhydrous. Key Eng Mater 529–530:192–196

    Google Scholar 

  32. Boroujeni NM, Zhou H, Luchini TJF, Bhaduri SB (2013) Development of multi-walled carbon nanotubes reinforced monetite bionanocomposite cements for orthopedic applications. Mater Sci Eng C 33:4323–4330

    Article  Google Scholar 

  33. Chen SY, Ou SF, Teng NC, Kung CM, Tsai HL, Chu KT, Ou KL (2013a) Phase transformation on bone cement: monocalcium phosphate monohydrate into calcium-deficient hydroxyapatite during setting. Ceram Int 39:2451–2455

    Article  Google Scholar 

  34. Sariibrahimoglu K, Wolke JGC, Leeuwenburgh SCG, Jansen JA (2013) Characterization of α/β-TCP based injectable calcium phosphate cement as a potential bone substitute. Key Eng Mater 529–530:157–160

    Google Scholar 

  35. Sariibrahimoglu K, Wolke JGC, Leeuwenburgh SCG, Yubao L, Jansen JA (2014) Injectable biphasic calcium phosphate cements as a potential bone substitute. J Biomed Mater Res B Appl Biomater 102B:415–422

    Article  Google Scholar 

  36. Cahyanto A, Maruta M, Tsuru K, Matsuya S, Ishikawa K (2015) Fabrication of bone cement that fully transforms to carbonate apatite. Dent Mater J 34:394–401

    Article  Google Scholar 

  37. Gallinetti S, Canal C, Ginebra MP (2014) Development and characterization of biphasic hydroxyapatite/β-TCP cements. J Am Ceram Soc 97:1065–1073

    Article  Google Scholar 

  38. Zhou H, Luchini TJ, Agarwal AK, Goel VK, Bhaduri SB (2014) Development of monetite–nanosilica bone cement: a preliminary study. J Biomed Mater Res B Appl Biomater 102B:1620–1626

    Article  Google Scholar 

  39. Irbe Z, Loca D, Bistrova I, Berzina-Cimdina L (2014a) Calcium phosphate bone cements reinforced with biodegradable polymer fibres for drug delivery. Key Eng Mater 604:184–187

    Article  Google Scholar 

  40. Chen CK, Ju CP, Lin JHC (2012a) Setting solution concentration effect on properties of a TTCP/DCPA-derived calcium phosphate cement. J Mater Sci Mater Med 23:2109–2114

    Article  Google Scholar 

  41. Bajpai P, Fuchs C, McCullum D (1987) Development of tricalcium orthophosphate ceramic cement. In: Lemons J (ed) Quantitative characterization and performance of porous implants for hard tissue applications. ASTM STP 953 Am Soc Test Mater, Philadelphia

    Google Scholar 

  42. Bohner M, Lemaître J, Ring TA (1996) Effects of sulfate, pyrophosphate and citrate ions on the physiochemical properties of cements made of β-tricalcium phosphate – phosphoric acid – water mixtures. J Am Ceram Soc 79:1427–1434

    Article  Google Scholar 

  43. Bohner M, van Landuyt P, Merkle HP, Lemaître J (1997a) Composition effects on the pH of a hydraulic calcium orthophosphate cement. J Mater Sci Mater Med 8:675–681

    Article  Google Scholar 

  44. Desai TR, Bhaduri SB, Tas AC (2007) A self-setting, monetite (CaHPO4) cement for skeletal repair. In: Lara-Curzio E, Mizuno M, Wereszczak A (eds) Advances in bioceramics and biocomposites II, ceramic engineering and science proceedings. Wiley, Hoboken, pp 61–69

    Google Scholar 

  45. Grover LM, Hofmann MP, Gbureck U, Kumarasami B, Barralet JE (2008) Frozen delivery of brushite calcium phosphate cements. Acta Biomater 4:1916–1923

    Article  Google Scholar 

  46. Komlev VS, Fadeeva IV, Barinov SM, Rau JV, Fosca M, Gurin AN, Gurin NA (2012) Phase development during setting and hardening of a bone cement based on α-tricalcium and octacalcium phosphates. J Biomater Appl 26:1051–1068

    Article  Google Scholar 

  47. Tonoli MS, Beppu MM (2014) In situ X-ray diffraction study of phase development during hardening of β-tricalcium phosphate bone cements with chitosan. Key Eng Mater 587:109–114

    Article  Google Scholar 

  48. Otsuka Y, Takeuchi M, Otsuka M, Ben-Nissan B, Grossin D, Tanaka H (2015) Effect of carbon dioxide on self-setting apatite cement formation from tetracalcium phosphate and dicalcium phosphate dehydrate: ATR-IR and chemoinformatics analysis. Colloid Polym Sci 293:2781–2788

    Article  Google Scholar 

  49. Gbureck U, Barralet JE, Spatz K, Grover LM, Thull R (2004a) Ionic modification of calcium phosphate cement viscosity Part I: hypodermic injection and strength improvement of apatite cement. Biomaterials 25:2187–2195

    Article  Google Scholar 

  50. Cama G, Barberis F, Capurro M, di Silvio L, Deb S (2011) Tailoring brushite for in situ setting bone cements. Mater Chem Phys 130:1139–1145

    Article  Google Scholar 

  51. Generosi A, Rau JV, Komlev VS, Albertini VR, Fedotov AY, Barinov SM (2010) Anomalous hardening behavior of a calcium phosphate bone cement. J Phys Chem B 114:973–979

    Article  Google Scholar 

  52. Rau JV, Generosi A, Komlev VS, Fosca M, Barinov SM, Albertini VR (2010) Real-time monitoring of the mechanism of poorly crystalline apatite cement conversion in the presence of chitosan, simulated body fluid and human blood. Dalton Trans 21:11412–11423

    Article  Google Scholar 

  53. Fosca M, Komlev VS, Fedotov AY, Caminiti R, Rau JV (2012) Structural study of octacalcium phosphate bone cement conversion in vitro. ACS Appl Mater Interfaces 4:202–6210

    Article  Google Scholar 

  54. Smirnov VV, Rau JV, Generosi A, Albertini VR, Ferro D, Barinov SM (2010) Elucidation of real-time hardening mechanisms of two novel high-strength calcium phosphate bone cements. J Biomed Mater Res B Appl Biomater 93B:74–83

    Google Scholar 

  55. Paduraru GD, Aelenei N, Luca D, Cimpoeşu N (2011) New brushite cements analysis. Optoelectron Adv Mater Rapid Comm 5:465–468

    Google Scholar 

  56. Driessens FCM, Boltong MG, Khairoun I, de Maeyer EAP, Ginebra MP, Wenz R, Planell JA, Verbeeck RMH (2000a) Applied aspects of calcium phosphate bone cement. In: Wise DL, Trantolo DJ, Lewandrowski KU, Gresser JD, Cattaneo MV (eds) Biomaterials engineering and devices: human applications. Humana Press, Totowa, pp 253–260

    Chapter  Google Scholar 

  57. Driessens FCM, Planell JA, Boltong MG, Khairoun I, Ginebra MP (1998) Osteotransductive bone cements. Proc Inst Mech Eng H: J Eng Med 212:427–435

    Article  Google Scholar 

  58. Frankenburg EP, Goldstein SA, Bauer TW, Harris SA, Poser RD (1998) Biomechanical and histological evaluation of a calcium phosphate cement. J Bone Joint Surg Am 80A:1112–1124

    Article  Google Scholar 

  59. Frayssinet P, Gineste L, Conte P, Fages J, Rouquet N (1998) Short-term implantation effects of a DCPD-based calcium phosphate cement. Biomaterials 19:971–977

    Article  Google Scholar 

  60. Rey C, Tofighi A, Mounic S, Combes C, Lee D (2002) Biomimetism and calcium phosphate cements. In: Mainard D, Louis JP (eds) Actualités en Biomatériaux. Editions Romilla, Paris, pp 27–37

    Google Scholar 

  61. Combes C, Bareille R, Rey C (2006) Calcium carbonate-calcium phosphate mixed cement compositions for bone reconstruction. J Biomed Mater Res A 79A:318–328

    Article  Google Scholar 

  62. Ikenaga M, Hardouin P, Lemaître J, Andrianjatovo H, Flautre B (1998) Biomechanical characterization of a biodegradable calcium phosphate hydraulic cement: a comparison with porous biphasic calcium phosphate ceramics. J Biomed Mater Res 40:139–144

    Article  Google Scholar 

  63. Ginebra MP, Traykova T, Planell JA (2006a) Calcium phosphate cements: competitive drug carriers for the musculoskeletal system? Biomaterials 27:2171–2177

    Article  Google Scholar 

  64. Ginebra MP, Traykova T, Planell JA (2006b) Calcium phosphate cements as bone drug delivery systems: a review. J Control Release 113:102–110

    Article  Google Scholar 

  65. Bohner M (2004) Hydraulic cements based on α-tricalcium phosphate – calcium sulfate dihydrate mixtures. Biomaterials 25:741–749

    Article  Google Scholar 

  66. Fernández E, Vlad MD, Gel M, Lopez J, Torres R, Cauich JV, Bohner M (2005a) Modulation of porosity in apatitic cements by the use of α-tricalcium phosphate – calcium sulphate dihydrate mixtures. Biomaterials 26:3395–3404

    Article  Google Scholar 

  67. Hu G, Xiao L, Fu H, Bi D, Ma H, Tong P (2010a) Degradable and bioactive scaffold of calcium phosphate and calcium sulphate from self-setting cement for bone regeneration. J Porous Mater 17:605–613

    Article  Google Scholar 

  68. Hu G, Xiao L, Fu H, Bi D, Ma H, Tong P (2010b) Study on injectable and degradable cement of calcium sulphate and calcium phosphate for bone repair. J Mater Sci Mater Med 21:627–634

    Article  Google Scholar 

  69. Nilsson M, Fernández E, Sarda S, Lidgren L, Planell JA (2002a) Characterization of a novel calcium phosphate/sulphate bone cement. J Biomed Mater Res 61:600–607

    Article  Google Scholar 

  70. Vlad MD, Şindilar EV, Mariñoso ML, Poeatǎ I, Torres R, López J, Barracó M, Fernández E (2010) Osteogenic biphasic calcium sulphate dihydrate/iron-modified α-tricalcium phosphate bone cement for spinal applications: in vivo study. Acta Biomater 6:607–616

    Article  Google Scholar 

  71. Ju CP, Hung SH, Chen CK, Chen WL, Lee JW, Lin RM, Chen WC, Chern JHL (2011) Immersion-induced changes in structure and properties of a TTCP/DCPA/CSH cement. Mater Chem Phys 130:303–308

    Article  Google Scholar 

  72. Zhou W, Xue Y, Ji X, Yin G, Zhang N, Ren Y (2011) A novel injectable and degradable calcium phosphate/calcium sulfate bone cement. African J Biotechnol 10:19449–19457

    Article  Google Scholar 

  73. Lin JHC, Hung SH, Chen WL, Chen CK, Lin JL, Ju CP (2012) Properties of TTCP/DCPA/CSH cement immersed in Hanks’ solution. J Med Biol Eng 32:201–204

    Article  Google Scholar 

  74. Zima A, Paszkiewicz Z, Siek D, Czechowska J, Ślósarczyk A (2012) Study on the new bone cement based on calcium sulfate and Mg, CO3 doped hydroxyapatite. Ceram Int 38:4935–4942

    Article  Google Scholar 

  75. Grover LM, Gbureck U, Wright AJ, Tremaynec M, Barralet JE (2006a) Biologically mediated resorption of brushite cement in vitro. Biomaterials 27:2178–2185

    Article  Google Scholar 

  76. Grover LM, Gbureck U, Wright AJ, Barralet JE (2005a) Cement formulations in the calcium phosphate H2O – H3PO4 – H4P2O7 system. J Am Ceram Soc 88:3096–3103

    Article  Google Scholar 

  77. Grover LM, Gbureck U, Young AM, Wright AJ, Barralet JE (2005b) Temperature dependent setting kinetics and mechanical properties of β-TCP – pyrophosphoric acid bone cement. J Mater Chem 46:4955–4962

    Article  Google Scholar 

  78. Oh KS, Jeong YK, Yu JP, Chae SK, Kim HY, Lee HY, Jeun SS (2005) Preparation and in vivo studies of β-TCP based bone cement containing polyphosphate. Key Eng Mater 284–286:93–96

    Article  Google Scholar 

  79. Lilley KJ, Gbureck U, Wright AJ, Knowles JC, Farrar DF, Barralet JE (2007) Brushite cements from polyphosphoric acid, calcium phosphate systems. J Am Ceram Soc 90:1892–1898

    Article  Google Scholar 

  80. Fernández E, Planell JA, Best SM (1999a) Precipitation of carbonated apatite in the cement system α-Ca3(PO4)2 – Ca(H2PO4)2 – CaCO3. J Biomed Mater Res 47:466–471

    Article  Google Scholar 

  81. Calafiori AR, di Marco G, Martino G, Marotta M (2007) Preparation and characterization of calcium phosphate biomaterials. J Mater Sci Mater Med 18:2331–2338

    Article  Google Scholar 

  82. Kon M, Hirakata LM, Miyamoto Y, Kasahara H, Asaoka K (2005) Strengthening of calcium phosphate cement by compounding calcium carbonate whiskers. Dent Mater J 24:104–110

    Article  Google Scholar 

  83. Qu Y, Yang Y, Li J, Chen Z, Li J, Tang K, Man Y (2011) Preliminary evaluation of a novel strong/osteoinductive calcium phosphate cement. J Biomater Appl 26:311–325

    Article  Google Scholar 

  84. Serraj S, Michailesco P, Margerit J, Bernard B, Boudeville P (2002) Study of a hydraulic calcium phosphate cement for dental applications. J Mater Sci Mater Med 13:125–131

    Article  Google Scholar 

  85. Nurit L, Margerit J, Terol A, Boudeville P (2002) pH-metric study of the setting reaction of monocalcium phosphate monohydrate/calcium oxide-based cements. J Mater Sci Mater Med 13:1007–1014

    Article  Google Scholar 

  86. Boudeville P, Serraj S, Leloup JM, Margerit J, Pauvert B, Terol A (1999) Physical properties and self-setting mechanism of calcium phosphate cements from calcium bis-dihydrogenophosphate monohydrate and calcium oxide. J Mater Sci Mater Med 10:99–109

    Article  Google Scholar 

  87. Michaïlesco P, Kouassi M, Briak HE, Armynot A, Boudeville P (2005) Antimicrobial activity and tightness of a DCPD – CaO-based hydraulic calcium phosphate cement for root canal filling. J Biomed Mater Res B Appl Biomater 74B:760–767

    Article  Google Scholar 

  88. Briak HE, Durand D, Nurit J, Munier S, Pauvert B, Boudeville P (2002) Study of a hydraulic dicalcium phosphate dihydrate/calcium oxide-based cement for dental applications. J Biomed Mater Res Appl Biomater 63:447–453

    Article  Google Scholar 

  89. Briak HE, Durand D, Boudeville P (2008) Study of a hydraulic DCPA/CaO-based cement for dental applications. J Mater Sci Mater Med 19:737–744

    Article  Google Scholar 

  90. Takagi S, Chow LC, Ishikawa K (1998) Formation of hydroxyapatite in new calcium phosphate cements. Biomaterials 19:1593–1599

    Article  Google Scholar 

  91. Yang Q, Troczynski T, Liu DM (2002) Influence of apatite seeds on the synthesis of calcium phosphate cement. Biomaterials 23:2751–2760

    Article  Google Scholar 

  92. Hsu HC, Chiu CY, Tuan WH, Lee HY (2008) Structural stability of calcium phosphate cement during aging in water. Mater Sci Eng C 28:429–433

    Article  Google Scholar 

  93. Roemhildt ML, McGee TD, Wagner SD (2003) Novel calcium phosphate composite bone cement, strength and bonding properties. J Mater Sci Mater Med 14:137–141

    Article  Google Scholar 

  94. Roemhildt ML, Wagner SD, McGee TD (2006) Characterization of a novel calcium phosphate composite bone cement: flow, setting, and aging properties. J Mater Sci Mater Med 17:1127–1132

    Article  Google Scholar 

  95. Wang X, Ye J, Wang Y, Chen L (2007a) Self-setting properties of a β-dicalcium silicate reinforced calcium phosphate cement. J Biomed Mater Res B Appl Biomater 82B:93–99

    Article  Google Scholar 

  96. Huan Z, Chang J (2007) Novel tricalcium silicate/monocalcium phosphate monohydrate composite bone cement. J Biomed Mater Res B Appl Biomater 82B:352–359

    Article  Google Scholar 

  97. Huan Z, Chang J (2009a) Calcium-phosphate-silicate composite bone cement, self-setting properties and in vitro bioactivity. J Mater Sci Mater Med 20:833–841

    Article  Google Scholar 

  98. Huan Z, Chang J (2009b) Novel bioactive composite bone cements based on the β-tricalcium phosphate – monocalcium phosphate monohydrate composite cement system. Acta Biomater 5:1253–1264

    Article  Google Scholar 

  99. Shen Q, Sun J, Wu J, Liu C, Chen F (2010) An in vitro investigation of the mechanical-chemical and biological properties of calcium phosphate/calcium silicate/bismutite cement for dental pulp capping. J Biomed Mater Res B Appl Biomater 94:141–148

    Google Scholar 

  100. Morejón-Alonso L, Ferreira OJB, Carrodeguas RG, dos Santos LA (2012) Bioactive composite bone cement based on α-tricalcium phosphate/tricalcium silicate. J Biomed Mater Res B Appl Biomater 100B:94–102

    Article  Google Scholar 

  101. Zhou S, Ma J, Shen Y, Haapasalo M, Ruse ND, Yang Q, Troczynski T (2013) In vitro studies of calcium phosphate silicate bone. J Mater Sci Mater Med 24:355–364

    Article  Google Scholar 

  102. de Aza PN, Zuleta F, Velasquez P, Vicente-Salar N, Reig JA (2014) α′H -Dicalcium silicate bone cement doped with tricalcium phosphate: characterization, bioactivity and biocompatibility. J Mater Sci Mater Med 25:445–452

    Article  Google Scholar 

  103. Kent NW, Hill RG, Karpukhina N (2016) A new way of forming a calcium phosphate cement using bioactive glasses as a reactive precursor. Mater Lett 162:32–36

    Article  Google Scholar 

  104. Guo D, Xu K, Zhao X, Han Y (2005) Development of a strontium-containing hydroxyapatite bone cement. Biomaterials 26:4073–4083

    Article  Google Scholar 

  105. Wang X, Ye J (2008) Variation of crystal structure of hydroxyapatite in calcium phosphate cement by the substitution of strontium ions. J Mater Sci Mater Med 19:1183–1186

    Article  Google Scholar 

  106. Pina S, Torres PM, Goetz-Neunhoeffer F, Neubauer J, Ferreira JMF (2010a) Newly developed Sr-substituted α-TCP bone cements. Acta Biomater 6:928–935

    Article  Google Scholar 

  107. Pina S, Torres PMC, Ferreira JMF (2010b) Injectability of brushite-forming Mg-substituted and Sr-substituted α-TCP bone cements. J Mater Sci Mater Med 21:431–438

    Article  Google Scholar 

  108. Wu F, Su JC, Wei J, Guo H, Liu CS (2008a) Injectable bioactive calcium-magnesium phosphate cement for bone regeneration. Biomed Mater 3:044105. (7 pages)

    Article  Google Scholar 

  109. Wu F, Wei J, Guo H, Chen FP, Hong H, Liu CS (2008b) Self-setting bioactive calcium-magnesium phosphate cement with high strength and degradability for bone regeneration. Acta Biomater 4:1873–1884

    Article  Google Scholar 

  110. Pina S, Olhero SM, Gheduzzi S, Miles AW, Ferreira JMF (2009) Influence of setting liquid composition and liquid-to-powder ratio on properties of a Mg-substituted calcium phosphate cement. Acta Biomater 5:1233–1240

    Article  Google Scholar 

  111. Klammert U, Reuther T, Blank M, Reske I, Barralet JE, Grover LM, Kübler AC, Gbureck U (2010) Phase composition, mechanical performance and in vitro biocompatibility of hydraulic setting calcium magnesium phosphate cement. Acta Biomater 6:1529–1535

    Article  Google Scholar 

  112. Alkhraisat MH, Cabrejos-Azama J, Rodríguez CR, Jerez LB, Cabarcos EL (2013) Magnesium substitution in brushite cements. Mater Sci Eng C 33:475–481

    Article  Google Scholar 

  113. Jia J, Zhou H, Wei J, Jiang X, Hua H, Chen F, Wei S, Shin JW, Liu C (2010) Development of magnesium calcium phosphate biocement for bone regeneration. J Royal Soc Interf 7:1171–1180

    Article  Google Scholar 

  114. Lu J, Wei J, Yan Y, Li H, Jia J, Wei S, Guo H, Xiao T, Liu C (2011) Preparation and preliminary cytocompatibility of magnesium doped apatite cement with degradability for bone regeneration. J Mater Sci Mater Med 22:607–615

    Article  Google Scholar 

  115. Pina S, Vieira SI, Rego P, Torres PMC, da Cruz E Silva OAB, da Cruz E Silva EF, Ferreira JMF (2010c) Biological responses of brushite-forming Zn- and ZnSr- substituted beta-tricalcium phosphate bone cements. Eur Cell Mater 20:162–177

    Article  Google Scholar 

  116. Pina S, Vieira SI, Torres PMC, Goetz-Neunhoeffer F, Neubauer J, da Cruz E Silva OAB, da Cruz E Silva EF, Ferreira JMF (2010d) In vitro performance assessment of new brushite-forming Zn- and ZnSr-substituted β-TCP bone cements. J Biomed Mater Res B Appl Biomater 94B:414–420

    Google Scholar 

  117. Doi Y, Shimizu Y, Moriwaki Y, Aga M, Iwanaga H, Shibutani T, Yamamoto K, Iwayama Y (2001) Development of a new calcium phosphate cement that contains sodium calcium phosphate. Biomaterials 22:847–854

    Article  Google Scholar 

  118. Gbureck U, Knappe O, Grover LM, Barralet JE (2005a) Antimicrobial potency of alkali ion substituted calcium phosphate cements. Biomaterials 26:6880–6886

    Article  Google Scholar 

  119. Gbureck U, Thull R, Barralet JE (2005b) Alkali ion substituted calcium phosphate cement formation from mechanically activated reactants. J Mater Sci Mater Med 16:423–427

    Article  Google Scholar 

  120. Dombrowski F, Hoffmann R, Ploska U, Marx H, Berger G (2012a) Investigations on degradable and figuline calcium alkaline phosphate cements with multimodal particle size distribution. Key Eng Mater 493–494:355–360

    Google Scholar 

  121. Dombrowski F, Marx H, Ploska U, Nicolaides D, Stiller M, Knabe C, Berger G (2012b) Solubility and ingrowth behaviour of degradable and figuline calcium alkaline phosphate cements. Key Eng Mater 493–494:387–390

    Google Scholar 

  122. Tanaka M, Takemoto M, Fujibayashi S, Kawai T, Tsukanaka M, Takami K, Motojima S, Inoue H, Nakamura T, Matsuda S (2014) Development of a novel calcium phosphate cement composed mainly of calcium sodium phosphate with high osteoconductivity. J Mater Sci Mater Med 25:1505–1517

    Article  Google Scholar 

  123. Lilley J, Gbureck U, Knowles JC, Farrar DF, Barralet JE (2005a) Cement from magnesium substituted hydroxyapatite. J Mater Sci Mater Med 16:455–460

    Article  Google Scholar 

  124. Ni GX, Lu WW, Tang B, Ngan AHW, Chiu KY, Cheung KMC, Li ZY, Luk KDK (2007) Effect of weight-bearing on bone-bonding behavior of strontium-containing hydroxyapatite bone cement. J Biomed Mater Res A 83A:570–576

    Article  Google Scholar 

  125. Alkhraisat MH, Mariño FT, Rodríguez CR, Jerez LB, Cabarcos EL (2008) Combined effect of strontium and pyrophosphate on the properties of brushite cements. Acta Biomater 4:664–670

    Article  Google Scholar 

  126. Yao ZP, Liu WG, Ni GX (2008) Biology characteristics and clinical application of strontium substituted hydroxyapatite bone cement. J Clin Rehabil Tissue Eng Res 12:7151–7154

    Google Scholar 

  127. Pina S, Ferreira JMF (2010) Brushite-forming Mg-, Zn- and Sr-substituted bone cements for clinical applications. Materials 3:519–535

    Article  Google Scholar 

  128. Ni GX, Lin JH, Chiu PKY, Li ZY, Lu WW (2010) Effect of strontium-containing hydroxyapatite bone cement on bone remodeling following hip replacement. J Mater Sci Mater Med 21:377–384

    Article  Google Scholar 

  129. Fadeeva IV, Barinov SM, Komlev VS, Fedotov DA, Durisin J, Medvecky L (2004) Apatite formation in the reaction-setting mixture of Ca(OH)2 – KH2PO4 system. J Biomed Mater Res A 70A:303–308

    Article  Google Scholar 

  130. Tas AC (2008a) Use of vaterite and calcite in forming calcium phosphate cement scaffolds. Ceram Eng Sci Proc 28:135–150

    Google Scholar 

  131. Boroujeni NM, Zhou H, Luchini TJF, Bhaduri SB (2014) Development of monetite/phosphorylated chitosan composite bone cement. J Biomed Mater Res B Appl Biomater 102B:260–266

    Article  Google Scholar 

  132. Cahyanto A, Tsuru K, Ishikawa K (2013b) Carbonate apatite formation during the setting reaction of apatite cement. Ceram Eng Sci Proc 33:7–10

    Google Scholar 

  133. Fernández E, Vlad MD, Hamcerencu M, Darie A, Torres R, Lopez J (2005b) Effect of iron on the setting properties of α-TCP bone cements. J Mater Sci 40:3677–3682

    Article  Google Scholar 

  134. Vlad MD, del Valle LJ, Poeata I, Barracó M, López J, Torres R, Fernández E (2008) Injectable iron-modified apatitic bone cement intended for kyphoplasty, cytocompatibility study. J Mater Sci Mater Med 19:3575–3583

    Article  Google Scholar 

  135. http://enwikipediaorg/wiki/Cement. Accessed in Dec 2016

    Google Scholar 

  136. Chow LC (2009) Next generation calcium phosphate-based biomaterials. Dent Mater J 28:1–10

    Article  Google Scholar 

  137. Ishikawa K (2010) Bone substitute fabrication based on dissolution-precipitation reactions. Materials 3:1138–1155

    Article  Google Scholar 

  138. Burguera EF, Xu HHK, Weir MD (2006) Injectable and rapid-setting calcium phosphate bone cement with dicalcium phosphate dehydrate. J Biomed Mater Res B Appl Biomater 77B:126–134

    Article  Google Scholar 

  139. Burguera EF, Guitian F, Chow LC (2004) A water setting tetracalcium phosphate-dicalcium phosphate dihydrate cement. J Biomed Mater Res A 71A:275–282

    Article  Google Scholar 

  140. Kim SY, Jeon SH (2012) Setting properties, mechanical strength and in vivo evaluation of calcium phosphate-based bone cements. J Ind Eng Chem 18:128–136

    Article  Google Scholar 

  141. Driessens FCM, Boltong MG, Bermudez O, Planell JA (1993) Formulation and setting times of some calcium orthophosphate cements, a pilot study. J Mater Sci Mater Med 4:503–508

    Article  Google Scholar 

  142. Chow LC, Markovic M, Takagi S (1998) Calcium phosphate cements. In: Struble LJ (ed) Cements research progress. American Ceramic Society, Westerville, pp 215–238

    Google Scholar 

  143. Driessens FCM, Boltong MG, Bermudez O, Planell JA, Ginebra MP, Fernández E (1994) Effective formulations for the preparation of calcium phosphate bone cements. J Mater Sci Mater Med 5:164–170

    Article  Google Scholar 

  144. Kurashina K, Hirano M, Kotani A, Klein CPAT, de Groot K (1997) In vivo study of calcium phosphate cements, implantation of an α-tricalcium phosphate/dicalcium phosphate dibasic/tetracalcium phosphate monoxide cement paste. Biomaterials 18:539–543

    Article  Google Scholar 

  145. Friedman CD, Costantino PD, Takagi S, Chow LC (1998) BoneSource hydroxyapatite cement, a novel biomaterial for craniofacial skeletal tissue engineering and reconstruction. J Biomed Mater Res 43:428–432

    Article  Google Scholar 

  146. Khairoun I, Boltong MG, Driessens FCM, Planell JA (1997) Effect of calcium carbonate on the compliance of apatitic calcium phosphate bone cement. Biomaterials 18:1535–1539

    Article  Google Scholar 

  147. Fernández E, Gil FJ, Best SM, Ginebra MP, Driessens FCM, Planell JA (1998a) Improvement of the mechanical properties of new calcium phosphate bone cements in the CaHPO4 – α-Ca3(PO4)2 system, compressive strength and microstructural development. J Biomed Mater Res 41:560–567

    Article  Google Scholar 

  148. Fukase Y, Eanes ED, Takagi S, Chow LC, Brown WE (1990) Setting reactions and compressive strengths of calcium phosphate cements. J Dent Res 69:1852–1856

    Article  Google Scholar 

  149. Xie L, Monroe EA (1991) Calcium phosphate dental cements. Mat Res Soc Symp Proc 179:25–39

    Article  Google Scholar 

  150. Ishikawa K, Miyamoto Y, Kon M, Nagayama M, Asaoka K (1995a) Non-decay type fast-setting calcium orthophosphate cement composite with sodium alginate. Biomaterials 16:527–532

    Article  Google Scholar 

  151. Xu HHK, Quinn JB, Takagi S, Chow LC (2002) Processing and properties of strong and non-rigid calcium phosphate cement. J Dent Res 81:219–224

    Article  Google Scholar 

  152. Lee YK, Lim BS, Kim CW (2003) Mechanical properties of calcium phosphate based dental filling and regeneration materials. J Oral Rehabil 30:418–425

    Article  Google Scholar 

  153. Ginebra MP, Fernández E, de Mayer EAP, Verbeeck RMH, Boltong MG, Ginebra J, Driessens FCM, Planell JA (1997) Setting reaction and hardening of an apatitic calcium phosphate cement. J Dent Res 76:905–912

    Article  Google Scholar 

  154. Liu C, Shen W, Gu Y, Hu L (1997) Mechanism of the hardening process for a hydroxyapatite cement. J Biomed Mater Res 35:75–80

    Article  Google Scholar 

  155. Driessens FCM, de MayerEAP FE, Boltong MG, Berger G, Verbeeck RMH, Ginebra MP, Planell JA (1996) Amorphous calcium phosphate cements and their transformation into calcium deficient hydroxyapatite. Bioceramics 9:231–234

    Google Scholar 

  156. Lemaître J (1995) Injectable calcium phosphate hydraulic cements: new developments and potential applications. Inn Tech Biol Med 16:109–120

    Google Scholar 

  157. Neira IS, Kolen’ko YV, Lebedev OI, van Tendeloo G, Gupta HS, Matsushita N, Yoshimura M, Guitián F (2009) Rational synthesis of a nanocrystalline calcium phosphate cement exhibiting rapid conversion to hydroxyapatite. Mater Sci Eng C 29:2124–2132

    Article  Google Scholar 

  158. Kawakami T, Antoh M, Hasegawa H, Yamagishi T, Ito M, Eda S (1992) Experimental study on osteoconductive properties of a chitosan-bonded hydroxyapatite self-hardening paste. Biomaterials 13:759–763

    Article  Google Scholar 

  159. Tañag MA, Yano K, Hosokawa K (2004) Orbital floor reconstruction using calcium phosphate cement paste: an animal study. Plast Reconstr Surg 114:1826–1831

    Article  Google Scholar 

  160. Hatoko M, Tada H, Tanaka A, Yurugi S, Niitsuma K, Iioka H (2005) The use of calcium phosphate cement paste for the correction of the depressed nose deformity. J Craniofac Surg 16:327–331

    Article  Google Scholar 

  161. Tañag MA, Madura T, Yano K, Hosokawa K (2006) Use of calcium phosphate cement paste in orbital volume augmentation. Plast Reconstr Surg 117:1186–1193

    Article  Google Scholar 

  162. Meng D, Xie QF, Xiao JJ (2009) Effects of two calcium phosphate cement pastes on osteoblasts during solidification. J Clin Rehabilit Tiss Eng Res 13:471–474

    Google Scholar 

  163. Chen F, Liu C, Wei J, Chen X, Zhao Z, Gao Y (2011) Preparation and characterization of injectable calcium phosphate cement paste modified by polyethylene glycol-6000. Mater Chem Phys 125:818–824

    Article  Google Scholar 

  164. Ishikawa K, Miyamoto Y, Takechi M, Toh T, Kon M, Nagayama M, Asaoka K (1997) Non-decay type fast-setting calcium phosphate cement: hydroxyapatite putty containing an increased amount of sodium alginate. J Biomed Mater Res 36:393–399

    Article  Google Scholar 

  165. Ishikawa K, Miyamoto Y, Takechi M, Ueyama Y, Suzuki K, Nagayama M, Matsumura T (1999a) Effects of neutral sodium hydrogen phosphate on setting reaction and mechanical strength of hydroxyapatite putty. J Biomed Mater Res 44:322–329

    Article  Google Scholar 

  166. Momota Y, Miyamoto Y, Ishikawa K, Takechi M, Yuasa T, Tatehara S, Nagayama M (2004) Effects of neutral sodium hydrogen phosphate on the setting property and hemostatic ability of hydroxyapatite putty as a local hemostatic agent for bone. J Biomed Mater Res B Appl Biomater 69B:99–103

    Article  Google Scholar 

  167. Bohner M (2010a) Design of ceramic-based cements and putties for bone graft substitution. Eur Cell Mater 20:1–12

    Article  Google Scholar 

  168. Xia Z, Grover LM, Huang Y, Adamopoulos IE, Gbureck U, Triffitt JT, Shelton RM, Barralet JE (2006) In vitro biodegradation of three brushite calcium phosphate cements by a macrophage cell-line. Biomaterials 27:4557–4565

    Article  Google Scholar 

  169. Khairoun I, Boltong MG, Driessens FCM, Planell JA (1998a) Limited compliance of some apatitic calcium phosphate bone cements with clinical requirements. J Mater Sci Mater Med 9:667–671

    Article  Google Scholar 

  170. Monma H, Makishima A, Mitomo M, Ikegami T (1988) Hydraulic properties of the tricalcium phosphate – dicalcium phosphate mixture. J Ceram Soc Jpn 96:878–880

    Article  Google Scholar 

  171. Bermudez O, Boltong MG, Driessens FCM, Planell JA (1994) Development of an octacalcium phosphate cement. J Mater Sci Mater Med 5:144–146

    Article  Google Scholar 

  172. Sena M, Yamashita Y, Nakano Y, Ohgaki M, Nakamura S, Yamashita K, Takagi Y (2004) Octacalcium phosphate-based cement as a pulp-capping agent in rats. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 97:749–755

    Article  Google Scholar 

  173. Markovic M, Chow LC (2010) An octacalcium phosphate forming cement. J Res Natl Inst Stand Technol 115:257–265

    Article  Google Scholar 

  174. Dorozhkin SV (2008) Calcium orthophosphate cements for biomedical application. J Mater Sci 43:3028–3057

    Article  Google Scholar 

  175. Dorozhkin SV (2009) Calcium orthophosphate cements and concretes. Materials 2:221–291

    Article  Google Scholar 

  176. Lacout J, Mejdoubi E, Hamad M (1996) Crystallization mechanisms of calcium orthophosphate cement for biological uses. J Mater Sci Mater Med 7:371–374

    Article  Google Scholar 

  177. Song Y, Feng Z, Wang T (2007) In situ study on the curing process of calcium phosphate bone cement. J Mater Sci Mater Med 18:1185–1193

    Article  Google Scholar 

  178. Bohner M (2010b) Resorbable biomaterials as bone graft substitutes. Mater Today 13:24–30

    Article  Google Scholar 

  179. Weiss DD, Sachs MA, Woodard CR (2003) Calcium phosphate bone cements: a comprehensive review. J Long Term Eff Med Implants 13:41–47

    Article  Google Scholar 

  180. Fernández E, Gil FJ, Ginebra MP, Driessens FCM, Planell JA, Best SM (1999b) Calcium phosphate bone cements for clinical applications Part I: solution chemistry. J Mater Sci Mater Med 10:169–176

    Article  Google Scholar 

  181. Hatim Z, Freche M, Keribech A, Lacout JL (1998) The setting mechanism of a phosphocalcium biological cement. Ann Chim Sci Mat 23:65–68

    Article  Google Scholar 

  182. Ishikawa K, Asaoka K (1995) Estimation of ideal mechanical strength and critical porosity of calcium phosphate cement. J Biomed Mater Res 29:1537–1543

    Article  Google Scholar 

  183. Chow LC (1991) Development of self-setting calcium phosphate cements. J Ceram Soc Jpn 99:954–964

    Article  Google Scholar 

  184. Chow LC (2000) Calcium phosphate cements: chemistry, properties and applications. Mat Res Soc Symp Proc 599:27–37

    Article  Google Scholar 

  185. Chow LC (2001) Calcium phosphate cements. In: Chow LC, Eanes ED (eds) Octacalcium phosphate, monographs in oral science. Karger, Basel, pp 148–163

    Chapter  Google Scholar 

  186. Brown PW, Fulmer MT (1991) Kinetics of hydroxyapatite formation at low temperature. J Am Ceram Soc 74:934–940

    Article  Google Scholar 

  187. TenHuisen KS, Brown PW (1994) The formation of hydroxyapatite-ionomer cements at 38 °C. J Dent Res 3:598–606

    Article  Google Scholar 

  188. Ishikawa K, Takagi S, Chow LC, Suzuki K (1999b) Reaction of calcium phosphate cements with different amounts of tetracalcium phosphate and dicalcium phosphate anhydrous. J Biomed Mater Res 46:504–510

    Article  Google Scholar 

  189. Matsuya S, Takagi S, Chow LC (2000) Effect of mixing ratio and pH on the reaction between Ca4(PO4)2O and CaHPO4. J Mater Sci Mater Med 11:305–311

    Article  Google Scholar 

  190. Burguera EF, Guitian F, Chow LC (2008a) Effect of the calcium to phosphate ratio of tetracalcium phosphate on the properties of calcium phosphate bone cement. J Biomed Mater Res A 85A:674–683

    Article  Google Scholar 

  191. Lemaître J, Mirtchi AA, Mortier A (1987) Calcium phosphate cements for medical use: state of the art and perspectives of development. Silic Ind 9–10:141–146

    Google Scholar 

  192. Mirtchi AA, Lemaître J, Terao N (1989) Calcium phosphate cements: study of the β-tricalcium phosphate – monocalcium phosphate system. Biomaterials 10:475–480

    Article  Google Scholar 

  193. Fernández E, Gil FJ, Best SM, Ginebra MP, Driessens FCM, Planell JA (1998b) The cement setting reaction in the CaHPO4 – α-Ca3(PO4)2 system: an X-ray diffraction study. J Biomed Mater Res 42:403–406

    Article  Google Scholar 

  194. Fernández E, Gil FJ, Ginebra MP, Driessens FCM, Planell JA, Best SM (1999c) Production and characterisation of new calcium phosphate bone cements in the CaHPO4 – α-Ca3(PO4)2 system: pH, workability and setting times. J Mater Sci Mater Med 10:223–230

    Article  Google Scholar 

  195. Barralet JE, Lilley KJ, Grover LM, Farrar DF, Ansell C, Gbureck U (2004a) Cements from nanocrystalline hydroxyapatite. J Mater Sci Mater Med 15:407–411

    Article  Google Scholar 

  196. Lilley KJ, Gbureck U, Wright AJ, Farrar DF, Barralet JE (2005b) Cement from nanocrystalline hydroxyapatite: effect of calcium phosphate ratio. J Mater Sci Mater Med 16:1185–1190

    Article  Google Scholar 

  197. Alge DL, Cruz GS, Goebel WS, Chu TMG (2009) Characterization of dicalcium phosphate dihydrate cements prepared using a novel hydroxyapatite-based formulation. Biomed Mater 4:025016

    Article  Google Scholar 

  198. Alge DL, Goebel WS, Chu TMG (2012a) In vitro degradation and cytocompatibility of dicalcium phosphate dihydrate cements prepared using the monocalcium phosphate monohydrate/hydroxyapatite system reveals rapid conversion to HA as a key mechanism. J Biomed Mater Res B Appl Biomater 100B:595–602

    Article  Google Scholar 

  199. Wang X, Ye J, Wang Y, Wu X, Bai B (2007b) Control of crystallinity of hydrated products in a calcium phosphate bone cement. J Biomed Mater Res A 81A:781–790

    Article  Google Scholar 

  200. Hurle K, Neubauer J, Bohner M, Doebelin N, Goetz-Neunhoeffer F (2014) Effect of amorphous phases during the hydraulic conversion of α-TCP into calcium-deficient hydroxyapatite. Acta Biomater 10:3931–3941

    Article  Google Scholar 

  201. Wang X, Ye J, Wang H (2006) Effects of additives on the rheological properties and injectability of a calcium phosphate bone substitute material. J Biomed Mater Res B Appl Biomater 78B:259–264

    Article  Google Scholar 

  202. Tofighi A, Schaffer K, Palazzolo R (2008) Calcium phosphate cement (CPC): a critical development path. Key Eng Mater 361–363:303–306

    Article  Google Scholar 

  203. de Maeyer EAP, Verbeeck RMH, Vercruysse CWJ (2000) Conversion of octacalcium phosphate in calcium phosphate. J Biomed Mater Res 52:95–106

    Article  Google Scholar 

  204. Nakano Y, Ohgaki M, Nakamura S, Takagi Y, Yamashita K (1999) In vitro and in vivo characterization and mechanical properties of α-TCP/OCP settings. Bioceramics 12:315–318

    Article  Google Scholar 

  205. Nakano Y (2000) Preparation and characterization of porous octacalcium phosphate setting improved by α-tricalcium phosphate additive. J Dent Mater 19:65–76

    Article  Google Scholar 

  206. Wang X, Ye J, Wang Y (2008a) Hydration mechanism of a novel PCCP + DCPA cement system. J Mater Sci Mater Med 19:813–816

    Article  Google Scholar 

  207. Wang X, Ye J (2009) Exothermal behavior during the hydration of the PCCP + DCPA system cement. Mater Sci Forum 610–613:1255–1258

    Article  Google Scholar 

  208. He F, Ye J (2013) Bi-layered calcium phosphate cement-based composite scaffold mimicking natural bone structure. Sci Technol Adv Mater 14:045010. (11 pages)

    Article  Google Scholar 

  209. Kim YB, Lee BM, Lee MC, Noh I, Lee SJ, Kim SS (2013) Preparation and characterization of calcium phosphate cement of α-tricalcium phosphate-tetracalcium phosphate-dicalcium phosphate system incorporated with poly(γ-glutamic acid). Macromol Res 21:892–898

    Article  Google Scholar 

  210. Lopez-Heredia MA, Bongio M, Bohner M, Cuijpers V, Winnubst LA, van Dijk N, Wolke JG, van den Beucken JJ, Jansen JA (2012a) Processing and in vivo evaluation of multiphasic calcium phosphate cements with dual tricalcium phosphate phases. Acta Biomater 8:3500–3508

    Article  Google Scholar 

  211. Zoulgami M, Lucas A, Briard P, Gaudé J (2001) A self-setting single-component calcium phosphate cement. Biomaterials 22:1933–1937

    Article  Google Scholar 

  212. Knaack D, Goad ME, Aiolova M, Rey C, Tofighi A, Chakravarthy P, Lee DD (1998) Resorbable calcium phosphate bone substitute. J Biomed Mater Res 43:399–409

    Article  Google Scholar 

  213. Tofighi A, Mounic S, Chakravarthy P, Rey C, Lee D (2001) Setting reactions involved in injectable cements based on amorphous calcium phosphate. Key Eng Mater 192–195:769–772

    Article  Google Scholar 

  214. Monma H, Kanazawa T (2000) Hydration of α-tricalcium phosphate. J Ceram Soc Jpn 108:575–580

    Article  Google Scholar 

  215. Fernández E, Ginebra MP, Boltong MG, Driessens FCM, Ginebra J, de Maeyer EAP, Verbeeck RMH, Planell JA (1996) Kinetic study of the setting reaction of a calcium phosphate bone cement. J Biomed Mater Res 32:367–374

    Article  Google Scholar 

  216. Gbureck U, Barralet JE, Radu L, Klinger HG, Thull R (2004b) Amorphous α-tricalcium phosphate, preparation and aqueous setting reaction. J Am Ceram Soc 87:1126–1132

    Article  Google Scholar 

  217. Bohner M, Malsy AK, Camire CL, Gbureck U (2006a) Combining particle size distribution and isothermal calorimetry data to determine the reaction kinetics of α-tricalcium phosphate – water mixtures. Acta Biomater 2:343–348

    Article  Google Scholar 

  218. Brunner TJ, Grass RN, Bohner M, Stark WJ (2007a) Effect of particle size, crystal phase and crystallinity on the reactivity of tricalcium phosphate cements for bone reconstruction. J Mater Chem 38:4072–4078

    Article  Google Scholar 

  219. Alves HLR, dos Santos LA, Bergmann CP (2008) Injectability evaluation of tricalcium phosphate bone cement. J Mater Sci Mater Med 19:2241–2246

    Article  Google Scholar 

  220. Jack V, Buchanan FJ, Dunne NJ (2008) Particle attrition of α-tricalcium phosphate, effect on mechanical, handling, and injectability properties of calcium phosphate. Proc Inst Mech Eng H: J Eng Med 222:19–28

    Article  Google Scholar 

  221. Oh SA, Lee GS, Park JH, Kim HW (2010) Osteoclastic cell behaviors affected by the α-tricalcium phosphate based bone cements. J Mater Sci Mater Med 21:3019–3027

    Article  Google Scholar 

  222. Cardoso HAI, Motisuke M, Rodas ACD, Higa OZ, Zavaglia CAC (2012b) pH evolution and cytotoxicity of [alpha]-tricalcium phosphate cement with three different additives. Key Eng Mater 493–494:403–408

    Google Scholar 

  223. Zhang JT, Tancret F, Bouler JM (2012) Mechanical properties of calcium phosphate cements (CPC) for bone substitution: influence of fabrication and microstructure. Key Eng Mater 493–494:409–414

    Article  Google Scholar 

  224. Ishikawa K, Tsuru K, Pham TK, Maruta M, Matsuya S (2012) Fully-interconnected pore forming calcium phosphate cement. Key Eng Mater 493–494:832–835

    Google Scholar 

  225. Maazouz Y, Montufar EB, Guillem-Marti J, Fleps I, Ohman C, Persson C, Ginebra MP (2014) Robocasting of biomimetic hydroxyapatite scaffolds using self-setting inks. J Mater Chem B 2:5378–5386

    Article  Google Scholar 

  226. Sugiura Y, Tsuru K, Ishikawa K (2016) Fabrication of carbonate apatite foam based on the setting reaction of α-tricalcium phosphate foam granules. Ceram Int 42:204–210

    Article  Google Scholar 

  227. Gbureck U, Grolms O, Barralet JE, Grover LM, Thull R (2003a) Mechanical activation and cement formation of β-tricalcium phosphate. Biomaterials 24:4123–4131

    Article  Google Scholar 

  228. Zhou H, Luchini TJ, Boroujeni NM, Agarwal AK, Goel VK, Bhaduri SB (2015) Development of nanosilica bonded monetite cement from egg shells. Mater Sci Eng C 50:45–51

    Article  Google Scholar 

  229. Gbureck U, Barralet JE, Hofmann MP, Thull R (2004c) Nanocrystalline tetracalcium phosphate cement. J Dent Res 83:425–428

    Article  Google Scholar 

  230. Gbureck U, Barralet JE, Hofmann MP, Thull R (2004d) Mechanical activation of tetracalcium phosphate. J Am Ceram Soc 87:311–313

    Article  Google Scholar 

  231. Tsai CH, Ju CP, Lin JHC (2008a) Morphology and mechanical behavior of TTCP-derived calcium phosphate cement subcutaneously implanted in rats. J Mater Sci Mater Med 19:2407–2415

    Article  Google Scholar 

  232. Tsai CH, Lin RM, Ju CP, Lin JHC (2008b) Bioresorption behavior of tetracalcium phosphate-derived calcium phosphate cement implanted in femur of rabbits. Biomaterials 29:984–993

    Article  Google Scholar 

  233. Tsai CH, Lin JHC, Ju CP (2007) γ-radiation-induced changes in structure and properties of tetracalcium phosphate and its derived calcium phosphate cement. J Biomed Mater Res B Appl Biomater 80B:244–252

    Article  Google Scholar 

  234. Vlad MD, Gómez S, Barracó M, López J, Fernández E (2012) Effect of the calcium to phosphorus ratio on the setting properties of calcium phosphate bone cements. J Mater Sci Mater Med 23:2081–2090

    Article  Google Scholar 

  235. Koshino T, Kubota W, Morii T (1995) Bone formation as a reaction to hydraulic hydroxyapatite thermal decomposition product used as bone cement in rabbits. Biomaterials 16:125–128

    Article  Google Scholar 

  236. Bae J, Ida Y, Sekine K, Kawano F, Hamada K (2015) Effects of high-energy ball-milling on injectability and strength of β-tricalcium-phosphate cement. J Mech Behav Biomed Mater 47:77–86

    Article  Google Scholar 

  237. Chow LC, Markovic M, Frukhtbeyn SA, Takagi S (2005) Hydrolysis of tetracalcium phosphate under a near-constant composition condition – effects of pH and particle size. Biomaterials 26:393–401

    Article  Google Scholar 

  238. TenHuisen KS, Brown PW (1998) Formation of calcium-deficient hydroxyapatite from α-tricalcium phosphate. Biomaterials 19:2209–2217

    Article  Google Scholar 

  239. Ginebra MP, Fernández E, Driessens FCM, Planell JA (1999) Modeling of the hydrolysis of α-TCP. J Am Ceram Soc 82:2808–2812

    Article  Google Scholar 

  240. Durucan C, Brown PW (2000) α-tricalcium phosphate hydrolysis to hydroxyapatite at and near physiological temperature. J Mater Sci Mater Med 11:365–371

    Article  Google Scholar 

  241. Durucan C, Brown PW (2002) Kinetic model for α-tricalcium phosphate hydrolysis. J Am Ceram Soc 85:2013–2018

    Article  Google Scholar 

  242. Fulmer MT, Brown PW (1998) Hydrolysis of dicalcium phosphate dihydrate to hydroxyapatite. J Mater Sci Mater Med 9:197–202

    Article  Google Scholar 

  243. Ginebra MP, Driessens FCM, Planell JA (2004) Effect of the particle size on the micro and nanostructural features of a calcium phosphate cement: a kinetic analysis. Biomaterials 25:3453–3462

    Article  Google Scholar 

  244. Tsuru K, Ruslin K, Maruta M, Matsuya S, Ishikawa K (2015) Effects of the method of apatite seed crystals addition on setting reaction of α-tricalcium phosphate based apatite cement. J Mater Sci Mater Med 26:244. 8 pp

    Article  Google Scholar 

  245. Ginebra MP, Canal C, Espanol M, Pastorino D, Montufar EB (2012) Calcium phosphate cements as drug delivery materials. Adv Drug Deliv Rev 64:1090–1110

    Article  Google Scholar 

  246. Tas AC (2007) Porous, biphasic CaCO3-calcium phosphate biomedical cement scaffolds from calcite (CaCO3) powder. Int J Appl Ceram Technol 4:152–163

    Article  Google Scholar 

  247. Liu C, Huang Y, Chen J (2004) The physicochemical properties of the solidification of calcium phosphate cement. J Biomed Mater Res B Appl Biomater 69B:73–78

    Article  Google Scholar 

  248. Liu C, Gai W, Pan S, Liu Z (2003a) The exothermal behavior in the hydration process of calcium phosphate cement. Biomaterials 24:2995–3003

    Article  Google Scholar 

  249. Charrière E, Terrazzoni S, Pittet C, Mordasini P, Dutoit M, Lemaître J, Zysset P (2001) Mechanical characterization of brushite and hydroxyapatite cements. Biomaterials 22:2937–2945

    Article  Google Scholar 

  250. Morgan H, Dauskardt RH (2003) Notch strength insensitivity of self-setting hydroxyapatite bone cements. J Mater Sci Mater Med 14:647–653

    Article  Google Scholar 

  251. von Gonten AS, Kelly JR, Antonucci JM (2000) Load-bearing behavior of a simulated craniofacial structure fabricated from a hydroxyapatite cement and bioresorbable fiber-mesh. J Mater Sci Mater Med 11:95–100

    Article  Google Scholar 

  252. Gisep A, Kugler S, Wahl D, Rahn B (2004) The mechanical characterization of a bone defect model filled with ceramic cements. J Mater Sci Mater Med 15:1065–1071

    Article  Google Scholar 

  253. Takagi S, Chow LC, Markovic M, Friedman CD, Costantino PD (2001) Morphological and phase characterizations of retrieved calcium phosphate cement implants. J Biomed Mater Res Appl Biomater 58:36–41

    Article  Google Scholar 

  254. Ambard AJ, Mueninghoff L (2006) Calcium phosphate cement: review of mechanical and biological properties. J Prosthodont 15:321–328

    Article  Google Scholar 

  255. Kenny SM, Buggy M (2003) Bone cements and fillers: a review. J Mater Sci Mater Med 14:923–938

    Article  Google Scholar 

  256. Bohner M, Gbureck U, Barralet JE (2005) Technological issues for the development of more efficient calcium phosphate bone cements: a critical assessment. Biomaterials 26:6423–6429

    Article  Google Scholar 

  257. Lewis G (2006) Injectable bone cements for use in vertebroplasty and kyphoplasty, state-of-the-art review. J Biomed Mater Res B Appl Biomater 76B:456–468

    Article  Google Scholar 

  258. Takagi S, Frukhtbeyn S, Chow LC, Sugawara A, Fujikawa K, Ogata H, Hayashi M, Ogiso B (2010) In vitro and in vivo characteristics of fluorapatite-forming calcium phosphate cements. J Res Natl Inst Stand Technol 115:267–276

    Article  Google Scholar 

  259. Wei J, Wang J, Shan W, Liu X, Ma J, Liu C, Fang J, Wei S (2011a) Development of fluorapatite cement for dental enamel defects repair. J Mater Sci Mater Med 22:1607–1614

    Article  Google Scholar 

  260. Wei J, Wang J, Liu X, Ma J, Liu C, Fang J, Wei S (2011b) Preparation of fluoride substituted apatite cements as the building blocks for tooth enamel restoration. Appl Surf Sci 257:7887–7892

    Article  Google Scholar 

  261. Constantz BR, Ison IC, Fulmer MT, Poser RD, Smith ST, van Wagoner M, Ross J, Goldstein SA, Jupiter JB, Rosenthal DI (1995) Skeletal repair by in situ formation of the mineral phase of bone. Science 267:1796–1799

    Article  Google Scholar 

  262. Bohner M (2007) Reactivity of calcium phosphate cements. J Mater Chem 38:3980–3986

    Article  Google Scholar 

  263. Bohner M, Brunner TJ, Stark WJ (2008) Controlling the reactivity of calcium phosphate cements. J Mater Chem 8:5669–5675

    Article  Google Scholar 

  264. Yuan H, Li Y, de Bruijn JD, de Groot K, Zhang X (2000) Tissue responses of calcium phosphate cement, a study in dogs. Biomaterials 21:1283–1290

    Article  Google Scholar 

  265. Takechi M, Miyamoto Y, Ishikawa K, Toh T, Yuasa T, Nagayama M, Suzuki K (1998) Initial histological evaluation of anti-washout type fast-setting calcium phosphate cement following subcutaneous implantation. Biomaterials 19:2057–2063

    Article  Google Scholar 

  266. Fulmer MT, Brown PW (1993) Effects of Na2HPO4 and NaH2PO4 on hydroxyapatite formation. J Biomed Mater Res 27:1095–1102

    Article  Google Scholar 

  267. Otsuka M, Matsuda Y, Suwa Y, Fox JL, Higuchi WI (1995) Effect of particle size of metastable calcium phosphates on mechanical strength of a novel self-setting bioactive calcium phosphate cement. J Biomed Mater Res 29:25–32

    Article  Google Scholar 

  268. Liu C, Shao H, Chen F, Zheng H (2003b) Effects of granularity of raw materials on the hydration and hardening process of calcium phosphate cement. Biomaterials 24:4103–4113

    Article  Google Scholar 

  269. Chen WC, Lin JHC, Ju CP (2003) Transmission electron microscopic study on setting mechanism of tetracalcium phosphate/dicalcium phosphate anhydrous-based calcium phosphate cement. J Biomed Mater Res 64:664–671

    Article  Google Scholar 

  270. Fernández E, Gil FJ, Ginebra MP, Driessens FCM, Planell JA, Best SM (1990) Calcium phosphate bone cements for clinical applications Part II: precipitate formation during setting reactions. J Mater Sci Mater Med 10:177–183

    Article  Google Scholar 

  271. Brown WE (1966) Crystal growth of bone mineral. Clin Orthop Rel Res 44:205–220

    Article  Google Scholar 

  272. Tung MS, Brown WE (1983) An intermediate state in hydrolysis of amorphous calcium phosphate. Calcif Tissue Int 35:783–790

    Article  Google Scholar 

  273. Brown WE, Eidelman N, Tomazic BB (1987) Octacalcium phosphate as a precursor in biomineral formation. Adv Dent Res 1:306–313

    Article  Google Scholar 

  274. Constantz BR, Barr BM, Ison IC, Fulmer MT, Baker J, McKinney LA, Goodman SB, Gunasekaren S, Delaney DC, Ross J, Poser RD (1998) Histological, chemical and crystallographic analysis of four calcium phosphate cements in different rabbit osseous sites. J Biomed Mater Res Appl Biomater 43:451–461

    Article  Google Scholar 

  275. Tamimi F, Sheikh Z, Barralet J (2012) Dicalcium phosphate cements: brushite and monetite. Acta Biomater 8:474–487

    Article  Google Scholar 

  276. Elliott JC (1994) Structure and chemistry of the apatites and other calcium orthophosphates. Elsevier, Amsterdam

    Google Scholar 

  277. Legrand AP, Sfihi H, Lequeux N, Lemaître J (2009) 31P solid-state NMR study of the chemical setting process of a dual-paste injectable brushite cements. J Biomed Mater Res B Appl Biomater 91B:46–54

    Article  Google Scholar 

  278. Bohner M, Merkle HP, van Landuyt P, Trophardy G, Lemaître J (2000) Effect of several additives and their admixtures on the physico-chemical properties of a calcium phosphate cement. J Mater Sci Mater Med 11:111–116

    Article  Google Scholar 

  279. Vereecke G, Lemaître J (1990) Calculation of the solubility diagrams in the system Ca(OH)2 – H3PO4 – KOH – HNO3 – CO2 – H2O. J Cryst Growth 104:820–832

    Article  Google Scholar 

  280. Klein CP, de Groot K, Driessen AA, van der Lubbe HB (1985) Interaction of biodegradable β-whitlockite ceramics with bone tissue, an in vivo study. Biomaterials 6:189–192

    Article  Google Scholar 

  281. Liu C, Shen W, Chen J (1999a) Solution property of calcium phosphate cement hardening body. Mater Chem Phys 58:78–83

    Article  Google Scholar 

  282. Apelt D, Theiss F, El-Warrak AO, Zlinszky K, Bettschart-Wolfisberger R, Bohner M, Matter S, Auer JA, von Rechenberg B (2004) In vivo behavior of three different injectable hydraulic calcium phosphate cements. Biomaterials 25:1439–1451

    Article  Google Scholar 

  283. Barralet JE, Grover LM, Gbureck U (2004b) Ionic modification of calcium phosphate cement viscosity Part II: hypodermic injection and strength improvement of brushite cement. Biomaterials 25:2197–2203

    Article  Google Scholar 

  284. Sarda S, Fernández E, Nilsson M, Balcells M, Planell JA (2002) Kinetic study of citric acid influence on calcium phosphate bone cements as water-reducing agent. J Biomed Mater Res 61:653–659

    Article  Google Scholar 

  285. Qi X, Ye J, Wang Y (2008) Improved injectability and in vitro degradation of a calcium phosphate cement 2008. Acta Biomater 4:1837–1845

    Article  Google Scholar 

  286. Grover LM, Knowles JC, Fleming GJP, Barralet JE (2003) In vitro ageing of brushite calcium phosphate cement. Biomaterials 24:4133–4141

    Article  Google Scholar 

  287. Mariño FT, Mastio J, Rueda C, Blanco L, Cabarcos EL (2007a) Increase of the final setting time of brushite cements by using chondroitin 4-sulfate and silica gel. J Mater Sci Mater Med 18:1195–1201

    Article  Google Scholar 

  288. Mariño FT, Torres J, Hamdan M, Rodríguez CR, Cabarcos EL (2007b) Advantages of using glycolic acid as a retardant in a brushite forming cement. J Biomed Mater Res B Appl Biomater 83B:571–579

    Article  Google Scholar 

  289. Flautre B, Delecourt C, Blary M, van Landuyt P, Lemaître J, Hardouin P (1999) Volume effect on biological properties of a calcium phosphate hydraulic cement, experimental study on sheep. Bone 25:S35–S39

    Article  Google Scholar 

  290. Bohner M (2001b) pH variations of a solution after injecting brushite cements. Key Eng Mater 192–195:813–816

    Article  Google Scholar 

  291. Xie J, Riley C, Chittur K (2001) Effect of albumin on brushite transformation to hydroxyapatite. J Biomed Mater Res 57:357–365

    Article  Google Scholar 

  292. Frayssinet P, Roudier M, Lerch A, Ceolin JL, Depres E, Rouquet N (2000) Tissue reaction against a self-setting calcium phosphate cement set in bone or outside the organism. J Mater Sci Mater Med 11:811–815

    Article  Google Scholar 

  293. Ohura K, Bohner M, Hardouin P, Lemaître J, Pasquier G, Flautre B (1996) Resorption of and bone formation from new β-tricalcium phosphate – monocalcium phosphate cements: an in vivo study. J Biomed Mater Res 30:193–200

    Article  Google Scholar 

  294. Flautre B, Maynou C, Lemaître J, van Landuyt P, Hardouin P (2002) Bone colonization of β-TCP granules incorporated in brushite cements. J Biomed Mater Res Appl Biomater 63:413–417

    Article  Google Scholar 

  295. Shepard CU (1982) On two new minerals, monetite and monite, with a notice of pyroclasite. Am J Sci 23:400–405

    Google Scholar 

  296. Tas AC (2009) Monetite (CaHPO4) synthesis in ethanol at room temperature. J Am Ceram Soc 92:2907–2912

    Article  Google Scholar 

  297. Åberg J, Engqvist H (2008) Non-aqueous, hydraulic cement useful for producing hardened cement, as biomaterials composition comprises non-aqueous mixture of Brushite or Monetite-forming calcium phosphate powder composition, and nonaqueous water-miscible liquid. US Patent NoWO2010055483-A2

    Google Scholar 

  298. Åberg J, Brisby H, Henriksson HB, Lindahl A, Thomsen P, Engqvist H (2010) Premixed acidic calcium phosphate cement: characterization of strength and microstructure. J Biomed Mater Res B Appl Biomater 93B:436–441

    Article  Google Scholar 

  299. Åberg J, Unosson JE, Engqvist H (2013a) Setting mechanisms of an acidic premixed calcium phosphate cement. Bioceram Dev Appl 3:070. (6 pages)

    Google Scholar 

  300. Cama G, Gharibi B, Sait MS, Knowles JC, Lagazzo A, Romeed S, di Silvio L, Deb S (2013) A novel method of forming micro- and macroporous monetite cements. J Mater Chem B 1:958–969

    Article  Google Scholar 

  301. Şahin E, Çiftçioğlu M (2013) Monetite promoting effect of NaCl on brushite cement setting kinetics. J Mater Chem B 1:2943–2950

    Article  Google Scholar 

  302. Montazerolghaem M, Ott MK, Engqvist H, Melhus H, Rasmusson AJ (2015) Resorption of monetite calcium phosphate cement by mouse bone marrow derived osteoclasts. Mater Sci Eng C 52:212–218

    Article  Google Scholar 

  303. Irbe Z, Vecbiškena L, Bērziņa-Cimdiņa L (2011) Setting properties of brushite and hydroxyapatite compound cements. Adv Mater Res 222:239–242

    Article  Google Scholar 

  304. Gbureck U, Dembski S, Thull R, Barralet JE (2005c) Factors influencing calcium phosphate cement shelf-life. Biomaterials 26:3691–3697

    Article  Google Scholar 

  305. Standard test method for time of setting of hydraulic cement paste by Gillmore needles ASTM C266-89 (1993) Annual book of ASTM standards, vol 0401. Cement, Lime, Gypsum American Society for Testing and Materials, Philadelphia, pp 189–191

    Google Scholar 

  306. Standard test method for time of setting of hydraulic cement paste by Vicat needle ASTM C191-92 (1993) Annual book of ASTM standards, vol 0401. Cement, Lime, Gypsum American Society for Testing and Materials, Philadelphia, pp 158–160

    Google Scholar 

  307. Nilsson M, Carlson J, Fernández E, Planell JA (2002b) Monitoring the setting of calcium-based bone cements using pulse-echo ultrasound. J Mater Sci Mater Med 13:1135–1141

    Article  Google Scholar 

  308. Carlson J, Nilsson M, Fernández E, Planell JA (2003) An ultrasonic pulse-echo technique for monitoring the setting of CaSO4-based bone cement. Biomaterials 24:71–77

    Article  Google Scholar 

  309. Hofmann MP, Nazhat SN, Gbureck U, Barralet JE (2006a) Real-time monitoring of the setting reaction of brushite-forming cement using isothermal differential scanning calorimetry. J Biomed Mater Res B Appl Biomater 79B:360–364

    Article  Google Scholar 

  310. Martin RI, Brown PW (1997) The effects of magnesium on hydroxyapatite formation in vitro from CaHPO4 and Ca4(PO4)2O at 374 °C. Calcif Tissue Int 60:538–546

    Article  Google Scholar 

  311. Brunner TJ, Bohner M, Dora C, Gerber C, Stark WJ (2007b) Comparison of amorphous TCP nanoparticles to micron-sized α-TCP as starting materials for calcium phosphate cements. J Biomed Mater Res B Appl Biomater 83B:400–407

    Article  Google Scholar 

  312. Gao WY, Wang YW, Dong LM, Yu ZW (2006) Thermokinetic analysis of the hydration process of calcium phosphate cement. J Therm Anal Calorim 85:785–789

    Article  Google Scholar 

  313. Bohner M, Gbureck U (2008) Thermal reactions of brushite cements. J Biomed Mater Res B Appl Biomater 84B:375–385

    Article  Google Scholar 

  314. Hofmann MP, Young AM, Nazhat SN, Gbureck U, Barralet JE (2006b) Setting kinetics observation of a brushite cement by FTIR and DSC. Key Eng Mater 309–311:837–840

    Article  Google Scholar 

  315. Mohn D, Doebelin N, Tadier S, Bernabei RE, Luechinger NA, Stark WJ, Bohner M (2011) Reactivity of calcium phosphate nanoparticles prepared by flame spray synthesis as precursors for calcium phosphate cements. J Mater Chem 21:13963–13972

    Article  Google Scholar 

  316. Liu C, Huang Y, Zheng H (1999b) Study of the hydration process of calcium phosphate cement by AC impedance spectroscopy. J Am Ceram Soc 82:1052–1057

    Article  Google Scholar 

  317. Hofmann MP, Young AM, Gbureck U, Nazhat SN, Barralet JE (2006c) FTIR-monitoring of a fast setting brushite bone cement: effect of intermediate phases. J Mater Chem 16:3199–3206

    Article  Google Scholar 

  318. Bimis A, Karalekas D, Bouropoulos N, Mouzakis D, Zaoutsos S (2016) Monitoring of hardening and hygroscopic induced strains in a calcium phosphate bone cement using FBG sensor. J Mech Behav Biomed Mater 60:195–202

    Article  Google Scholar 

  319. Hsu HC, Tuan WH, Lee HY (2009) In-situ observation on the transformation of calcium phosphate cement into hydroxyapatite. Mater Sci Eng C 29:950–954

    Article  Google Scholar 

  320. Rau JV, Generosi A, Smirnov VV, Ferro D, Rossi AV, Barinov SM (2008) Energy dispersive X-ray diffraction study of phase development during hardening of calcium phosphate bone cements with addition of chitosan. Acta Biomater 4:1089–1094

    Article  Google Scholar 

  321. Generosi A, Smirnov VV, Rau JV, Rossi AV, Ferro D, Barinov SM (2008) Phase development in the hardening process of two calcium phosphate bone cements: an energy dispersive X-ray diffraction study. Mater Res Bull 43:561–571

    Article  Google Scholar 

  322. Rau JV, Fosca M, Komlev VS (2013) In situ time-resolved energy dispersive X-ray diffraction studies of calcium phosphate based bone cements. Key Eng Mater 541:115–120

    Article  Google Scholar 

  323. Ginebra MP, Fernández E, Driessens FCM, Boltong MG, Muntasell J, Font J, Planell JA (1995a) The effects of temperature on the behaviour of an apatitic calcium phosphate cement. J Mater Sci Mater Med 6:857–860

    Article  Google Scholar 

  324. Baroud G, Bohner M, Heini P, Steffen T (2004a) Injection biomechanics of bone cements used in vertebroplasty. Biomed Mater Eng 14:487–504

    Google Scholar 

  325. Leung KS, Siu WS, Li SF, Qin L, Cheung WH, Tam KF, Po P, Lui Y (2006) An in vitro optimized injectable calcium phosphate cement for augmenting screw fixation in osteopenic goats. J Biomed Mater Res B Appl Biomater 78B:153–160

    Article  Google Scholar 

  326. Eames WB, Monroe SD, Roan JD, Oneal SJ (1977) Proportioning and mixing of cements – comparison of working times. Oper Dent 2:97–104

    Google Scholar 

  327. Baroud G, Matsushita C, Samara M, Beckman L, Steffen T (2004b) Influence of oscillatory mixing on the injectability of three acrylic and two calcium phosphate bone cements for vertebroplasty. J Biomed Mater Res B Appl Biomater 68B:105–111

    Article  Google Scholar 

  328. Nomoto T, Haraguchi K, Yamaguchi S, Sugano N, Nakayama H, Sekino T, Niihara K (2006) Hydrolyses of calcium phosphates-allografts composite in physiological solutions. J Mater Sci Mater Med 17:379–385

    Article  Google Scholar 

  329. Od M, Takeuchi A, Lin X, Matsuya S, Ishikawa K (2008) Effects of liquid phase on basic properties of α-tricalcium phosphate-based apatite cement. Dent Mater J 27:672–677

    Article  Google Scholar 

  330. Sarda S, Fernández E, Llorens J, Martinez S, Nilsson M, Planell JA (2001) Rheological properties of an apatitic bone cement during initial setting. J Mater Sci Mater Med 12:905–909

    Article  Google Scholar 

  331. Liu C, Shao H, Chen F, Zheng H (2006a) Rheological properties of concentrated aqueous injectable calcium phosphate cement slurry. Biomaterials 27:5003–5013

    Article  Google Scholar 

  332. Bohner M, Baroud G (2005) Injectability of calcium phosphate pastes. Biomaterials 26:1553–1563

    Article  Google Scholar 

  333. Khairoun I, Boltong MG, Driessens FCM, Planell JA (1998b) Some factors controlling the injectability of calcium phosphate bone cements. J Mater Sci Mater Med 9:425–428

    Article  Google Scholar 

  334. Burguera EF, Xu HHK, Sun L (2008b) Injectable calcium phosphate cement: effects of powder-to-liquid ratio and needle size. J Biomed Mater Res B Appl Biomater 84B:493–502

    Article  Google Scholar 

  335. Habib M, Baroud G, Gitzhofer F, Bohner M (2008) Mechanisms underlying the limited injectability of hydraulic calcium phosphate paste. Acta Biomater 4:1465–1471

    Article  Google Scholar 

  336. Montufar EB, Maazouz Y, Ginebra MP (2013) Relevance of the setting reaction to the injectability of tricalcium phosphate pastes. Acta Biomater 9:6188–6198

    Article  Google Scholar 

  337. Baroud G, Cayer E, Bohner M (2005) Rheological characterization of concentrated aqueous beta-tricalcium phosphate suspensions: the effect of liquid-to-powder ratio, milling time and additives. Acta Biomater 1:357–363

    Article  Google Scholar 

  338. Ishikawa K (2003) Effects of spherical tetracalcium phosphate on injectability and basic properties of apatitic cement. Key Eng Mater 240–242:369–372

    Article  Google Scholar 

  339. Habib M, Baroud G, Gitzhofer F, Bohner M (2010) Mechanisms underlying the limited injectability of hydraulic calcium phosphate paste Part ІІ: particle separation study. Acta Biomater 6:250–256

    Article  Google Scholar 

  340. Bohner M, Doebelin N, Baroud G (2006b) Theoretical and experimental approach to test the cohesion of calcium phosphate pastes. Eur Cell Mater 12:26–35

    Article  Google Scholar 

  341. Miyamoto Y, Ishikawa K, Takechi M, Toh T, Yuasa T, Nagayama M, Suzuki K (1999) Histological and compositional evaluations of three types of calcium phosphate cements when implanted in subcutaneous tissue immediately after mixing. J Biomed Mater Res Appl Biomater 48:36–42

    Article  Google Scholar 

  342. Bermudez O, Boltong MG, Driessens FCM, Planell JA (1993) Compressive strength and diametral tensile strength of some calcium-orthophosphate cements, a pilot study. J Mater Sci Mater Med 4:389–393

    Article  Google Scholar 

  343. del Valle S, Miňo N, Muňoz F, González A, Planell JA, Ginebra MP (2007) In vivo evaluation of an injectable macroporous calcium phosphate cement. J Mater Sci Mater Med 18:353–361

    Article  Google Scholar 

  344. Coelho WT, Fernandes JM, Vieira RS, Thurmer MB, Santos LA (2012) Effect on mechanical strength of tricalcium phosphate cement by additions of sodium alginate. Mater Sci Forum 727–728:1181–1186

    Article  Google Scholar 

  345. Khairoun I, Driessens FCM, Boltong MG, Planell JA, Wenz R (1999) Addition of cohesion promoters to calcium orthophosphate cements. Biomaterials 20:393–398

    Article  Google Scholar 

  346. Alkhraisat MH, Rueda C, Mariño FT, Torres J, Jerez LB, Gbureck U, Cabarcos EL (2009) The effect of hyaluronic acid on brushite cement cohesion. Acta Biomater 5:3150–3156

    Article  Google Scholar 

  347. Alkhraisat MH, Rueda C, Jerez LB, Mariño FT, Torres J, Gbureck U, Cabarcos EL (2010a) Effect of silica gel on the cohesion, properties and biological performance of brushite cement. Acta Biomater 6:257–265

    Article  Google Scholar 

  348. An J, Wolke JGC, Jansen JA, Leeuwenburgh SCGI (2016a) Influence of polymeric additives on the cohesion and mechanical properties of calcium phosphate cements. J Mater Sci Mater Med 27:58

    Article  Google Scholar 

  349. Low KL, Tan SH, Zein SHS, Roether JA, Mouriño V, Boccaccini AR (2010) Calcium phosphate-based composites as injectable bone substitute materials. J Biomed Mater Res B Appl Biomater 94B:273–286

    Google Scholar 

  350. Habib M, Baroud G, Galea L, Bohner M (2012) Evaluation of the ultrasonication process for injectability of hydraulic calcium phosphate pastes. Acta Biomater 8:1164–1168

    Article  Google Scholar 

  351. Bigi A, Bracci B, Panzavolta S (2004a) Effect of added gelatin on the properties of calcium phosphate cement. Biomaterials 25:2893–2899

    Article  Google Scholar 

  352. Ishikawa K, Matsuya S, Nakagawa M, Udoh K, Suzuki K (2004) Basic properties of apatite cement containing spherical tetracalcium phosphate made with plasma melting method. J Mater Sci Mater Med 15:13–17

    Article  Google Scholar 

  353. Wang X, Ye J, Wang Y (2008b) Effect of additives on the morphology of the hydrated product and physical properties of a calcium phosphate cement. J Mater Sci Technol 24:285–288

    Google Scholar 

  354. Barralet JE, Hofmann M, Grover LM, Gbureck U (2003) High strength apatitic cement by modification with α-hydroxy acid salts. Adv Mater 15:2091–2095

    Article  Google Scholar 

  355. Barralet JE, Duncan CO, Dover MS, Bassett DC, Nishikawa H, Monaghan A, Gbureck U (2005a) Cortical bone screw fixation in ionically modified apatite cements. J Biomed Mater Res B Appl Biomater 73B:238–243

    Article  Google Scholar 

  356. Ginebra MP, Boltong MG, Fernández E, Planell JA, Driessens FCM (1995b) Effect of various additives and temperature on some properties of an apatitic calcium phosphate cement. J Mater Sci Mater Med 6:612–616

    Article  Google Scholar 

  357. Acarturk O, Lehmicke M, Aberman H, Toms D, Hollinger JO, Fulmer MT (2008) Bone healing response to an injectable calcium phosphate cement with enhanced radiopacity. J Biomed Mater Res B Appl Biomater 86B:56–62

    Article  Google Scholar 

  358. Wang X, Ye J, Wang Y (2007c) Influence of a novel radiopacifier on the properties of an injectable calcium phosphate cement. Acta Biomater 3:757–763

    Article  Google Scholar 

  359. Chen F, Liu C, Mao Y (2010) Bismuth-doped injectable calcium phosphate cement with improved radiopacity and potent antimicrobial activity for root canal filling. Acta Biomater 6:3199–3207

    Article  Google Scholar 

  360. Romieu G, Garric X, Munier S, Vert M, Boudeville P (2010) Calcium-strontium mixed phosphate as novel injectable and radio-opaque hydraulic cement. Acta Biomater 6:3208–3215

    Article  Google Scholar 

  361. Åberg J, Henriksson HB, Engqvist H, Palmquist A, Brantsing C, Lindahl A, Thomsen P, Brisby H (2012) Biocompatibility and resorption of a radiopaque premixed calcium phosphate cement. J Biomed Mater Res A 100A:1269–1278

    Article  Google Scholar 

  362. López A, Montazerolghaem M, Ott MK, Persson C (2014) Calcium phosphate cements with strontium halides as radiopacifiers. J Biomed Mater Res B Appl Biomater 102B:250–259

    Article  Google Scholar 

  363. Watanabe M, Tanaka M, Sakurai M, Maeda M (2006) Development of calcium phosphate cement. J Eur Ceram Soc 26:549–552

    Article  Google Scholar 

  364. Bercier A, Gonçalves S, Lignon O, Fitremann J (2010) Calcium phosphate bone cements including sugar surfactants: part one – porosity, setting times and compressive strength. Materials 3:4695–4709

    Article  Google Scholar 

  365. Sarda S, Nilsson M, Balcells M, Fernández E (2003) Influence of surfactant molecules as air-entraining agent for bone cement macroporosity. J Biomed Mater Res A 65A:215–221

    Article  Google Scholar 

  366. Friberg J, Fernández E, Sarda S, Nilsson M, Ginebra MP, Martinez S, Planell JA (2001) An experimental approach to the study of the rheology behavior of synthetic bone calcium phosphate cements. Key Eng Mater 192–195:777–780

    Article  Google Scholar 

  367. Reinstorf A, Hempel U, Olgemöller F, Domaschke H, Schneiders W, Mai R, Stadlinger B, Rösen-Wolff A, Rammelt S, Gelinsky M, Pompe W (2006) O-phospho-L-serine modified calcium phosphate cements-material properties, in vitro and in vivo investigations. Mat-Wiss u Werkstofftech 37:491–503

    Article  Google Scholar 

  368. Lode A, Reinstorf A, Bernhardt A, Wolf-Brandstetter C, König U, Gelinsky M (2008) Heparin modification of calcium phosphate bone cements for VEGF functionalization. J Biomed Mater Res A 86A:749–759

    Article  Google Scholar 

  369. Mai R, Lux R, Proff P, Lauer G, Pradel W, Leonhardt H, Reinstorf A, Gelinsky M, Jung R, Eckelt U, Gedrange T, Stadlinger B (2008) O-phospho-L-serine: a modulator of bone healing in calcium-phosphate cements. Biomed Tech 53:229–233

    Article  Google Scholar 

  370. Vater C, Lode A, Bernhardt A, Reinstorf A, Nies B, Gelinsky M (2010) Modifications of a calcium phosphate cement with biomolecules – influence on nanostructure, material, and biological properties. J Biomed Mater Res A 95A:912–923

    Article  Google Scholar 

  371. Grover LM, Gbureck U, Farrar DF, Barralet JE (2006b) Adhesion of a novel calcium phosphate cement to cortical bone and several common biomaterials. Key Eng Mater 309-311:849–852

    Article  Google Scholar 

  372. Pastorino D, Canal C, Ginebra MP (2015a) Multiple characterization study on porosity and pore structure of calcium phosphate cements. Acta Biomater 28:205–214

    Article  Google Scholar 

  373. Markovic M, Takagi S, Chow LC (2001) Formation of macropores in calcium phosphate cements through the use of mannitol crystals. Key Eng Mater 192–195:773–776

    Article  Google Scholar 

  374. Tajima S, Kishi Y, Oda M, Maruta M, Matsuya S, Ishikawa K (2006) Fabrication of biporous low-crystalline apatite based on mannitol dissolution from apatite cement. Dent Mater J 25:616–620

    Article  Google Scholar 

  375. Xu HHK, Weir MD, Burguera EF, Fraser AM (2006) Injectable and macroporous calcium phosphate cement scaffold. Biomaterials 27:4279–4287

    Article  Google Scholar 

  376. Cama G, Barberis F, Botter R, Cirillo P, Capurro M, Quarto R, Scaglione S, Finocchio E, Mussi V, Valbusa U (2009) Preparation and properties of macroporous brushite bone cements. Acta Biomater 5:2161–2168

    Article  Google Scholar 

  377. Vazquez D, Takagi S, Frukhtbeyn S, Chow LC (2010) Effects of addition of mannitol crystals on the porosity and dissolution rates of a calcium phosphate cement. J Res Natl Inst Stand Technol 115:225–232

    Article  Google Scholar 

  378. Shimogoryo R, Eguro T, Kimura E, Maruta M, Matsuya S, Ishikawa K (2009) Effects of added mannitol on the setting reaction and mechanical strength of apatite cement. Dent Mater J 28:627–633

    Article  Google Scholar 

  379. Liu H, Liu XQ, Liang JS (2012) Basic properties of calcium phosphate cement scaffold. Adv Mater Res 531:354–357

    Article  Google Scholar 

  380. Almirall A, Larrecq G, Delgado JA, Martínez S, Planell JA, Ginebra MP (2004) Fabrication of low temperature macroporous hydroxyapatite scaffolds by foaming and hydrolysis of an α-TCP paste. Biomaterials 25:3671–3680

    Article  Google Scholar 

  381. Barralet JE, Grover L, Gaunt T, Wright AJ, Gibson IR (2002a) Preparation of macroporous calcium phosphate cement tissue engineering scaffold. Biomaterials 23:3063–3072

    Article  Google Scholar 

  382. Takagi S, Chow LC (2001) Formation of macropores in calcium phosphate cement implants. J Mater Sci Mater Med 12:135–139

    Article  Google Scholar 

  383. Tas AC (2008b) Preparation of porous apatite granules from calcium phosphate cement. J Mater Sci Mater Med 19:2231–2239

    Article  Google Scholar 

  384. Tas AC (2006) Preparation of self-setting cement-based micro- and macroporous granules of carbonated apatitic calcium phosphate. Ceram Eng Sci Proc 27:49–60

    Google Scholar 

  385. Cama G, Gharibi B, Knowles JC, Romeed S, di Silvio L, Deb S (2014) Structural changes and biological responsiveness of an injectable and mouldable monetite bone graft generated by a facile synthetic method. J R Soc Interface 11:20140727

    Article  Google Scholar 

  386. Simon CG Jr, Khatri CA, Wight SA, Wang FW (2002) Preliminary report on the biocompatibility of a moldable, resorbable, composite bone graft consisting of calcium phosphate cement and poly(lactide-co-glycolide) microspheres. J Orthop Res 20:473–482

    Article  Google Scholar 

  387. Ruhe PQ, Hedberg EL, Padron NT, Spauwen PHM, Jansen JA, Mikos AG (2005) Biocompatibility and degradation of poly(D,L-lactic-co-glycolic acid)/calcium phosphate cement composites. J Biomed Mater Res A 74A:533–544

    Article  Google Scholar 

  388. Habraken WJEM, Wolke JGC, Mikos AG, Jansen JA (2006) Injectable PLGA microsphere/calcium phosphate cements, physical properties and degradation characteristics. J Biomater Sci Polym Ed 17:1057–1074

    Article  Google Scholar 

  389. Link DP, van den Dolder J, Jurgens WJFM, Wolke JGC, Jansen JA (2006) Mechanical evaluation of implanted calcium phosphate cement incorporated with PLGA microparticles. Biomaterials 27:4941–4947

    Article  Google Scholar 

  390. Habraken WJEM, Wolke JGC, Mikos AG, Jansen JA (2008a) PLGA microsphere/calcium phosphate cement composites for tissue engineering, in vitro release and degradation characteristics. J Biomater Sci Polym Ed 19:1171–1188

    Article  Google Scholar 

  391. Link DP, van den Dolder J, van den Beucken JJJP, Cuijpers VM, Wolke JGC, Mikos AG, Jansen JA (2008a) Evaluation of the biocompatibility of calcium phosphate cement/PLGA microparticle composites. J Biomed Mater Res A 87A:760–769

    Article  Google Scholar 

  392. Lanao RPF, Leeuwenburgh SC, Wolke JG, Jansen JA (2011) In vitro degradation rate of apatitic calcium phosphate cement with incorporated PLGA microspheres. Acta Biomater 7:3459–3468

    Article  Google Scholar 

  393. Lopez-Heredia MA, Sariibrahimoglu K, Yang W, Bohner M, Yamashita D, Kunstar A, van Apeldoorn AA, Bronkhorst EM, Lanao RPF, Leeuwenburgh SCG, Itatani K, Yang F, Salmon P, Wolke JGC, Jansen JA (2012b) Influence of the pore generator on the evolution of the mechanical properties and the porosity and interconnectivity of a calcium phosphate cement. Acta Biomater 8:404–414

    Article  Google Scholar 

  394. Zhong ML, Chen XQ, Fan HS, Zhang XD (2012) Incorporation of salmon calcitonin-loaded poly(lactide-co-glycolide) (PLGA) microspheres into calcium phosphate bone cement and the biocompatibility evaluation in vitro. J Bioact Compat Polym 27:133–147

    Article  Google Scholar 

  395. van Houdt CIA, Preethanath RS, van Oirschot BAJA, Zwarts PHW, Ulrich DJO, Anil S, Jansen JA, van den Beucken JJJP (2016) Toward accelerated bone regeneration by altering poly(D,L-lactic-co-glycolic) acid porogen content in calcium phosphate cement. J Biomed Mater Res A 104:483–492

    Article  Google Scholar 

  396. Fullana SG, Ternet H, Freche M, Lacout JL, Rodriguez F (2010) Controlled release properties and final macroporosity of a pectin microspheres-calcium phosphate composite bone cement. Acta Biomater 6:2294–2300

    Article  Google Scholar 

  397. Li M, Liu X, Liu X, Ge B, Chen K (2009) Creation of macroporous calcium phosphate cements as bone substitutes by using genipin – crosslinked gelatin microspheres. J Mater Sci Mater Med 20:925–934

    Article  Google Scholar 

  398. Habraken WJEM, de Jonge LT, Wolke JGC, Yubao L, Mikos AG, Jansen JA (2008b) Introduction of gelatin microspheres into an injectable calcium phosphate cement. J Biomed Mater Res A 87A:643–655

    Article  Google Scholar 

  399. Matsumoto G, Sugita Y, Kubo K, Yoshida W, Ikada Y, Sobajima S, Neo M, Maeda H, Kinoshita Y (2014) Gelatin powders accelerate the resorption of calcium phosphate cement and improve healing in the alveolar ridge. J Biomater Appl 28:1316–1324

    Article  Google Scholar 

  400. Tang PF, Li G, Wang JF, Zheng QJ, Wang Y (2009) Development, characterization, and validation of porous carbonated hydroxyapatite bone cement. J Biomed Mater Res B Appl Biomater 90B:886–893

    Article  Google Scholar 

  401. Wang XP, Ye JD, Li X, Dong H (2008c) Production of in-situ macropores in an injectable calcium phosphate cement by introduction of cetyltrimethyl ammonium bromide. J Mater Sci Mater Med 19:3221–3225

    Article  Google Scholar 

  402. Habraken WJEM, Zhang Z, Wolke JGC, Grijpma DW, Mikos AG, Feijen J, Jansen JA (2008c) Introduction of enzymatically degradable poly(trimethylene carbonate) microspheres into an injectable calcium phosphate cement. Biomaterials 29:2464–2476

    Article  Google Scholar 

  403. Xu HHK, Simon CG Jr (2004a) Self-hardening calcium phosphate composite scaffold for bone tissue engineering. J Orthop Res 22:535–543

    Article  Google Scholar 

  404. Burguera EF, Xu HHK, Takagi S, Chow LC (2005) High early strength calcium phosphate bone cement: effects of dicalcium phosphate dihydrate and absorbable fibers. J Biomed Mater Res A 75A:966–975

    Article  Google Scholar 

  405. Xu HHK, Quinn JB (2002) Calcium phosphate cement containing resorbable fibers for short-term reinforcement and macroporosity. Biomaterials 23:193–202

    Article  Google Scholar 

  406. Gorst NJS, Perrie Y, Gbureck U, Hutton AL, Hofmann MP, Grover LM, Barralet JE (2006) Effects of fiber reinforcement on the mechanical properties of brushite cement. Acta Biomater 2:95–102

    Article  Google Scholar 

  407. Zuo Y, Yang F, Wolke JGC, Li Y, Jansen JA (2010) Incorporation of biodegradable electrospun fibers into calcium phosphate cement for bone regeneration. Acta Biomater 6:1238–1247

    Article  Google Scholar 

  408. Xu HHK, Simon CG Jr (2004b) Self-hardening calcium phosphate cement-mesh composite: reinforcement, macropores, and cell response. J Biomed Mater Res A 69A:267–278

    Article  Google Scholar 

  409. Losee JE, Karmacharya J, Gannon FH, Slemp AE, Ong G, Hunenko O, Gorden AD, Bartlett SP, Kirschner RE (2003) Reconstruction of the immature craniofacial skeleton with a carbonated calcium phosphate bone cement, interaction with bioresorbable mesh. J Craniofac Surg 14:117–124

    Article  Google Scholar 

  410. Xu HHK, Carey LE, Simon CG Jr (2007a) Premixed macroporous calcium phosphate cement scaffold. J Mater Sci Mater Med 18:1345–1353

    Article  Google Scholar 

  411. Vasconcellos LA, dos Santos LA (2013) Calcium phosphate cement scaffolds with PLGA fibers. Mater Sci Eng C 33:1032–1040

    Article  Google Scholar 

  412. Ginebra MP, Espanol M, Montufar EB, Perez RA, Mestres G (2010) New processing approaches in calcium phosphate cements and their applications in regenerative medicine. Acta Biomater 6:2863–2873

    Article  Google Scholar 

  413. del Real RP, Wolke JGC, Vallet-Regi M, Jansen JA (2002) A new method to produce macropores in calcium phosphate cements. Biomaterials 23:3673–3680

    Article  Google Scholar 

  414. del Real RP, Ooms E, Wolke JGC, Vallet-Regi M, Jansen JA (2003) In vivo bone response to porous calcium phosphate cement. J Biomed Mater Res A 65A:30–36

    Article  Google Scholar 

  415. Hesaraki S, Moztarzadeh F, Sharifi D (2007) Formation of interconnected macropores in apatitic calcium phosphate bone cement with the use of an effervescent additive. J Biomed Mater Res A 83A:80–87

    Article  Google Scholar 

  416. Hesaraki S, Zamanian A, Moztarzadeh F (2008) The influence of the acidic component of the gas-foaming porogen used in preparing an injectable porous calcium phosphate cement on its properties, acetic acid versus citric acid. J Biomed Mater Res B Appl Biomater 86B:208–216

    Article  Google Scholar 

  417. Hesaraki S, Moztarzadeh F, Solati-Hashjin M (2006) Phase evaluation of an effervescent-added apatitic calcium phosphate bone cement. J Biomed Mater Res B Appl Biomater 79B:203–209

    Article  Google Scholar 

  418. Ginebra MP, Delgado JA, Harr I, Almirall A, del Valle S, Planell JA (2007) Factors affecting the structure and properties of an injectable self-setting calcium phosphate foam. J Biomed Mater Res A 80A:351–361

    Article  Google Scholar 

  419. Montufar EB, Aguirre A, Gil C, Engel E, Traykova T, Planell JA, Ginebra MP (2010) Foamed surfactant solution as a template for self-setting injectable hydroxyapatite scaffolds for bone regeneration. Acta Biomater 6:876–885

    Article  Google Scholar 

  420. Montufar EB, Traykova T, Planell JA, Ginebra MP (2011) Comparison of a low molecular weight and a macromolecular surfactant as foaming agents for injectable self setting hydroxyapatite foams: polysorbate 80 versus gelatin. Mater Sci Eng C 31:1498–1504

    Article  Google Scholar 

  421. de Oliveira RC, Pereta NC, Bertran CA, Motisuke M, de Sousa E (2014) Study of in vitro degradation of brushite cements scaffolds. J Mater Sci Mater Med 25:2297–2303

    Article  Google Scholar 

  422. Pastorino D, Canal C, Ginebra MP (2015b) Drug delivery from injectable calcium phosphate foams by tailoring the macroporosity–drug interaction. Acta Biomater 12:250–259

    Article  Google Scholar 

  423. Zhang J, Liu W, Gauthier O, Sourice S, Pilet P, Rethore G, Khairoun K, Bouler JM, Tancret F, Weiss PA (2016) simple and effective approach to prepare injectable macroporous calcium phosphate cement for bone repair: syringe-foaming using a viscous hydrophilic polymeric solution. Acta Biomater 31:326–338

    Article  Google Scholar 

  424. Unosson JE, Persson C, Engqvist H (2015) An evaluation of methods to determine the porosity of calcium phosphate cements. J Biomed Mater Res B Appl Biomater 103B:62–71

    Article  Google Scholar 

  425. Andrianjatovo H, Lemaître J (1995) Effects of polysaccharides on the cement properties in the monocalcium phosphate/β-tricalcium phosphate system. Innov Tech Biol Med 16:140–147

    Google Scholar 

  426. Cherng A, Takagi S, Chow LC (1997) Effects of hydroxypropylmethylcellulose and other gelling agents on the handling properties of calcium phosphate cement. J Biomed Mater Res 35:273–277

    Article  Google Scholar 

  427. Yokoyama A, Matsuno H, Yamamoto S, Kawasaki T, Kohgo T, Uo M, Watari F, Nakasu M (2003) Tissue response to a newly developed calcium phosphate cement containing succinic acid and carboxymethyl-chitin. J Biomed Mater Res A 64A:491–501

    Article  Google Scholar 

  428. Jyoti MA, Thai VV, Min YK, Lee BT, Song HY (2010) In vitro bioactivity and biocompatibility of calcium phosphate cements using hydroxy-propyl-methyl-cellulose (HPMC). Appl Surf Sci 257:1533–1539

    Article  Google Scholar 

  429. Bigi A, Torricelli P, Fini M, Bracci B, Panzavolta S, Sturba L, Giardino RA (2004b) Biomimetic gelatin-calcium phosphate bone cement. Int J Artif Organs 27:664–673

    Google Scholar 

  430. Bigi A, Panzavolta S, Sturba L, Torricelli P, Fini M, Giardino R (2006) Normal and osteopenic bone-derived osteoblast response to a biomimetic gelatin – calcium phosphate bone cement. J Biomed Mater Res A 78A:739–745

    Article  Google Scholar 

  431. Fujishiro Y, Takahashi K, Sato T (2001) Preparation and compressive strength of α-tricalcium phosphate/gelatin gel composite cement. J Biomed Mater Res 54:525–530

    Article  Google Scholar 

  432. Bigi A, Panzavolta S, Rubini K (2004c) Setting mechanism of a biomimetic bone cement. Chem Mater 16:3740–3745

    Article  Google Scholar 

  433. Panzavolta S, Torricelli P, Sturba L, Bracci B, Giardino R, Bigi A (2008) Setting properties and in vitro bioactivity of strontium-enriched gelatin-calcium phosphate bone cements. J Biomed Mater Res A 84A:965–972

    Article  Google Scholar 

  434. Xu LX, Shi XT, Wang YP, Shi ZL (2008a) Performance of calcium phosphate bone cement using chitosan and gelatin as well as citric acid as hardening liquid. J Clin Rehabil Tissue Eng Res 12:6381–6384

    Google Scholar 

  435. Shie MY, Chen DCH, Wang CY, Chiang TY, Ding SJ (2008) Immersion behavior of gelatin-containing calcium phosphate cement. Acta Biomater 4:646–655

    Article  Google Scholar 

  436. Majekodunmi AO, Deb S, Nicholson JW (2003) Effect of molecular weight and concentration of poly(acrylic acid) on the formation of a polymeric calcium phosphate cement. J Mater Sci Mater Med 14:747–752

    Article  Google Scholar 

  437. Majekodunmi AO, Deb S (2007) Poly(acrylic acid) modified calcium phosphate cements, the effect of the composition of the cement powder and of the molecular weight and concentration of the polymeric acid. J Mater Sci Mater Med 18:1883–1888

    Article  Google Scholar 

  438. Chen WC, Ju CP, Wang JC, Hung CC, Lin JHC (2008) Brittle and ductile adjustable cement derived from calcium phosphate cement/polyacrylic acid composites. Dent Mater 24:1616–1622

    Article  Google Scholar 

  439. Komath M, Varma HK (2003) Development of a fully injectable calcium phosphate cement for orthopedic and dental applications. Bull Mater Sci 26:415–422

    Article  Google Scholar 

  440. Bohner M, Theiss F, Apelt D, Hirsiger W, Houriet R, Rizzoli G, Gnos E, Frei C, Auer JA, von Rechenberg B (2003) Compositional changes of a dicalcium phosphate dihydrate cement after implantation in sheep. Biomaterials 24:3463–3474

    Article  Google Scholar 

  441. Chavez GSC, Alge DL, Chu TMG (2011) Additive concentration effects on dicalcium phosphate dihydrate cements prepared using monocalcium phosphate monohydrate and hydroxyapatite. Biomed Mater 6:065007

    Article  Google Scholar 

  442. Engstrand J, Persson C, Engqvist H (2014) The effect of composition on mechanical properties of brushite cements. J Mech Behav Biomed Mater 29:81–90

    Article  Google Scholar 

  443. Leroux L, Hatim Z, Freche M, Lacout JL (1999) Effects of various adjuvants (lactic acid, glycerol and chitosan) on the injectability of a calcium phosphate cement. Bone 25:S31–S34

    Article  Google Scholar 

  444. Barralet JE, Tremayne MJ, Lilley KJ, Gbureck U (2005b) Chemical modification of calcium phosphate cements with α-hydroxy acids and their salts. Chem Mater 17:1313–1319

    Article  Google Scholar 

  445. Driessens FCM, Boltong MG, de Maeyer EAP, Verbeeck RMH, Wenz R (2000b) Effect of temperature and immersion on the setting of some calcium phosphate cements. J Mater Sci Mater Med 11:453–457

    Article  Google Scholar 

  446. Ishikawa K, Takagi S, Chow LC, Ishikawa Y (1995b) Properties and mechanisms of fast-setting calcium phosphate cements. J Mater Sci Mater Med 6:528–533

    Article  Google Scholar 

  447. Miyamoto Y, Ishikawa K, Fukao K, Sawada M, Nagayama M, Kon M, Asaoka K (1995) In vivo setting behavior of fast-setting calcium phosphate cement. Biomaterials 16:855–860

    Article  Google Scholar 

  448. Kawai T, Fujisawa N, Suzuki I, Ohtsuki C, Matsushima Y, Unuma H (2010) Control of setting behavior of calcium phosphate paste using gelatinized starch. J Ceram Soc Jpn 118:421–424

    Article  Google Scholar 

  449. Bohner M, Luginbühl R, Reber C, Doebelin N, Baroud G, Conforto E (2009) A physical approach to modify the hydraulic reactivity of α-tricalcium phosphate powder. Acta Biomater 5:3524–3535

    Article  Google Scholar 

  450. Egli RJ, Gruenenfelder S, Doebelin N, Hofstetter W, Luginbuehl R, Bohner M (2011) Thermal treatments of calcium phosphate biomaterials to tune the physico-chemical properties and modify the in vitro osteoclast response. Adv Eng Mater 13:B102–B107

    Article  Google Scholar 

  451. Takechi M, Miyamoto Y, Momota Y, Yuasa T, Tatehara S, Nagayama M, Ishikawa K (2004) Effects of various sterilization methods on the setting and mechanical properties of apatite cement. J Biomed Mater Res B Appl Biomater 69B:58–63

    Article  Google Scholar 

  452. Schneider G, Blechschmidt K, Linde D, Litschko P, Körbs T, Beleites E (2010) Bone regeneration with glass ceramic implants and calcium phosphate cements in a rabbit cranial defect model. J Mater Sci Mater Med 21:2853–2859

    Article  Google Scholar 

  453. Johal HS, Buckley RE, Le ILD, Leighton RK (2009) A prospective randomized controlled trial of a bioresorbable calcium phosphate paste (α-BSM) in treatment of displaced intra-articular calcaneal fractures. J Trauma Injury Infect Crit Care 67:875–882

    Article  Google Scholar 

  454. Yuasa T, Miyamoto Y, Ishikawa K, TakechiM NM, Suzuki K (2001) In vitro resorption of three apatite cements with osteoclasts. J Biomed Mater Res 54:344–350

    Article  Google Scholar 

  455. Puricelli E, Corsetti A, Ponzoni D, Martins GL, Leite MG, Santos LA (2010) Characterization of bone repair in rat femur after treatment with calcium phosphate cement and autogenous bone graft. Head Face Med 6:10

    Article  Google Scholar 

  456. Zhaoa X, Lib F, Lic S (2010) Degradation characteristic of strontium-containing calcium phosphate cement in vivo. Adv Mater Res 105–106:553–556

    Google Scholar 

  457. Khairoun I, Magne D, Gauthier O, Bouler JM, Aguado E, Daculsi G, Weiss P (2002) In vitro characterization and in vivo properties of a carbonated apatite bone cement. J Biomed Mater Res 60:633–642

    Article  Google Scholar 

  458. Mao K, Yang Y, Li J, Hao L, Tang P, Wang Z, Wen N, Du M, Wang J, Wang Y (2009) Investigation of the histology and interfacial bonding between carbonated hydroxyapatite cement and bone. Biomed Mater 4:045003

    Article  Google Scholar 

  459. Sanzana ES, Navarro M, Macule F, Suso S, Planell JA, Ginebra MP (2008) The in vivo behavior of calcium phosphate cements and glasses as bone substitutes. Acta Biomater 4:1924–1933

    Article  Google Scholar 

  460. Bodde EWH, Cammaert CTR, Wolke JGC, Spauwen PHM, Jansen JA (2007) Investigation as to the osteoinductivity of macroporous calcium phosphate cement in goats. J Biomed Mater Res B Appl Biomater 83B:161–168

    Article  Google Scholar 

  461. Miyamoto Y, Ishikawa K, Takeshi M, Toh T, Yoshida Y, Nagayama M, Kon M, Asaoka K (1997) Tissue response to fast-setting calcium phosphate cement in bone. J Biomed Mater Res 37:457–464

    Article  Google Scholar 

  462. Young S, Holde M, Gunasekaran S, Poser R, Constantz BR (1998) The correlation of radiographic, MRI and histological evaluations over two years of a carbonated apatite cement in a rabbit model. In: Proceedings of the 44th annual meeting, Orthopedic Research Society, New Orleans, USA, pp 846

    Google Scholar 

  463. Feng B, Guolin M, Yuan Y, Liu C, Zhen W, Jian L (2010) Role of macropore size in the mechanical properties and in vitro degradation of porous calcium phosphate cements. Mater Lett 64:2028–2031

    Article  Google Scholar 

  464. An J, Liao H, Kucko NW, Herber RPC, Wolke JGC, van den Beucken JJJP, Jansen JA, Leeuwenburgh SCG (2016b) Long-term evaluation of the degradation behavior of three apatite-forming calcium phosphate cements. J Biomed Mater Res A 104A:1072–1081

    Article  Google Scholar 

  465. Kroese-Deutman HC, Wolke JGC, Spauwen PHM, Jansen JA (2006) Closing capacity of cranial bone defects using porous calcium phosphate cement implants in a rabbit animal model. J Biomed Mater Res A 79A:503–511

    Article  Google Scholar 

  466. Bourgeois B, Laboux O, Obadia L, Gauthier O, Betti E, Aguado E, Daculsi G, Bouler JM (2003) Calcium-deficient apatite: a first in vivo study concerning bone ingrowth. J Biomed Mater Res A 65A:402–408

    Article  Google Scholar 

  467. Lu J, Descamps M, Dejou J, Koubi G, Hardouin P, Lemaître J, Proust JP (2002) The biodegradation mechanism of calcium phosphate biomaterials in bone. J Biomed Mater Res Appl Biomater 63:408–412

    Article  Google Scholar 

  468. Wenisch S, Stahl JP, Horas U, Heiss C, Kilian O, Trinkaus K, Hild A, Schnettler R (2003) In vivo mechanisms of hydroxyapatite ceramic degradation by osteoclasts, fine structural microscopy. J Biomed Mater Res A 67A:713–718

    Article  Google Scholar 

  469. Ajaxon I, Öhman C, Persson C (2015) Long-term in vitro degradation of a high-strength brushite cement in water, PBS, and serum solution. BioMed Res Int 2015:575079

    Article  Google Scholar 

  470. Grossardt C, Ewald A, Grover LM, Barralet JE, Gbureck U (2010) Passive and active in vitro resorption of calcium and magnesium phosphate cements by osteoclastic cells. Tissue Eng A 16:3687–3695

    Article  Google Scholar 

  471. Ooms EM, Wolke JGC, van der Waerden JP, Jansen JA (2002) Trabecular bone response to injectable calcium phosphate (Ca-P) cement. J Biomed Mater Res 61:9–18

    Article  Google Scholar 

  472. Theiss F, Apelt D, Brand B, Kutter A, Zlinszky K, Bohner M, Matter S, Frei C, Auer JA, von Rechenberg B (2005) Biocompatibility and resorption of a brushite calcium phosphate cement. Biomaterials 26:4383–4394

    Article  Google Scholar 

  473. Heymann D, Pradal G, Benahmad M (1999) Cellular mechanisms of calcium phosphate degradation. Histol Histopathol 14:871–877

    Google Scholar 

  474. Kanter B, Geffers M, Ignatius A, Gbureck U (2014) Control of in vivo mineral bone cement degradation. Acta Biomater 10:3279–3287

    Article  Google Scholar 

  475. PenelG LN, van Landuyt P, Flautre B, Hardouin P, Lemaître J, Leroy G (1999) Raman microspectrometry studies of brushite cement: in vivo evolution in a sheep model. Bone 25(Suppl 2):81S–84S

    Article  Google Scholar 

  476. Dorozhkin SV (1999) Inorganic chemistry of the dissolution phenomenon, the dissolution mechanism of calcium apatites at the atomic (ionic) level. Comment Inorg Chem 20:285–299

    Article  Google Scholar 

  477. Dorozhkin SV (2012b) Dissolution mechanism of calcium apatites in acids: a review of literature. World J Methodol 2:1–17

    Article  Google Scholar 

  478. Alge DL, Goebel WS, Chu TMG (2013) Effects of DCPD cement chemistry on degradation properties and cytocompatibility: comparison of MCPM/β-TCP and MCPM/HA formulations. Biomed Mater 8:025010

    Article  Google Scholar 

  479. Knabe C, Driessens FCM, Planell JA, Gildenhaar R, Berger G, Reif D, Fitzner R, Radlanski RJ, Gross U (2000) Evaluation of calcium phosphates and experimental calcium phosphate bone cements using osteogenic cultures. J Biomed Mater Res 52:498–508

    Article  Google Scholar 

  480. Teitelbaum SL (2000) Bone resorption by osteoclasts. Science 289:1504–1508

    Article  Google Scholar 

  481. Mostov K, Werb Z (1997) Journey across the osteoclast. Science 276:219–220

    Article  Google Scholar 

  482. Rodan GA, Martin TJ (2000) Therapeutic approaches to bone diseases. Science 289:1508–1514

    Article  Google Scholar 

  483. Sugawara A, Asaoka K, Ding SJ (2013) Calcium phosphate-based cements: clinical needs and recent progress. J Mater Chem B 1:1081–1089

    Article  Google Scholar 

  484. Midy V, Hollande E, Rey C, Dard M, Plouët J (2001) Adsorption of vascular endothelial growth factor to two different apatitic materials and its release. J Mater Sci Mater Med 12:293–298

    Article  Google Scholar 

  485. Hossain M, Irwin R, Baumann MJ, McCabe LR (2005) Hepatocyte growth factor (HGF) adsorption kinetics and enhancement of osteoblast differentiation on hydroxyapatite surfaces. Biomaterials 26:2595–2602

    Article  Google Scholar 

  486. Sun L, Berndt CC, Gross KA, Kucuk A (2001) Material fundamentals and clinical performance of plasma-sprayed hydroxyapatite coatings, a review. J Biomed Mater Res B Appl Biomater 58:570–592

    Article  Google Scholar 

  487. Renault F, Chabriere E, Andrieu JP, Dublet B, Masson P, Rochu D (2006) Tandem purification of two HDL-associated partner proteins in human plasma, paraoxonase (PON1) and phosphate binding protein (HPBP) using hydroxyapatite chromatography. J Chromatogr B 836:15–21

    Article  Google Scholar 

  488. Yoshitake T, Kobayashi S, Ogawa T, Okuyama T (2006) Hydroxyapatite chromatography of guanidine denatured proteins: 1 guanidine containing phosphate buffer system. Chromatography 27:19–26

    Google Scholar 

  489. Ooms EM, Egglezos EA, Wolke JGC, Jansen JA (2003a) Soft-tissue response to injectable calcium phosphate cements. Biomaterials 24:749–757

    Article  Google Scholar 

  490. Ooms EM, Wolke JGC, van de Heuvel MT, Jeschke B, Jansen JA (2003b) Histological evaluation of the bone response to calcium phosphate cement implanted in cortical bone. Biomaterials 24:989–1000

    Article  Google Scholar 

  491. Kobayashi N, Ong K, Villarraga M, Schwardt J, Wenz R, Togawa D, Fujishiro T, Turner AS, Seim HB III, Bauer TW (2007) Histological and mechanical evaluation of self-setting calcium phosphate cements in a sheep vertebral bone void model. J Biomed Mater Res A 81A:838–846

    Article  Google Scholar 

  492. Wen CY, Qin L, Lee KM, Chan KM (2009) The use of brushite calcium phosphate cement for enhancement of bone-tendon integration in an anterior cruciate ligament reconstruction rabbit model. J Biomed Mater Res B Appl Biomater 89B:466–474

    Article  Google Scholar 

  493. Musha Y, Umeda T, Yoshizawa S, Shigemitsu T, Mizutani K, Itatani K (2010) Effects of blood on bone cement made of calcium phosphate: problems and advantages. J Biomed Mater Res B Appl Biomater 2010(92B):95–101

    Article  Google Scholar 

  494. Altundal S, Gross KA, Ohman C, Engqvist H (2015) Improving the flexural strength test of brushite cement. Key Eng Mater 631:67–72

    Article  Google Scholar 

  495. Fernández E, Ginebra MP, Bermudez O, Boltong MG, Driessens FCM, Planell JA (1995) Dimensional and thermal behaviour of calcium phosphate cements during setting compared to PMMA bone cements. J Mater Sci Lett 14:4–5

    Article  Google Scholar 

  496. O’Hara RM, Orr JF, Buchanan FJ, Wilcox RK, Barton DC, Dunne NJ (2012) Development of a bovine collagen-apatitic calcium phosphate cement for potential fracture treatment through vertebroplasty. Acta Biomater 8:4043–4052

    Article  Google Scholar 

  497. Pittet C, Lemaître J (2000) Mechanical characterization of brushite cements: a Mohr circles approach. J Biomed Mater Res Appl Biomater 53:769–780

    Article  Google Scholar 

  498. Andrianjatovo H, Jose F, Lemaître J (1996) Effect of β-TCP granulometry on setting time and strength of calcium orthophosphate hydraulic cements. J Mater Sci Mater Med 7:34–39

    Article  Google Scholar 

  499. Ishikawa K, Takagi S, Chow LC, Ishikawa Y, Eanes ED, Asaoka K (1994) Behavior of a calcium orthophosphate cement in simulated blood plasma in vitro. Dent Mater 10:26–32

    Article  Google Scholar 

  500. Driessens FCM (1999) Chemistry and applied aspects of calcium orthophosphate bone cements. In: Concepts and clinical applications of ionic cements, 15th European conference on biomaterials Arcachon, Bordeaux, France

    Google Scholar 

  501. Yamamoto H, Niwa S, Hori M, Hattori T, Sawai K, Aoki S, Hirano M, Takeuchi H (1998) Mechanical strength of calcium phosphate cement in vivo and in vitro. Biomaterials 19:1587–1591

    Article  Google Scholar 

  502. Morgan EF, Yetkinler DN, Constantz BR, Dauskardt RH (1997) Mechanical properties of carbonated apatite bone mineral substitute: strength, fracture and fatigue behavior. J Mater Sci Mater Med 8:559–570

    Article  Google Scholar 

  503. Miyazaki K, Horibe T, Antonucci JM, Takagi S, Chow LC (1993a) Polymeric calcium phosphate cements, analysis of reaction products and properties. Dent Mater 9:41–45

    Article  Google Scholar 

  504. Miyazaki K, Horibe T, Antonucci JM, Takagi S, Chow LC (1993b) Polymeric calcium phosphate cements: setting reaction modifiers. Dent Mater 9:46–50

    Article  Google Scholar 

  505. dos Santos LA, de Oliveira LC, Rigo ECS, Carrodeguas RG, Boschi AO, de Arruda ACF (1999) Influence of polymeric additives on the mechanical properties of α-tricalcium phosphate cement. Bone 25:99S–102S

    Article  Google Scholar 

  506. Mickiewicz RA, Mayes AM, Knaack D (2002) Polymer – calcium phosphate cement composites for bone substitutes. J Biomed Mater Res 61:581–592

    Article  Google Scholar 

  507. Fernández E, Sarda S, Hamcerencu M, Vlad MD, Gel M, Valls S, Torres R, López J (2005c) High-strength apatitic cement by modification with superplasticizers. Biomaterials 26:2289–2296

    Article  Google Scholar 

  508. Takahashi T, Yamamoto M, Ioku K, Goto S (1997) Relationship between compressive strength and pore structure of hardened cement pastes. Adv Cement Res 9:25–30

    Article  Google Scholar 

  509. Costantino PD, Friedman CD, Jones K, Chow LC, Sisson GA (1992) Experimental hydroxyapatite cement cranioplasty. Plast Reconstr Surg 90:174–185

    Article  Google Scholar 

  510. Chow LC, Hirayama S, Takagi S, Parry E (2000) Diametral tensile strength and compressive strength of a calcium phosphate cement, effect of applied pressure. J Biomed Mater Res Appl Biomater 53:511–517

    Article  Google Scholar 

  511. Barralet JE, Gaunt T, Wright AJ, Gibson IR, Knowles JC (2002b) Effect of porosity reduction by compaction on compressive strength and microstructure of calcium phosphate cement. J Biomed Mater Res Appl Biomater 63:1–9

    Article  Google Scholar 

  512. Zhang Y, Xu HHK, Takagi S, Chow LC (2006) In situ hardening hydroxyapatite-based scaffold for bone repair. J Mater Sci Mater Med 17:437–445

    Article  Google Scholar 

  513. Geffers M, Groll J, Gbureck U (2015a) Reinforcement strategies for load-bearing calcium phosphate biocements. Materials 8:2700–2717

    Article  Google Scholar 

  514. Khairoun I, LeGeros RZ, Daculsi G, Bouler JM, Guicheux J, Gauthier O (2008) Macroporous, resorbable and injectable calcium phosphate-based cements (MCPC) for bone repair: augmentation, regeneration and osteoporosis treatment. US patent No 7351280

    Google Scholar 

  515. Speirs AD, Oxland TR, Masri BA, Poursartip A, Duncan CP (2005) Calcium phosphate cement composites in revision hip arthroplasty. Biomaterials 26:7310–7318

    Article  Google Scholar 

  516. dos Santos LA, Carrodeguas RG, Boschi AO, de Arruda ACF (2003a) Fiber-enriched double-setting calcium phosphate bone cement. J Biomed Mater Res A 65A:244–250

    Article  Google Scholar 

  517. Gbureck U, Spatz K, Thull R (2003b) Improvement of mechanical properties of self-setting calcium phosphate bone cements mixed with different metal oxides. Mat-Wiss u Werkstofftech 34:1036–1040

    Article  Google Scholar 

  518. Zhang Y, Xu HHK (2005) Effects of synergistic reinforcement and absorbable fiber strength on hydroxyapatite bone cement. J Biomed Mater Res A 75A:832–840

    Article  Google Scholar 

  519. Buchanan F, Gallagher L, Jack V, Dunne N (2007) Short-fibre reinforcement of calcium phosphate bone cement. Proc Inst Mech Eng H: J Eng Med 221:203–212

    Article  Google Scholar 

  520. Guo H, Wei J, Song W, Zhang S, Yan Y, Liu C, Xiao T (2012) Wollastonite nanofiber-doped self-setting calcium phosphate bioactive cement for bone tissue regeneration. Int J Nanomed 7:3613–3624

    Article  Google Scholar 

  521. Srakaew N, Rattanachan ST (2012) Effect of apatite wollastonite glass ceramic addition on brushite bone cement containing chitosan. Adv Mater Res 506:106–109

    Article  Google Scholar 

  522. Mohammadi M, Hesaraki S, Hafezi-Ardakani M (2014) Investigation of biocompatible nanosized materials for development of strong calcium phosphate bone cement: comparison of nano-titania, nano-silicon carbide and amorphous nano-silica. Ceram Int 40:8377–8387

    Article  Google Scholar 

  523. Wu TY, Zhou ZB, He ZW, Ren WP, Yu XW, Huang Y (2014) Reinforcement of a new calcium phosphate cement with RGD-chitosan-fiber. J Biomed Mater Res A 102A:68–75

    Article  Google Scholar 

  524. Maenz S, Kunisch E, Mühlstädt M, Böhm A, Kopsch V, Bossert J, Kinne RW, Jandt KD (2014) Enhanced mechanical properties of a novel, injectable, fiber-reinforced brushite cement. J Mech Behav Biomed Mater 39:328–338

    Article  Google Scholar 

  525. Motisuke M, Santos VR, Bazanini NC, Bertran CA (2014) Apatite bone cement reinforced with calcium silicate fibers. J Mater Sci Mater Med 25:2357–2363

    Article  Google Scholar 

  526. Maenz S, Hennig M, Mühlstädt M, Kunisch E, Bungartz M, Brinkmann O, Bossert J, Kinne RW, Jandt KD (2016) Effects of oxygen plasma treatment on interfacial shear strength and post-peak residual strength of a PLGA fiber-reinforced brushite cement. J Mech Behav Biomed Mater 57:347–358

    Article  Google Scholar 

  527. Yu W, Wang X, Zhao J, Tang Q, Wang M, Ning X (2015) Preparation and mechanical properties of reinforced hydroxyapatite bone cement with nano-ZrO2. Ceram Int 41:10600–10606

    Article  Google Scholar 

  528. Wang X, Ye J, Wang Y, Chen L (2007d) Reinforcement of calcium phosphate cement by bio-mineralized carbon nanotube. J Am Ceram Soc 90:962–964

    Article  Google Scholar 

  529. Chew KK, Low KL, Zein SHS, McPhail DS, Gerhardt LC, Roether JA, Boccaccini AR (2011) Reinforcement of calcium phosphate cement with multi-walled carbon nanotubes and bovine serum albumin for injectable bone substitute applications. J Mech Behav Biomed Mater 4:331–339

    Article  Google Scholar 

  530. Low KL, Tan SH, Zein SHS, McPhail DS, Boccaccini AR (2011) Optimization of the mechanical properties of calcium phosphate/multi-walled carbon nanotubes/bovine serum albumin composites using response surface methodology. J Mater Des 32:3312–3319

    Article  Google Scholar 

  531. Lin B, Zhou H, Leaman DW, Goel VK, Agarwal AK, Bhaduri SB (2014) Sustained release of small molecules from carbon nanotube-reinforced monetite calcium phosphate cement. Mater Sci Eng C 43:92–96

    Article  Google Scholar 

  532. Vélez D, Arita IH, García-Garduño MV, Castaño VM (1994) Synthesis and characterization of a hydroxyapatite-zinc oxide-polyacrylic acid concrete. Mater Lett 19:309–315

    Article  Google Scholar 

  533. http://enwikipediaorg/wiki/Concrete. Accessed in Dec 2016

    Google Scholar 

  534. Tadier S, Galea L, Charbonnier B, Baroud G, Bohner M (2014) Phase and size separations occurring during the injection of model pastes composed of β-tricalcium phosphate powder, glass beads and aqueous solutions. Acta Biomater 10:2259–2268

    Article  Google Scholar 

  535. Dickens-Venz SH, Takagi S, Chow LC, Bowen RL, Johnston AD, Dickens B (1994) Physical and chemical properties of resin-reinforced calcium phosphate cements. Dent Mater 10:100–106

    Article  Google Scholar 

  536. Xu HHK, Eichmiller FC, Barndt PR (2001a) Effects of fiber length and volume fraction on the reinforcement of calcium phosphate cement. J Mater Sci Mater Med 12:57–65

    Article  Google Scholar 

  537. Alge DL, Bennett J, Treasure T, Voytik-Harbin S, Goebel WS, Chu TMG (2012b) Poly(propylene fumarate) reinforced dicalcium phosphate dihydrate cement composites for bone tissue engineering. J Biomed Mater Res A 100A:1792–1802

    Article  Google Scholar 

  538. Takagi S, Chow LC, Hirayama S, Eichmiller FC (2003a) Properties of elastomeric calcium phosphate cement-chitosan composites. Dent Mater 19:797–804

    Article  Google Scholar 

  539. Xu HHK, Quinn JB, Takagi S, Chow LC (2004a) Synergistic reinforcement of in situ hardening calcium phosphate composite scaffold for bone tissue engineering. Biomaterials 25:1029–1037

    Article  Google Scholar 

  540. Yokoyama A, Yamamoto S, Kawasaki T, KohgoT NM (2002) Development of calcium phosphate cement using chitosan and citric acid for bone substitute materials. Biomaterials 23:1091–1101

    Article  Google Scholar 

  541. Xu HHK, Simon CG Jr (2005) Fast setting calcium phosphate-chitosan scaffold: mechanical properties and biocompatibility. Biomaterials 26:1337–1348

    Article  Google Scholar 

  542. Sun L, Xu HHK, Takagi S, Chow LC (2007) Fast setting calcium phosphate cement – chitosan composite, mechanical properties and dissolution rates. J Biomater Appl 21:299–316

    Article  Google Scholar 

  543. Pan ZH, Jiang PP, Fan QY, Ma B, Cai HP (2007) Mechanical and biocompatible influences of chitosan fiber and gelatin on calcium phosphate cement. J Biomed Mater Res B Appl Biomater 82B:246–252

    Article  Google Scholar 

  544. Liu H, LiH CW, Yang Y, Zhu M, Zhou C (2006b) Novel injectable calcium phosphate/chitosan composites for bone substitute materials. Acta Biomater 2:557–565

    Article  Google Scholar 

  545. Pan ZH, Cai HP, Jiang PP, Fan QY (2006) Properties of a calcium phosphate cement synergistically reinforced by chitosan fiber and gelatin. J Polymer Res 13:323–327

    Article  Google Scholar 

  546. Weir MD, Xu HHK (2008) High-strength, in situ-setting calcium phosphate composite with protein release. J Biomed Mater Res A 85A:388–396

    Article  Google Scholar 

  547. Lian Q, LiDC HJK, Wang Z (2008) Mechanical properties and in-vivo performance of calcium phosphate cement – chitosan fibre composite. Proc Inst Mech Eng H: J Eng Med 222:347–353

    Article  Google Scholar 

  548. Wang X, Chen L, Xiang H, Ye J (2007e) Influence of anti-washout agents on the rheological properties and injectability of a calcium phosphate cement. J Biomed Mater Res B Appl Biomater 81B:410–418

    Article  Google Scholar 

  549. Tanaka S, Kishi T, Shimogoryo R, Matsuya S, Ishikawa K (2003) Biopex acquires anti-washout properties by adding sodium alginate into its liquid phase. Dent Mater J 22:301–312

    Article  Google Scholar 

  550. Sariibrahimoglu K, Leeuwenburgh SCG, Wolke JGC, Yubao L, Jansen JA (2012) Effect of calcium carbonate on hardening, physicochemical properties, and in vitro degradation of injectable calcium phosphate cements. J Biomed Mater Res A 100A:712–719

    Article  Google Scholar 

  551. Lin J, Zhang S, Chen T, Liu C, Lin S, Tian X (2006) Calcium phosphate cement reinforced by polypeptide copolymers. J Biomed Mater Res B Appl Biomater 76B:432–439

    Article  Google Scholar 

  552. Liu H, Guan Y, Wei D, Gao C, Yang H, Yang L (2016) Reinforcement of injectable calcium phosphate cement by gelatinized starches. J Biomed Mater Res B Appl Biomater 104:615–625

    Article  Google Scholar 

  553. Lopez-Heredia MA, Pattipeilohy J, Hsu S, Grykien M, van der Weijden B, Leeuwenburgh SCG, Salmon P, Wolke JGC, Jansen JA (2013) Bulk physicochemical, interconnectivity, and mechanical properties of calcium phosphate cements-fibrin glue composites for bone substitute applications. J Biomed Mater Res A 101A:478–490

    Article  Google Scholar 

  554. Krüger R, Seitz JM, Ewald A, Bach FW, Groll J (2013) Strong and tough magnesium wire reinforced phosphate cement composites for load-bearing bone replacement. J Mech Behav Biomed Mater 20:36–44

    Article  Google Scholar 

  555. Miyamoto Y, Ishikawa K, Takechi M, Toh T, Yuasa T, Nagayama M, Suzuki K (1998) Basic properties of calcium phosphate cement containing atelocollagen in its liquid or powder phases. Biomaterials 19:707–715

    Article  Google Scholar 

  556. Knepper-Nicolai B, Reinstorf A, Hofinger I, Flade K, Wenz R, Pompe W (2002) Influence of osteocalcin and collagen I on the mechanical and biological properties of Biocement D®. Biomol Eng 19:227–231

    Article  Google Scholar 

  557. Hempel U, Reinstorf A, Poppe M, Fischer U, Gelinsky M, Pompe W, Wenzel KW (2004) Proliferation and differentiation of osteoblasts on Biocement D® modified with collagen type I and citric acid. J Biomed Mater Res B Appl Biomater 71B:130–143

    Article  Google Scholar 

  558. Reinstorf A, Ruhnow M, Gelinsky M, Pompe W, Hempel U, Wenzel KW, Simon P (2004) Phosphoserine – a convenient compound for modification of calcium phosphate bone cement collagen composites. J Mater Sci Mater Med 15:451–455

    Article  Google Scholar 

  559. Otsuka M, Kuninaga T, Otsuka K, Higuchi WI (2006) Effect of nanostructure on biodegradation behaviors of self-setting apatite/collagen composite cements containing vitamin K2 in rats. J Biomed Mater Res B Appl Biomater 79B:176–184

    Article  Google Scholar 

  560. Moreau JL, Weir MD, Xu HHK (2009) Self-setting collagen – calcium phosphate bone cement: mechanical and cellular properties. J Biomed Mater Res A 91A:605–613

    Article  Google Scholar 

  561. Otsuka M, Nakagawa H, Ito A, Higuchi WI (2010) Effect of geometrical structure on drug release rate of a three-dimensionally perforated porous apatite/collagen composite cement. J Pharm Sci 99:286–292

    Article  Google Scholar 

  562. Dunne N, O’Gara R, Buchanan F, Orr J (2012) Effect of liquid/powder ratio on the setting, handling and mechanical properties of collagen-apatitic cements. Key Eng Mater 493–494:415–421

    Google Scholar 

  563. Perez RA, Ginebra MP (2013) Injectable collagen/α-tricalcium phosphate cement: collagen-mineral phase interactions and cell response. J Mater Sci Mater Med 24:381–393

    Article  Google Scholar 

  564. Palmer I, Nelson J, Schatton W, Dunne NJ, Buchanan FJ, Clarke SA (2016) Biocompatibility of calcium phosphate bone cement with optimized mechanical properties. J Biomed Mater Res B Appl Biomater 104:308–315

    Article  Google Scholar 

  565. Gbureck U, Spatz K, Thull R, Barralet JE (2005d) Rheological enhancement of mechanically activated α-tricalcium phosphate cements. J Biomed Mater Res B Appl Biomater 73B:1–6

    Article  Google Scholar 

  566. Canal C, Ginebra MP (2011) Fibre-reinforced calcium phosphate cements: a review. J Mech Behav Biomed Mater 4:1658–1671

    Article  Google Scholar 

  567. Xu HHK, Eichmiller FC, Giuseppetti AA (2000) Reinforcement of a self-setting calcium phosphate cement with different fibers. J Biomed Mater Res 52:107–114

    Article  Google Scholar 

  568. Xu HHK, Quinn JB, Takagi S, Chow LC, Eichmiller FC (2001b) Strong and macroporous calcium phosphate cement: effects of porosity and fiber reinforcement on mechanical properties. J Biomed Mater Res 57:457–466

    Article  Google Scholar 

  569. dos Santos LA, Carrodeguas RG, Boschi AO, de Arruda ACF (2003b) Dual-setting calcium phosphate cement modified with ammonium polyacrylate. Artif Organs 27:412–418

    Article  Google Scholar 

  570. Rigo ECS, dos Santos LA, Vercik LCO, Carrodeguas RG, Boschi AO (2007) α-tricalcium phosphate- and tetracalcium phosphate/dicalcium phosphate-based dual setting cements. Lat Am Appl Res 37:267–274

    Google Scholar 

  571. Barounian M, Hesaraki S, Kazemzadeh A (2012) Development of strong and bioactive calcium phosphate cement as a light-cure organic-inorganic hybrid. J Mater Sci Mater Med 23:1569–1581

    Article  Google Scholar 

  572. Christel T, Kuhlmann M, Vorndran E, Groll J, Gbureck U (2013) Dual setting α-tricalcium phosphate cements. J Mater Sci Mater Med 24:573–581

    Article  Google Scholar 

  573. Geffers M, Barralet JE, Groll J, Gbureck U (2015b) Dual-setting brushite–silica gel cements. Acta Biomater 11:467–476

    Article  Google Scholar 

  574. Hurle K, Christel T, Gbureck U, Moseke C, Neubauer J, Goetz-Neunhoeffer F (2016) Reaction kinetics of dual setting α-tricalcium phosphate cements. J Mater Sci Mater Med 27:1

    Article  Google Scholar 

  575. dos Santos LA, de Oliveira LC, da Silva Rigo EC, Carrodéguas RG, Boschi AO, de Arruda ACF (2000) Fiber reinforced calcium phosphate cement. Artif Organs 24:212–216

    Article  Google Scholar 

  576. Ogasawara T, Sawamura T, Maeda H, Obata A, Hirata H, Kasuga T (2016) Enhancing the mechanical properties of calcium phosphate cements using short-length polyhydroxyalkanoate fibers. J Ceram Soc Jpn 124:180–183

    Article  Google Scholar 

  577. Liu CS, Chen CW, Ducheyne P (2008a) In vitro surface reaction layer formation and dissolution of calcium phosphate cement-bioactive glass composites. Biomed Mater 3:034111. (11 pages)

    Article  Google Scholar 

  578. Renno ACM, van de Watering FCJ, Nejadnik MR, Crovace MC, Zanotto ED, Wolke JGC, Jansen JA, van den Beucken JJJP (2013a) Incorporation of bioactive glass in calcium phosphate cement: an evaluation. Acta Biomater 9:5728–5739

    Article  Google Scholar 

  579. Renno ACM, Nejadnik MR, van de Watering FCJ, Crovace MC, Zanotto ED, Hoefnagels JPM, Wolke JGC, Jansen JA, van den Beucken JJJP (2013b) Incorporation of bioactive glass in calcium phosphate cement: material characterization and in vitro degradation. J Biomed Mater Res A 101A:2365–2373

    Article  Google Scholar 

  580. Yu L, Li Y, Zhao K, Tang Y, Cheng Z, Chen J, Zang Y, Wu J, Kong L, Liu S, Lei W, Wu Z (2013) A novel injectable calcium phosphate cement-bioactive glass composite for bone regeneration. PLoS ONE 8:e62570

    Article  Google Scholar 

  581. Alge DL, Chu TMG (2010) Calcium phosphate cement reinforcement by polymer infiltration and in situ curing: a method for 3D scaffold reinforcement. J Biomed Mater Res A 94A:547–555

    Google Scholar 

  582. Julien M, Khairoun I, LeGeros RZ, Delplace S, Pilet P, Weiss P, Daculsi G, Bouler JM, Guicheux J (2007) Physico-chemical-mechanical and in vitro biological properties of calcium phosphate cements with doped amorphous calcium phosphates. Biomaterials 28:956–965

    Article  Google Scholar 

  583. Lemaître J, Munting E, Mirtchi AA (1992) Setting, hardening and resorption of calcium phosphate hydraulic cements. Rev Stomatol Chir Maxillofac 93:163–165

    Google Scholar 

  584. Müller FA, Gbureck U, Kasuga T, Mizutani Y, Barralet JE, Lohbauer U (2007) Whisker-reinforced calcium phosphate cements. J Am Ceram Soc 90:3694–3697

    Article  Google Scholar 

  585. Nakagawa A, Matsuya S, Takeuchi A, Ishikawa K (2007) Comparison of the effects of added α- and β-tricalcium phosphate on the basic properties of apatite cement. Dent Mater J 26:342–347

    Article  Google Scholar 

  586. Gu T, Shi H, Ye J (2012) Reinforcement of calcium phosphate cement by incorporating with high-strength β-tricalcium phosphate aggregates. J Biomed Mater Res B Appl Biomater 100B:350–359

    Article  Google Scholar 

  587. Zhao P, Zhao S, Zhao T, Ren X, Wang F, Chen X (2012) Hydroxyapatite whisker effect on strength of calcium phosphate bone cement. Adv Mater Res 534:30–33

    Article  Google Scholar 

  588. Chu B, Xiong J, Wang MB, Li XL, She ZD (2013) Study on hydroxyapatite fibers with strontium reinforced calcium phosphate cement. Adv Mater Res 788:119–126

    Article  Google Scholar 

  589. Srakaew N, Rattanachan ST (2014) The pH-dependent properties of the biphasic calcium phosphate for bone cements. J Biomim Biomater Biomed Eng 21:3–16

    Article  Google Scholar 

  590. Sarkar SK, Lee BY, Padalhin AR, Sarker A, Carpena N, Kim B, Paul K, Choi HJ, Bae SH, Lee BT (2016) Brushite-based calcium phosphate cement with multichannel hydroxyapatite granule loading for improved bone regeneration. J Biomater Appl 30:823–837

    Article  Google Scholar 

  591. Gisep A, Wieling R, Bohner M, Matter S, Schneider E, Rahn B (2003) Resorption patterns of calcium-phosphate cements in bone. J Biomed Mater Res A 66A:532–540

    Article  Google Scholar 

  592. van den Vreken NMF, Pieters IY, Declercq HA, Cornelissen MJ, Verbeeck RMH (2010) Characterization of calcium phosphate cements modified by addition of amorphous calcium phosphate. Acta Biomater 6:617–625

    Article  Google Scholar 

  593. Zhou L, Yan JL, Hu CJ (2007) Degradation of bone repairing composite of calcium polyphosphate fiber, calcium phospate cement and micromorselized bone in vitro. J Clin Rehabilit Tiss Eng Res 11:33–36

    Google Scholar 

  594. Xu LX, Shi XT, Wang YP, Shi ZL (2009) Mechanical effect of calcium polyphosphate fiber on reinforcing calcium phosphate bone cement composites. J Clin Rehabilit Tiss Eng Res 13:7474–7476

    Google Scholar 

  595. Krüger R, Groll J (2012) Fiber reinforced calcium phosphate cements – on the way to degradable load bearing bone substitutes? Biomaterials 33:5887–5900

    Article  Google Scholar 

  596. Xu HHK, Quinn JB (2001) Whisker-reinforced bioactive composites containing calcium phosphate cement fillers: effects of filler ratio and surface treatments on mechanical properties. J Biomed Mater Res 57:165–174

    Article  Google Scholar 

  597. Espigares I, Elvira C, Mano JF, Vázquez B, San Román J, Reis RL (2002) New partially degradable and bioactive acrylic bone cements based on starch blends and ceramic fillers. Biomaterials 23:1883–1895

    Article  Google Scholar 

  598. Pek YS, Kurisawa M, Gao S, Chung JE, Ying JY (2009) The development of a nanocrystalline apatite reinforced crosslinked hyaluronic acid-tyramine composite as an injectable bone cement. Biomaterials 30:822–828

    Article  Google Scholar 

  599. Lopez-Heredia MA, Sa Y, Salmon P, de Wijn JR, Wolke JGC, Jansen JA (2012c) Bulk properties and bioactivity assessment of porous polymethylmethacrylate cement loaded with calcium phosphates under simulated physiological conditions. Acta Biomater 8:3120–3127

    Article  Google Scholar 

  600. Jayasree R, Kumar TSS (2015) Acrylic cement formulations modified with calcium deficient apatite nanoparticles for orthopaedic applications. J Compos Mater 49:2921–2933

    Article  Google Scholar 

  601. Sa Y, Yang F, de Wijn JR, Wang Y, Wolke JGC, Jansen JA (2016) Physicochemical properties and mineralization assessment of porous polymethylmethacrylate cement loaded with hydroxyapatite in simulated body fluid. Mater Sci Eng C 61:190–198

    Article  Google Scholar 

  602. Baldino L, Naddeo F, Cardea S, Naddeo A, Reverchon E (2015) FEM modeling of the reinforcement mechanism of hydroxyapatite in PLLA scaffolds produced by supercritical drying, for tissue engineering applications. J Mech Behav Biomed Mater 51:225–236

    Article  Google Scholar 

  603. Claes L, Höllen I, Ignatius A (1997) Resorbable bone cements. Orthopäde 26:459–462

    Google Scholar 

  604. Jansen JA, de Ruijter JE, Schaeken HG, van der Waerden JPC, Planell JA, Driessens FCM (1995) Evaluation of tricalciumphosphate/hydroxyapatite cement for tooth replacement, an experimental animal study. J Mater Sci Mater Med 6:653–657

    Article  Google Scholar 

  605. Larsson S, Bauer TW (2002) Use of injectable calcium phosphate cement for fracture fixation: a review. Clin Orthop Rel Res 395:23–32

    Article  Google Scholar 

  606. Oshtory R, Lindsey DP, Giori NJ, Mirza FM (2010) Bioabsorbable tricalcium phosphate bone cement strengthens fixation of suture anchors. Clin Orthop Rel Res 468:3406–3412

    Article  Google Scholar 

  607. Gbureck U, Knappe O, Hofmann N, Barralet JE (2007a) Antimicrobial properties of nanocrystalline tetracalcium phosphate cements. J Biomed Mater Res B Appl Biomater 83B:132–137

    Article  Google Scholar 

  608. Sethuraman S, Nair LS, El-Amin S, Nguyen MTN, Greish YE, Bender JD, Brown PW, Allcock HR, Laurencin CT (2007) Novel low temperature setting nanocrystalline calcium phosphate cements for bone repair: osteoblast cellular response and gene expression studies. J Biomed Mater Res A 82A:884–891

    Article  Google Scholar 

  609. Link DP, van den Dolder J, Wolke JGC, Jansen JA (2007) The cytocompatibility and early osteogenic characteristics of an injectable calcium phosphate cement. Tissue Eng 13:493–500

    Article  Google Scholar 

  610. Oda H, Nakamura K, Matsushita T, Yamamoto S, Ishibashi H, Yamazaki T, Morimoto S (2006) Clinical use of a newly developed calcium phosphate cement (XSB-671D). J Orthop Sci 11:167–174

    Article  Google Scholar 

  611. Braun C, Rahn B, Fulmer MT, Steiner A, Gisep A (2006) Intra-articular calcium Phosphate cement, its fate and impact on joint tissues in a rabbit model. J Biomed Mater Res B Appl Biomater 79B:151–158

    Article  Google Scholar 

  612. Krell KV, Wefel JS (1984) A calcium phosphate cement root canal sealer – scanning electron microscopic analysis. J Endod 10:571–576

    Article  Google Scholar 

  613. Krell KV, Madison S (1985) Comparison of apical leakage in teeth obturated with a calcium phosphate cement or Grossman’s cement using lateral condensation. J Endod 8:336–339

    Article  Google Scholar 

  614. Costantino P, Friedman C, Jones K, Chow LC, Pelzer H, Sisson G (1991) Hydroxyapatite cement I Basic chemistry and histologic properties. Arch Otolaryngol Head Neck Surg 117:379–384

    Article  Google Scholar 

  615. Hong YC, Wang JT, Hong CY, Brown WE, Chow CY (1991) The periapical tissue reactions to a calcium phosphate cement in the teeth of monkeys. J Biomed Mater Res 25:485–498

    Article  Google Scholar 

  616. Sugawara A, Fujikawa K, Kusama K, Nishiyama M, Murai S, Takagi S, Chow LC (2002) Histopathologic reaction of calcium phosphate cement for alveolar ridge augmentation. J Biomed Mater Res 61:47–52

    Article  Google Scholar 

  617. Fujikawa K, Sugawara A, Kusama K, Nishiyama M, Murai S, Takagi S, Chow LC (2002) Fluorescent labeling analysis and electron probe microanalysis for alveolar ridge augmentation using calcium phosphate cement. Dent Mater J 21:296–305

    Article  Google Scholar 

  618. Comuzzi L, Ooms E, Jansen JA (2002) Injectable calcium phosphate cement as a filler for bone defects around oral implants, an experimental study in goats. Clin Oral Implants Res 13:304–311

    Article  Google Scholar 

  619. Shirakata Y, Oda S, Kinoshita A, KikuchiS TH, Ishikawa I (2002) Histocompatible healing of periodontal defects after application of injectable calcium phosphate bone cement A preliminary study in dogs. J Periodontol 73:1043–1053

    Article  Google Scholar 

  620. Lee SK, Lee SK, Lee SI, Park JH, Jang JH, Kim HW, Kim EC (2010a) Effect of calcium phosphate cements on growth and odontoblastic differentiation in human dental pulp cells. J Endod 36:1537–1542

    Article  Google Scholar 

  621. Chaung HM, Hong CH, Chiang CP, Lin SK, Kuo YS, Lan WH, Hsieh CC (1996) Comparison of calcium phosphate cement mixture and pure calcium hydroxide as direct pulp-capping agents. J Formos Med Assoc 95:545–550

    Google Scholar 

  622. Zhang W, Walboomers XF, Jansen JA (2008) The formation of tertiary dentin after pulp capping with a calcium phosphate cement, loaded with PLGA microparticles containing TGF-β1. J Biomed Mater Res A 85A:439–444

    Article  Google Scholar 

  623. Coutinho VB, Silva JA, Santos LA, Fook MVL (2012) Primary implant stability in calcium phosphate cement: clinical, radiographic and histological analysis. Mater Sci Forum 727–728:1131–1135

    Article  Google Scholar 

  624. Sugawara A, Chow LC, Takagi S, Chohayeb H (1990) In vitro evaluation of the sealing ability of a calcium phosphate cement when used as a root canal sealer-filler. J Endod 16:162–165

    Article  Google Scholar 

  625. Noetzel J, Özer K, Reisshauer BH, Anil A, Rössler R, Neumann K, Kielbassa AM (2006) Tissue responses to an experimental calcium phosphate cement and mineral trioxide aggregate as materials for furcation perforation repair, a histological study in dogs. Clin Oral Invest 10:77–83

    Article  Google Scholar 

  626. Tagaya M, Goto H, Iinuma M, Wakamatsu N, Tamura Y, Doi Y (2005) Development of self-setting Te-Cp/α-TCP cement for pulpotomy. Dent Mater J 24:555–561

    Article  Google Scholar 

  627. Arisan V, Anil A, Wolke JG, Özer K (2010) The effect of injectable calcium phosphate cement on bone anchorage of titanium implants: an experimental feasibility study in dogs. Int J Oral Maxillofac Surg 39:463–468

    Article  Google Scholar 

  628. Dorozhkin SV (2016b) Calcium orthophosphates (CaPO4) and dentistry. Bioceram Dev Appl 6:96

    Article  Google Scholar 

  629. Aral A, Yalçn S, Karabuda ZC, Anιl A, Jansen JA, Mutlu Z (2008) Injectable calcium phosphate cement as a graft material for maxillary sinus augmentation: an experimental pilot study. Clin Oral Implants Res 19:612–617

    Article  Google Scholar 

  630. Sliindo ML, Costantino PD, Friedman CD, Chow LC (1993) Facial skeletal augmentation using hydroxyapatite cement cranioplasty. Arch Otolaryngol Head Neck Surg 119:185–190

    Article  Google Scholar 

  631. Bifano CA, Edgin WA, Colleton C, Bifano SL, Constantino PD (1998) Preliminary evaluation of hydroxyapatite cement as an augmentation device in the edentulous atrophic canine mandible. Oral Surg 85:512–516

    Google Scholar 

  632. Ciprandi MTO, Primo BT, Gassen HT, Closs LQ, Hernandez PAG, Silva AN Jr (2012) Calcium phosphate cement in orbital reconstructions. J Craniofac Surg 23:145–148

    Article  Google Scholar 

  633. Friedman CD, Constantino PD, Jones K, Chow LC, Pelzer H, Sisson G (1991) Hydroxyapatite cement II Obliteration and reconstruction of the cat frontal sinus. Arch Otolaryngol Head Neck Surg 117:385–389

    Article  Google Scholar 

  634. Sinikovic B, Kramer FJ, Swennen G, Lubbers HT, Dempf R (2007) Reconstruction of orbital wall defects with calcium phosphate cement: clinical and histological findings in a sheep model. Int J Oral Maxillofac Surg 36:54–61

    Article  Google Scholar 

  635. Smartt JM, Karmacharya J, Gannon FH, Ong G, Jackson O, Bartlett SP, Poser RD, Kirschner RE (2005) Repair of the immature and mature craniofacial skeleton with a carbonated calcium phosphate cement: assessment of biocompatibility, osteoconductivity and remodeling capacity. Plast Reconstr Surg 115:1642–1650

    Article  Google Scholar 

  636. Reddi SP, Stevens MR, Kline SN, Villanueva P (1999) Hydroxyapatite cement in craniofacial trauma surgery, indications and early experience. J Cran Maxillofac Trauma 5:7–12

    Google Scholar 

  637. Friedman CD, Costantino PD, Synderman CH, Chow LC, Takagi S (2000) Reconstruction of the frontal sinus and frontofacial skeleton with hydroxyapatite cement. Arch Facial Plast Surg 2:124–129

    Article  Google Scholar 

  638. Kuemmerle JM, Oberle A, Oechslin C, Bohner M, Frei C, Boecken I, von Rechenberg B (2005) Assessment of the suitability of a new brushite calcium phosphate cement for cranioplasty – an experimental study in sheep. J Cran Maxillofac Surg 33:37–44

    Article  Google Scholar 

  639. Luaces-Rey R, García-Rozado A, Crespo-Escudero JL, Seijas BP, Arenaz-Búa J, López-Cedrún JL (2009) Use of carbonated calcium phosphate bone cement and resorbable plates for the treatment of frontal sinus fractures: two case reports. J Plastic Reconstr Aesthetic Surg 62:272–273

    Article  Google Scholar 

  640. Tamimi F, Torres J, Cabarcos EL, Bassett DC, Habibovic P, Luceron E, Barralet JE (2009) Minimally invasive maxillofacial vertical bone augmentation using brushite based cements. Biomaterials 30:208–216

    Article  Google Scholar 

  641. Lee DW, Kim JY, Lew DH (2010b) Use of rapidly hardening hydroxyapatite cement for facial contouring surgery. J Craniofac Surg 21:1084–1088

    Article  Google Scholar 

  642. Singh KA, Burstein FD, Williams JK (2010) Use of hydroxyapatite cement in pediatric craniofacial reconstructive surgery: strategies for avoiding complications. J Craniofac Surg 21:1130–1135

    Article  Google Scholar 

  643. Bambakidis NC, Munyon C, Ko A, Selman WR, Megerian CA (2010) A novel method of translabyrinthine cranioplasty using hydroxyapatite cement and titanium mesh: a technical report. Skull Base 20:157–161

    Article  Google Scholar 

  644. Abe T, Anan M, Kamida T, Fujiki M (2009) Surgical technique for anterior skull base reconstruction using hydroxyapatite cement and titanium mesh. Acta Neurochirur 151:1337–1338

    Article  Google Scholar 

  645. Sanada Y, Fujinaka T, Yoshimine T, Kato A (2011) Optimal reconstruction of the bony defect after frontotemporal craniotomy with hydroxyapatite cement. J Clin Neurosci 18:280–282

    Article  Google Scholar 

  646. Araki K, Tomifuji M, Suzuki H, Shiotani A (2012) Vocal fold injection with calcium phosphate cement (BIOPEX). Jpn J Logop Phoniatr 53:187–193

    Article  Google Scholar 

  647. Chung SB, Nam DH, NamPark K, Kim JH, Kong DS (2012) Injectable hydroxyapatite cement patch as an on-lay graft for the sellar reconstructions following endoscopic endonasal approach. Acta Neurochir 154:659–664

    Article  Google Scholar 

  648. Benson AG, Djalilian HR (2009) Complications of hydroxyapatite bone cement reconstruction of retrosigmoid craniotomy: two cases. Ear Nose Throat J 88:E1–E4

    Google Scholar 

  649. Wong RK, Gandolfi BM, St-Hilaire H, Wise MW, Moses M (2011) Complications of hydroxyapatite bone cement in secondary pediatric craniofacial reconstruction. J Craniofac Surg 22:247–251

    Article  Google Scholar 

  650. Liverneaux P (2005) Osteoporotic distal radius curettage-filling with an injectable calcium phosphate cement A cadaveric study. Eur J Orthop Surg Traumatol 15:1–6

    Article  Google Scholar 

  651. Liverneaux P, Vernet P, Robert C, Diacono P (2006) Cement pinning of osteoporotic distal radius fractures with an injectable calcium phosphate bone substitute, report of 6 cases. Eur J Orthop Surg Traumatol 16:10–16

    Article  Google Scholar 

  652. Thordarson D, Hedman T, Yetkinler D, Eskander E, Lawrence T, Poser R (1999) Superior compressive strength of a calcaneal fracture construct augmented with remodelable cancellous bone cement. J Bone Joint Surg Am 81A:239–246

    Article  Google Scholar 

  653. Stankewich CJ, Swiontkowski MF, Tencer AF, Yetkinler DN, Poser RD (1996) Augmentation of femoral neck fracture fixation with an injectable calcium-phosphate bone mineral cement. J Orthop Res 14:786–793

    Article  Google Scholar 

  654. Goodman S, Bauer T, Carter D, Casteleyn PP, Goldstein SA, Kyle RF, Larsson S, Stankewich CJ, Swiontkowski MF, Tencer AF, Yetkinler DN, Poser RD (1998) Norian SRS® cement augmentation in hip fracture treatment. Clin Orthop Rel Res 348:42–50

    Article  Google Scholar 

  655. Bai B, Jazrawi L, Kummer F, Spivak J (1999) The use of an injectable, biodegradable calcium orthophosphate bone substitute for the prophylactic augmentation of osteoporotic vertebrae and the management of vertebral compression fractures. Spine 24:1521–1526

    Article  Google Scholar 

  656. Ryf C, Goldhahn S, Radziejowski M, Blauth M, Hanson B (2009) A new injectable brushite cement: first results in distal radius and proximal tibia fractures. Eur J Trauma Emerg Surg 35:389–396

    Article  Google Scholar 

  657. Horstmann WG, Verheyen CCPM, Leemans R (2003) An injectable calcium phosphate cement as a bone-graft substitute in the treatment of displaced lateral tibial plateau fractures. Injury 34:141–144

    Article  Google Scholar 

  658. Simpson D, Keating JF (2004) Outcome of tibial plateau fractures managed with calcium phosphate cement. Injury 35:913–918

    Article  Google Scholar 

  659. Welch RD, Zhang H, Bronson DG (2003) Experimental tibial plateau fractures augmented with calcium phosphate cement or autologous bone graft. J Bone Joint Surg Am 85A:222–231

    Article  Google Scholar 

  660. Keating JF, Hajducka CL, Harper J (2003) Minimal internal fixation and calcium-phosphate cement in the treatment of fractures of the tibial plateau. J Bone Joint Surg Br 85B:68–73

    Article  Google Scholar 

  661. Yin X, Li J, Xu J, Huang Z, Rong K, Fan C (2013) Clinical assessment of calcium phosphate cement to treat tibial plateau fractures. J Biomater Appl 28:199–206

    Article  Google Scholar 

  662. Moore D, Maitra R, Farjo L, Graziano G, Goldstein S (1997) Restoration of pedicle screw fixation with an in situ setting calcium orthophosphate cement. Spine 22:1696–1705

    Article  Google Scholar 

  663. Cho W, Wu C, Erkan S, Kang MM, Mehbod AA, Transfeldt EE (2011) The effect on the pullout strength by the timing of pedicle screw insertion after calcium phosphate cement injection. J Spinal Disord Tech 24:116–120

    Article  Google Scholar 

  664. Mermelstein LE, McLain RF, Yerby SA (1998) Reinforcement of thoracolumbar burst fractures with calcium phosphate cement. Spine 23:664–671

    Article  Google Scholar 

  665. Mermelstein LE, Chow LC, Friedman C, Crisco J (1996) The reinforcement of cancellous bone screws with calcium orthophosphate cement. J Orthop Trauma 10:15–20

    Article  Google Scholar 

  666. Stadelmann VA, Bretton E, Terrier A, Procter P, Pioletti DP (2010) Calcium phosphate cement augmentation of cancellous bone screws can compensate for the absence of cortical fixation. J Biomech 43:2869–2874

    Article  Google Scholar 

  667. Daculsi G, Durand M, Hauger O, Seris E, Borget P, LeGeros R, le Huec JC (2012) Self hardening macroporous biphasic calcium phosphate bone void filler for bone reconstruction; animal study and human data. Key Eng Mater 493–494:709–713

    Google Scholar 

  668. Liverneaux P, Khallouk R (2006) Calcium phosphate cement in wrist arthrodesis: three cases. J Orthop Sci 11:289–293

    Article  Google Scholar 

  669. Ooms EM, Wolke JGC, van der Waerden JPCM, Jansen JA (2003c) Use of injectable calcium phosphate cement for the fixation of titanium implants: an experimental study in goats. J Biomed Mater Res B Appl Biomater 66B:447–456

    Article  Google Scholar 

  670. Strauss EJ, Pahk B, Kummer FJ, Egol K (2007) Calcium phosphate cement augmentation of the femoral neck defect created after dynamic hip screw removal. J Orthop Trauma 21:295–300

    Article  Google Scholar 

  671. Schildhauer TA, Bennett AP, Wright TM, Lane JM, O’Leary PF (1999) Intravertebral body reconstruction with an injectable in situ-setting carbonated apatite: biomechanical evaluation of a minimally invasive technique. J Orthop Res 17:67–72

    Article  Google Scholar 

  672. Jansen JA, Ooms E, Verdonschot N, Wolke JGC (2005) Injectable calcium phosphate cement for bone repair and implant fixation. Orthop Clin North Am 36:89–95

    Article  Google Scholar 

  673. Maestretti G, Cremer C, Otten P, Jakob RP (2007) Prospective study of standalone balloon kyphoplasty with calcium phosphate cement augmentation in traumatic fractures. Eur Spine J 16:601–610

    Article  Google Scholar 

  674. van der Stok J, Weinans H, Kops N, Siebelt M, Patka P, van Lieshout EM (2013) Properties of commonly used calcium phosphate cements in trauma and orthopaedic surgery. Injury 44:1368–1374

    Article  Google Scholar 

  675. Hisatome T, Yasunaga Y, Ikuta Y, Fujimoto Y (2002) Effects on articular cartilage of subchondral replacement with polymethylmethacrylate and calcium phosphate cement. J Biomed Mater Res 59:490–498

    Article  Google Scholar 

  676. Lim TH, Brebach GT, Renner SM, Kim WJ, Kim JG, Lee RE, Andersson GB, An HS (2002) Biomechanical evaluation of an injectable calcium phosphate cement for vertebroplasty. Spine 27:1297–1302

    Article  Google Scholar 

  677. Belkoff SM, Mathis JM, Jasper LE, Deramond H (2001) An ex vivo biomechanical evaluation of a hydroxyapatite cement for use with vertebroplasty. Spine 26:1542–1546

    Article  Google Scholar 

  678. Heini PF, Berlemann U, Kaufmann M, Lippuner K, Fankhauser C, van Landuyt P (2001) Augmentation of mechanical properties in osteoporotic vertebral bones-a biomechanical investigation of vertebroplasty efficacy with different bone cements. Eur Spine J 10:164–171

    Article  Google Scholar 

  679. Tomita S, Kin A, Yazu M, Abe M (2003) Biomechanical evaluation of kyphoplasty and vertebroplasty with calcium phosphate cement in a simulated osteoporotic compression fracture. J Orthop Sci 8:192–197

    Article  Google Scholar 

  680. Libicher M, Hillmeier J, Liegibel U, Sommer U, Pyerin W, Vetter M, Meinzer HP, Grafe I, Meeder P, Nöldge G, Nawroth P, Kasperk C (2006) Osseous integration of calcium phosphate in osteoporotic vertebral fractures after kyphoplasty: initial results from a clinical and experimental pilot study. Osteoporos Int 17:1208–1215

    Article  Google Scholar 

  681. Khanna AJ, Lee S, Villarraga M, Gimbel J, Steffey D, Schwardt J (2008) Biomechanical evaluation of kyphoplasty with calcium phosphate cement in a 2-functional spinal unit vertebral compression fracture model. Spine J 8:770–777

    Article  Google Scholar 

  682. Zhu XS, Zhang ZM, Mao HQ, Geng DC, Wang GL, Gan MF, Yang HL (2008) Biomechanics of calcium phosphate cement in vertebroplasty. J Clin Rehabil Tissue Eng Res 12:8071–8074

    Google Scholar 

  683. Nakano M, Hirano N, Zukawa M, Suzuki K, Hirose J, Kimura T, Kawaguchi Y (2012) Vertebroplasty using calcium phosphate cement for osteoporotic vertebral fractures: Study of outcomes at a minimum follow-up of two years. Asian Spine J 6:34–42

    Article  Google Scholar 

  684. Otsuka M, Matsuda Y, Suwa Y, Fox JL, Higuchi WI (1994a) A novel skeletal drug-delivery system using a self-setting calcium orthophosphate cement 3 Physicochemical properties and drug-release rate of bovine insulin and bovine albumin. J Pharm Sci 83:255–258

    Article  Google Scholar 

  685. Bohner M, Lemaître J, van Landuyt P, Zambelli P, Merkle HP, Gander B (1997b) Gentamicin-loaded hydraulic calcium orthophosphate bone cement as antibiotic delivery system. J Pharm Sci 86:565–572

    Article  Google Scholar 

  686. Kisanuki O, Yajima H, Umeda T, Takakura Y (2007) Experimental study of calcium phosphate cement impregnated with dideoxy-kanamycin. B J Orthop Sci 12:281–288

    Article  Google Scholar 

  687. McNally A, Sly K, Lin S, Bourges X, Daculsi G (2008) Release of antibiotics from macroporous injectable calcium phosphate cement. Key Eng Mater 361–363:359–362

    Article  Google Scholar 

  688. Hofmann MP, Mohammed AR, Perrie Y, Gbureck U, Barralet JE (2009) High-strength resorbable brushite bone cement with controlled drug-releasing capabilities. Acta Biomater 5:43–49

    Article  Google Scholar 

  689. Tamimi F, Torres J, Bettini R, Ruggera F, Rueda C, López-Ponce M, Cabarcos EL (2008) Doxycycline sustained release from brushite cements for the treatment of periodontal diseases. J Biomed Mater Res A 85A:707–714

    Article  Google Scholar 

  690. Young AM, Ng PYJ, Gbureck U, Nazhat SN, Barralet JE, Hofmann MP (2008) Characterization of chlorhexidine-releasing, fast-setting, brushite bone cements. Acta Biomater 4:1081–1088

    Article  Google Scholar 

  691. Hesaraki S, Nemati R (2009) Cephalexin-loaded injectable macroporous calcium phosphate bone cement. J Biomed Mater Res B Appl Biomater 89B:342–352

    Article  Google Scholar 

  692. van Staden AD, Dicks LMT (2012) Calcium orthophosphate-based bone cements (CPCs): applications, antibiotic release and alternatives to antibiotics. J Appl Biomater Funct Mater 1:2–11

    Google Scholar 

  693. Canal C, Pastorino D, Mestres G, Schuler P, Ginebra MP (2013) Relevance of microstructure for the early antibiotic release of fresh and pre-set calcium phosphate cements. Acta Biomater 9:8403–8412

    Article  Google Scholar 

  694. Vorndran E, Geffers M, Ewald A, Lemm M, Nies B, Gbureck U (2013) Ready-to-use injectable calcium phosphate bone cement paste as drug carrier. Acta Biomater 9:9558–9567

    Article  Google Scholar 

  695. Mestres G, Kugiejko K, Pastorino D, Unosson J, Öhman C, Karlsson OM, Ginebra MP, Persson C (2016) Changes in the drug release pattern of fresh and set simvastatin-loaded brushite cement. Mater Sci Eng C 58:88–96

    Article  Google Scholar 

  696. Cabrejos-Azama J, Alkhraisat MH, Rueda C, Torres J, Pintado C, Blanco L, López-Cabarcos E (2016) Magnesium substitution in brushite cements: efficacy of a new biomaterial loaded with vancomycin for the treatment of Staphylococcus aureus infections. Mater Sci Eng C 61:72–78

    Article  Google Scholar 

  697. Noukrati H, Cazalbou S, Demnati I, Rey C, Barroug A, Combes C (2016) Injectability, microstructure and release properties of sodium fusidate-loaded apatitic cement as a local drug-delivery system. Mater Sci Eng C 59:177–184

    Article  Google Scholar 

  698. Sakamoto Y, Ochiai H, Ohsugi I, Inoue Y, Yoshimura Y, Kishi K (2013) Mechanical strength and in vitro antibiotic release profile of antibiotic-loaded calcium phosphate bone cement. J Craniofac Surg 24:1447–1450

    Article  Google Scholar 

  699. Otsuka M, Matsuda Y, Suwa Y, Fox JL, Higuchi WI (1994b) A novel skeletal drug delivery system using a self-setting calcium orthophosphate cement 5 Drug release behavior from a heterogeneous drug-loaded cement containing an anticancer drug. J Pharm Sci 83:1565–1568

    Article  Google Scholar 

  700. Tahara Y, Ishii Y (2001) Apatite cement containing cis-diamminedi chloroplatinum implanted in rabbit femur for sustained release of the anticancer drug and bone formation. J Orthop Sci 6:556–565

    Article  Google Scholar 

  701. Tani T, Okada K, Takahashi S, Suzuki N, Shimada Y, Itoi E (2006) Doxorubicin-loaded calcium phosphate cement in the management of bone and soft tissue tumors. Vivo 20:55–60

    Google Scholar 

  702. Tanzawa Y, Tsuchiya H, Shirai T, Nishida H, Hayashi K, Takeuchi A, Kawahara M, Tomita K (2011) Potentiation of the antitumor effect of calcium phosphate cement containing anticancer drug and caffeine on rat osteosarcoma. J Orthop Sci 16:77–84

    Article  Google Scholar 

  703. Otsuka M, Matsuda Y, Suwa Y, Fox JL, Higuchi WI (1994c) A novel skeletal drug delivery system using a self-setting calcium orthophosphate cement 2 Physicochemical properties and drug release rate of the cement-containing indomethacin. J Pharm Sci 83:611–615

    Article  Google Scholar 

  704. Panzavolta S, Torricelli P, Bracci B, Fini M, Bigi A (2009) Alendronate and pamidronate calcium phosphate bone cements, setting properties and in vitro response of osteoblast and osteoclast cells. J Inorg Biochem 103:101–106

    Article  Google Scholar 

  705. le Nihouannen D, Hacking SA, Gbureck U, Komarova SV, Barralet JE (2008) The use of RANKL-coated brushite cement to stimulate bone remodeling. Biomaterials 29:3253–3259

    Article  Google Scholar 

  706. Li DX, Fan HS, Zhu XD, Tan YF, Xiao WQ, Lu J, Xiao YM, Chen JY, Zhang XD (2007) Controllable release of salmon-calcitonin in injectable calcium phosphate cement modified by chitosan oligosaccharide and collagen polypeptide. J Mater Sci Mater Med 18:2225–2231

    Article  Google Scholar 

  707. Kamegai A, Shimamura N, Naitou K, Nagahara K, Kanematsu N, Mori M (1994) Bone formation under the influence of bone morphogenetic protein/self-setting apatite cement composite as delivery system. Biomed Mater Eng 4:291–307

    Google Scholar 

  708. Fei Z, HuY WD, Wu H, Lu R, Bai J, Song H (2008) Preparation and property of a novel bone graft composite consisting of rhBMP-2 loaded PLGA microspheres and calcium phosphate cement. J Mater Sci Mater Med 19:1109–1116

    Article  Google Scholar 

  709. Ruhé PQ, Kroese-Deutman HC, Wolke JGC, Spauwen PHM, Jansen JA (2004) Bone inductive properties of rhBMP-2 loaded porous calcium phosphate cement implants in cranial defects in rabbits. Biomaterials 25:2123–2132

    Article  Google Scholar 

  710. Bodde EWH, Boerman OC, Russel FGM, Mikos AG, Spauwen PHM, Jansen JA (2008) The kinetic and biological activity of different loaded rhBMP-2 calcium phosphate cement implants in rats. J Biomed Mater Res A 87A:780–791

    Article  Google Scholar 

  711. Perrier M, Lu Y, Nemke B, Kobayashi H, Peterson A, Markel M (2008) Acceleration of second and fourth metatarsal fracture healing with recombinant human bone morphogenetic protein-2/calcium phosphate cement in horses. Vet Surg 37:648–655

    Article  Google Scholar 

  712. Lopez-Heredia MA, Kamphuis BGJ, Thüne PC, Öner CF, Jansen JA, Walboomers FX (2011) An injectable calcium phosphate cement for the local delivery of paclitaxel to bone. Biomaterials 32:5411–5416

    Article  Google Scholar 

  713. Schnitzler V, Fayon F, Despas C, Khairoun I, Mellier C, Rouillon T, Massiot D, Walcarius A, Janvier P, Gauthier O, Montavon G, Bouler JM, Bujoli B (2011) Investigation of alendronate-doped apatitic cements as a potential technology for the prevention of osteoporotic hip fractures: critical influence of the drug introduction mode on the in vitro cement properties. Acta Biomater 7:759–770

    Article  Google Scholar 

  714. Irbe Z, Loca D, Vempere D, Berzina-Cimdina L (2012) Controlled release of local anesthetic from calcium phosphate bone cements. Mater Sci Eng C 32:1690–1694

    Article  Google Scholar 

  715. Thein-Han W, Liu J, Xu HHK (2012) Calcium phosphate cement with biofunctional agents and stem cell seeding for dental and craniofacial bone repair. Dent Mater 28:1059–1070

    Article  Google Scholar 

  716. Otsuka M, Hamada H, Otsuka K, Ohshima H (2012) Dissolution medium responsive simvastatin release from biodegradable apatite cements drug delivery system, -the therapeutically effect and their histology in osteoporosis rats. Key Eng Mater 493–494:684–688

    Google Scholar 

  717. Ko CL, Chen WC, Chen JC, Wang YH, Shih CJ, Tyan YC, Hung CC, Wang JC (2013) Properties of osteoconductive biomaterials: calcium phosphate cement with different ratios of platelet-rich plasma as identifiers. Mater Sci Eng C 33:3537–3544

    Article  Google Scholar 

  718. Forouzandeh A, Hesaraki S, Zamanian A (2014) The releasing behavior and in vitro osteoinductive evaluations of dexamethasone-loaded porous calcium phosphate cements. Ceram Int 40:1081–1091

    Article  Google Scholar 

  719. Perez RA, Kim TH, Kim M, Jang JH, Ginebra MP, Kim HW (2013) Calcium phosphate cements loaded with basic fibroblast growth factor: delivery and in vitro cell response. J Biomed Mater Res A 101A:923–931

    Article  Google Scholar 

  720. Mestres G, Santos CF, Engman L, Persson C, Ott MK (2015) Scavenging effect of Trolox released from brushite cements. Acta Biomater 11:459–466

    Article  Google Scholar 

  721. Akkineni AR, Luo Y, Schumacher M, Nies B, Lode A, Gelinsky M (2015) 3D plotting of growth factor loaded calcium phosphate cement scaffolds. Acta Biomater 27:264–274

    Article  Google Scholar 

  722. Meraw SJ, Reeve CM, Lohse CM, Sioussat TM (2000) Treatment of perimplant defects with combination growth factor cement. J Periodont 71:8–13

    Article  Google Scholar 

  723. Liu H, Zang XF, Zhao ZP, Wang JL, Mi L (2008b) Co-transplantation of exogenous nerve growth factor and calcium phosphate cement composite for repairing rabbit radial bone defects. J Clin Rehabil Tissue Eng Res 12:8037–8041

    Google Scholar 

  724. Qu XY, Jiang DM, Li M, Zhang DW, Qin JQ, Liu CK (2008) Deproteinized osteoarticular allografts integrated with calcium phosphate cement and recombinant human vascular endothelial cell growth factor plus recombinant human bone morphogenetic protein-2, an immunological study. J Clin Rehabil Tissue Eng Res 12:8067–8070

    Google Scholar 

  725. Yu T, Ye J, Gao C, Yu L, Wang Y (2010) Synthesis and drug delivery property of calcium phosphate cement with special crystal morphology. J Am Ceram Soc 93:1241–1244

    Google Scholar 

  726. Stallmann HP, de Roo R, Faber C, Amerongen AVN, Wuisman PIJM (2008) In vivo release of the antimicrobial peptide hLFi-11 from calcium phosphate cement. J Orthop Res 26:531–538

    Article  Google Scholar 

  727. Sasaki T, Ishibashi Y, Katano H, Nagumo A, Toh S (2005) In vitro elution of vancomycin from calcium phosphate cement. J Arthroplasty 20:1055–1059

    Article  Google Scholar 

  728. Gbureck U, Vorndran E, Muller FA, Barralet JE (2007b) Low temperature direct 3D printed bioceramics and biocomposites as drug release matrices. J Control Release 122:173–180

    Article  Google Scholar 

  729. Alkhraisat MH, Rueda C, Cabrejos-Azama J, Lucas-Aparicio J, Mariño FT, García-Denche JT, Jerez LB, Gbureck U, Cabarcos EL (2010b) Loading and release of doxycycline hyclate from strontium-substituted calcium phosphate cement. Acta Biomater 6:1522–1528

    Article  Google Scholar 

  730. Blom EJ, Klein-Nulend J, Wolke JGC, van Waas MAJ, Driessens FCM, Burger EH (2002) Transforming growth factor-β1 incorporation in a calcium phosphate bone cement, Material properties and release characteristics. J Biomed Mater Res 59:265–272

    Article  Google Scholar 

  731. Blom EJ, Klein-Nulend J, Yin L, van Waas MAJ, Burger EH (2001) Transforming growth factor-β1 incorporated in calcium phosphate cement stimulates osteotransductivity in rat calvarial bone defects. Clin Oral Implants Res 12:609–616

    Article  Google Scholar 

  732. Link DP, van den Dolder J, van den Beucken JJ, Wolke JGC, Mikos AG, Jansen JA (2008b) Bone response and mechanical strength of rabbit femoral defects filled with injectable CaP cements containing TGF-β1 loaded gelatin microparticles. Biomaterials 29:675–682

    Article  Google Scholar 

  733. Habraken WJEM, Boerman OC, Wolke JGC, Mikos AG, Jansen JA (2009) In vitro growth factor release from injectable calcium phosphate cements containing gelatin microspheres. J Biomed Mater Res A 91A:614–622

    Article  Google Scholar 

  734. Ruhé PQ, Boerman OC, Russel FGM, Mikos AG, Spauwen PHM, Jansen JA (2006) In vivo release of rhBMP-2 loaded porous calcium phosphate cement pretreated with albumin. J Mater Sci Mater Med 17:919–927

    Article  Google Scholar 

  735. Naito K, Obayashi O, Mogami A, Itoi A, Kaneko K (2008) Fracture of the calcium phosphate bone cement which used to enchondroma of the hand, a case report. Eur J Orthop Surg Traumatol 18:405–408

    Article  Google Scholar 

  736. Hemmati K, Hesaraki S, Nemati A (2014) Evaluation of ascorbic acid-loaded calcium phosphate bone cements: physical properties and in vitro release behavior. Ceram Int 40:3961–3968

    Article  Google Scholar 

  737. Ito T, Koyama Y, Otsuka M (2012) DNA complex-releasing system by injectable self-setting apatite cement. J Gene Med 14:251–261

    Article  Google Scholar 

  738. Blattert TR, Delling G, Weckbach A (2003) Evaluation of an injectable calcium phosphate cement as an autograft substitute for transpedicular lumbar interbody fusion: a controlled, prospective study in the sheep model. Eur Spine J 12:216–223

    Google Scholar 

  739. Cavalcanti SC, Santos SC, Pereira CL, Mazzonetto R, de Moraes M, Moreira RWF (2008) Histological and histomorphometric analyses of calcium phosphate cement in rabbit calvaria. J Cran Maxillofac Surg 36:354–359

    Article  Google Scholar 

  740. Sanchez-Sotelo J, Munuera L, Madero R (2000) Treatment of fractures of the distal radius with a remodellable bone cement: a prospective, randomised study using Norian SRS®. J Bone Joint Surg Br 82B:856–863

    Article  Google Scholar 

  741. Lobenhoffer P, Gerich T, Witte F, Tscherne H (2002) Use of an injectable calcium phosphate bone cement in the treatment of tibial plateau fractures: a prospective study of twenty-six cases with twenty-month mean follow-up. J Orthop Trauma 16:143–149

    Article  Google Scholar 

  742. Cassidy C, Jupiter JB, Cohen M, Delli-Santi M, Fennell C, Leinberry C, Husband J, Ladd A, Seitz WR, Constantz BR (2003) Norian SRS® cement compared with conventional fixation in distal radial fractures, a randomized study. J Bone Joint Surg Am 85A:2127–2137

    Article  Google Scholar 

  743. Schmidt R, Cakir B, Mattes T, Wegener M, Puhl W, Richter M (2005) Cement leakage during vertebroplasty, an underestimated problem? Eur Spine J 14:466–473

    Article  Google Scholar 

  744. Vlad MD, Torres R, López J, Barracó M, Moreno JA, Fernández E (2007) Does mixing affect the setting of injectable bone cement? An ultrasound study. J Mater Sci Mater Med 18:347–352

    Article  Google Scholar 

  745. Krebs J, Aebli N, Goss BG, Sugiyama S, Bardyn T, Boecken I, Leamy PJ, Ferguson SJ (2007) Cardiovascular changes after pulmonary embolism from injecting calcium phosphate cement. J Biomed Mater Res B Appl Biomater 82B:526–532

    Article  Google Scholar 

  746. Poetker DM, Pytynia KB, Meyer GA, Wackym PA (2004) Complication rate of transtemporal hydroxyapatite cement cranioplasties: a case series review of 76 cranioplasties. Otol Neurotol 25:604–609

    Article  Google Scholar 

  747. Ridenour JS, Poe DS, Roberson DW (2008) Complications with hydroxyapatite cement in mastoid cavity obliteration. Otolaryngol Head Neck Surg 139:641–645

    Article  Google Scholar 

  748. Mizowaki T, Miyake S, Yoshimoto Y, Matsuura Y, Akiyama S (2013) Allergy of calcium phosphate cement material following skull reconstruction: a case report. Neurol Surg 41:323–327

    Google Scholar 

  749. Gaskin JA, Murphy J, Marshall AH (2013) Complications of hydroxyapatite bone cement use in cochlear implantation? Cochlear Implants Int 14:174–177

    Article  Google Scholar 

  750. Russell TA, Leighton RK (2008) Comparison of autogenous bone graft and endothermic calcium phosphate cement for defect augmentation in tibial plateau fractures A multicenter, prospective, randomized study. J Bone Joint Surg Am 90A:2057–2061

    Article  Google Scholar 

  751. Dickson KF, Friedman J, Buchholz JG, Flandry FD (2002) The use of BoneSource hydroxyapatite cement for traumatic metaphyseal bone void filling. J Trauma 53:1103–1108

    Article  Google Scholar 

  752. Jungbluth P, Hakimi M, Grassmann JP, Schneppendahl J, Kessner A, Sager M, Hakimi AR, Becker J, Windolf J, Wild M (2010) The progress of early phase bone healing using porous granules produced from calcium phosphate cement. Eur J Med Res 15:196–203

    Google Scholar 

  753. Bongio M, van den Beucken JJ, Leeuwenburgh SC, Jansen JA (2015) Preclinical evaluation of injectable bone substitute materials. J Tissue Eng Regen Med 9:191–209

    Article  Google Scholar 

  754. Lopez MSP, Tamimi F, Lopez-Cabarcos E, Lopez-Ruiz B (2009) Highly sensitive amperometric biosensor based on a biocompatible calcium phosphate cement. Biosens Bioelectron 24:2574–2579

    Article  Google Scholar 

  755. Lopez MSP, Lopez-Ruiz B (2011) A sensitive glucose biosensor based on brushite, a biocompatible cement. Electroanalysis 23:280–286

    Article  Google Scholar 

  756. Yoshikawa T, Suwa Y, Ohgushi H, Tamai S, Ichijima K (1996) Self-setting hydroxyapatite cement as a carrier for bone-forming cells. Biomed Mater Eng 6:345–351

    Google Scholar 

  757. Simon CG Jr, Guthrie WF, Wang FW (2004) Cell seeding into calcium phosphate cement. J Biomed Mater Res A 68A:628–639

    Article  Google Scholar 

  758. Xu HHK, Weir MD, Simon CG Jr (2008b) Injectable and strong nano-apatite scaffolds for cell/growth factor delivery and bone regeneration. Dent Mater 24:1212–1222

    Article  Google Scholar 

  759. Lemaître J, Pittet C, Brendlen D (2008) Pasty or liquid multiple constituent compositions for injectable calcium phosphate cements. US Patent No 7407542

    Google Scholar 

  760. Chow LC, Takagi S (2007) Dual-phase cement precursor systems for bone repair. US Patent Application No 20070092580

    Google Scholar 

  761. Heinemann S, Rössler S, Lemm M, Ruhnow M, Nies B (2013) Properties of injectable ready-to-use calcium phosphate cement based on water-immiscible liquid. Acta Biomater 9:6199–6207

    Article  Google Scholar 

  762. Bohner M, Tiainen H, Michel P, Döbelin N (2015) Design of an inorganic dual-paste apatite cement using cation exchange. J Mater Sci Mater Med 26:63

    Article  Google Scholar 

  763. Takagi S, Chow LC, Hirayama S, Sugawara A (2003b) Premixed calcium phosphate cement pastes. J Biomed Mater Res B Appl Biomater 67B:689–696

    Article  Google Scholar 

  764. Carey LE, Xu HHK, Simon CG Jr, Takagi S, Chow LC (2005) Premixed rapid-setting calcium phosphate composites for bone repair. Biomaterials 26:5002–5014

    Article  Google Scholar 

  765. Xu HHK, Carey LE, Simon CG Jr, Takagi S, Chow LC (2007b) Premixed calcium phosphate cements: synthesis, physical properties, and cell cytotoxicity. Dent Mater 23:433–441

    Article  Google Scholar 

  766. Shimada Y, Chow LC, Takagi S, Tagami J (2010) Properties of injectable apatite-forming premixed cements. J Res Natl Inst Stand Technol 115:233–241

    Article  Google Scholar 

  767. Sugawara A, Fujikawa K, Hirayama S, Takagi S, Chow LC (2010) In vivo characteristics of premixed calcium phosphate cements when implanted in subcutaneous tissues and periodontal bone defects. J Res Natl Inst Stand Technol 115:277–290

    Article  Google Scholar 

  768. Rajzer I, Castaño O, Engel E, Planell JA (2010) Injectable and fast resorbable calcium phosphate cement for body-setting bone grafts. J Mater Sci Mater Med 21:2049–2056

    Article  Google Scholar 

  769. Wu F, Ngothai Y, Wei J, Liu C, O’Neill B, Wu Y (2012a) Premixed, injectable PLA-modified calcium deficient apatite biocement (cd-AB) with washout resistance. Colloids Surf B 92:113–120

    Article  Google Scholar 

  770. Chen F, Mao Y, Liu C (2013b) Premixed injectable calcium phosphate cement with excellent suspension stability. J Mater Sci Mater Med 24:1627–1637

    Article  Google Scholar 

  771. Irbe Z, Krieke G, Salma-Ancane K, Berzina-Cimdina L (2014b) Fast setting pre-mixed calcium phosphate bone cements based on α-tricalcium phosphate. Key Eng Mater 604:204–207

    Article  Google Scholar 

  772. Han B, Ma PW, Zhang LL, Yin YJ, Yao KD, Zhang FJ, Zhang YD, Li XL, Nie W (2009) β-TCP/MCPM-based premixed calcium phosphate cements. Acta Biomater 5:3165–3177

    Article  Google Scholar 

  773. Chow LC, Takagi S (2006) Premixed self-hardening bone graft pastes. US Patent Application No 20060263443

    Google Scholar 

  774. Aberg J, Henriksson HB, Engqvist H, Palmquist A, Lindahl A, Thomsen P, Brisby H (2011) In vitro and in vivo evaluation of an injectable premixed calcium phosphate cement; cell viability and immunological response from rat. Int J Nano Biomater 3:203–221

    Article  Google Scholar 

  775. Engstrand J, Åberg J, Engqvist H (2013) Influence of water content on hardening and handling of a premixed calcium phosphate cement. Mater Sci Eng C 33:527–531

    Article  Google Scholar 

  776. Åberg J, Engstrand J, Engqvist H (2013b) Influence of particle size on hardening and handling of a premixed calcium phosphate cement. J Mater Sci Mater Med 24:829–835

    Article  Google Scholar 

  777. Montazerolghaem M, Ott MK (2014) Sustained release of simvastatin from premixed injectable calcium phosphate cement. J Biomed Mater Res A 102A:340–347

    Article  Google Scholar 

  778. Akashi A, Matsuya Y, Unemori M, Akamine A (2001) Release profile of antimicrobial agents from α-tricalcium phosphate cement. Biomaterials 22:2713–2717

    Article  Google Scholar 

  779. Ewald A, Hösel D, Patel S, Grover LM, Barralet JE, Gbureck U (2011) Silver-doped calcium phosphate cements with antimicrobial activity. Acta Biomater 7:4064–4070

    Article  Google Scholar 

  780. Dorozhkin SV (2016c) Multiphasic calcium orthophosphate (CaPO4) bioceramics and their biomedical applications. Ceram Int 42:6529–6554

    Article  Google Scholar 

  781. Bohner M (2001c) Calcium phosphate emulsions: possible applications. Key Eng Mater 192–195:765–768

    Article  Google Scholar 

  782. Troczynski T (2004) A concrete solution. Nat Mater 3:13–14

    Article  Google Scholar 

  783. Xu HHK, Takagi S, Quinn JB, Chow LC (2004b) Fast-setting calcium phosphate scaffolds with tailored macropore formation rates for bone regeneration. J Biomed Mater Res A 68A:725–734

    Article  Google Scholar 

  784. Ginebra MP, Rilliard A, Fernández E, Elvira C, san Roman J, Planell JA (2001) Mechanical and rheological improvement of a calcium phosphate cement by the addition of a polymeric drug. J Biomed Mater Res 57:113–118

    Article  Google Scholar 

  785. García-Fernández L, Halstenberg S, Unger RE, Aguilar MR, Kirkpatrick CJ, San Román J (2010) Anti-angiogenic activity of heparin-like polysulfonated polymeric drugs in 3D human cell culture. Biomaterials 31:7863–7872

    Article  Google Scholar 

  786. Xu HHK, Burguera EF, Carey LE (2007c) Strong, macroporous and in situ-setting calcium phosphate cement-layered structures. Biomaterials 28:3786–3796

    Article  Google Scholar 

  787. Andriotis O, Katsamenis OL, Mouzakis DE, Bouropoulos N (2010) Preparation and characterization of bioceramics produced from calcium phosphate cements. Cryst Res Technol 45:239–243

    Article  Google Scholar 

  788. Gbureck U, Hozel T, Klammert U, Wurzler K, Muller FA, Barralet JE (2007c) Resorbable dicalcium phosphate bone substitutes prepared by 3D powder printing. Adv Funct Mater 17:3940–3945

    Article  Google Scholar 

  789. Habibovic P, Gbureck U, Doillon CJ, Bassett DC, van Blitterswijk CA, Barralet JE (2008) Osteoconduction and osteoinduction of low-temperature 3D printed bioceramic implants. Biomaterials 29:944–953

    Article  Google Scholar 

  790. Lode A, Meissner K, Luo Y, Sonntag F, Glorius S, Nies B, Vater C, Despang F, Hanke T, Gelinsky M (2014) Fabrication of porous scaffolds by three-dimensional plotting of a pasty calcium phosphate bone cement under mild conditions. J Tissue Eng Regen Med 8:682–693

    Article  Google Scholar 

  791. Steffen T, Stoll T, Arvinte T, Schenk RK (2001) Porous tricalcium phosphate and transforming growth factor used for anterior spine surgery. Eur Spine J 10:S132–S140

    Article  Google Scholar 

  792. Guo H, Su J, Wei J, Kong H, Liu C (2009) Biocompatibility and osteogenicity of degradable Ca-deficient hydroxyapatite scaffolds from calcium phosphate cement for bone tissue engineering. Acta Biomater 5:268–278

    Article  Google Scholar 

  793. Guo H, Wei J, Kong H, Liu C, Pan K (2008) Biocompatibility and osteogenesis of calcium phosphate cement scaffolds for bone tissue engineering. Adv Mater Res 47-50:1383–1386

    Article  Google Scholar 

  794. Park JH, Lee GS, Shin US, Kim HW (2011) Self-hardening microspheres of calcium phosphate cement with collagen for drug delivery and tissue engineering in bone repair. J Am Ceram Soc 94:351–354

    Article  Google Scholar 

  795. Moseke C, Bayer C, Vorndran E, Barralet JE, Groll J, Gbureck U (2012) Low temperature fabrication of spherical brushite granules by cement paste emulsion. J Mater Sci Mater Med 23:2631–2637

    Article  Google Scholar 

  796. Weir MD, Xu HHK, Simon CG Jr (2006) Strong calcium phosphate cement-chitosan-mesh construct containing cell-encapsulating hydrogel beads for bone tissue engineering. J Biomed Mater Res A 77A:487–496

    Article  Google Scholar 

  797. Xu JH, Tan WQ, Lin J (2007d) Repair of madibular bone defect by combining calcium phosphate cement with bone morphogenetic protein composite as a bone graft material. Chin J Biomed Eng 26:153–156

    Google Scholar 

  798. Niikura T, Tsujimoto K, Yoshiya S, Tadokoro K, Kurosaka M, Shiba R (2007) Vancomycin-impregnated calcium phosphate cement for methicillin-resistant staphylococcus aureus femoral osteomyelitis. Orthopedics 30:320–321

    Google Scholar 

  799. Lode A, Wolf-Brandstetter C, Reinstorf A, Bernhardt A, König U, Pompe W, Gelinsky M (2007) Calcium phosphate bone cements, functionalized with VEGF: release kinetics and biological activity. J Biomed Mater Res A 81A:474–483

    Article  Google Scholar 

  800. Yoshikawa M, Toda T (2004) In vivo estimation of periapical bone reconstruction by chondroitin sulfate in calcium phosphate cement. J Eur Ceram Soc 24:521–531

    Article  Google Scholar 

  801. Wang JL, Mi L, Hou GH, Zheng Z (2008d) Repair of radial defects using calcium phosphate cements/poly lactic-co-glycolic acid materials combined with mesenchymal stem cells in rabbits. J Clin Rehabil Tissue Eng Res 12:8001–8005

    Google Scholar 

  802. Zhao L, Weir MD, Xu HHK (2010a) Human umbilical cord stem cell encapsulation in calcium phosphate scaffolds for bone engineering. Biomaterials 31:3848–3857

    Article  Google Scholar 

  803. Ding T, Yang H, Maltenfort M, Xie R (2010) Silk fibroin added to calcium phosphate cement to prevent severe cardiovascular complications. Case Reports Clin Pract Rev 16:23–26

    Google Scholar 

  804. Panzavolta S, Torricelli P, Bracci B, Fini M, Bigi A (2010) Functionalization of biomimetic calcium phosphate bone cements with alendronate. J Inorg Biochem 104:1099–1106

    Article  Google Scholar 

  805. Xu HHK, Zhao L, Detamore MS, Takagi S, Chow LC (2010) Umbilical cord stem cell seeding on fast-resorbable calcium phosphate bone cement. Tiss Eng A 16:2743–2753

    Article  Google Scholar 

  806. Li M, Liu X, Liu X, Ge B (2010) Calcium phosphate cement with BMP-2-loaded gelatin microspheres enhances bone healing in osteoporosis: a pilot study. Clin Orthop Rel Res 468:1978–1985

    Article  Google Scholar 

  807. Weir MD, Xu HHK (2010) Human bone marrow stem cell-encapsulating calcium phosphate scaffolds for bone repair. Acta Biomater 6:4118–4126

    Article  Google Scholar 

  808. Chen W, Zhou H, Tang M, Weir MD, Bao C, Xu HHK (2012b) Gas-foaming calcium phosphate cement scaffold encapsulating human umbilical cord stem cells. Tiss Eng A 18:816–827

    Article  Google Scholar 

  809. Wang P, Zhao L, Chen W, Liu X, Weir MD, Xu HHK (2014) Stem cells and calcium phosphate cement scaffolds for bone regeneration. J Dent Res 93:618–625

    Article  Google Scholar 

  810. Perez RA, Shin SH, Han CM, Kim HW (2015) Bone-bioactive injectables based on calcium phosphates for the delivery of drugs and cells in hard tissue engineering: a recent update. Tiss Eng Reg Med 12:1–12

    Google Scholar 

  811. Zhao L, Weir MD, Xu HHK (2010b) An injectable calcium phosphate-alginate hydrogel-umbilical cord mesenchymal stem cell paste for bone tissue engineering. Biomaterials 31:6502–6510

    Article  Google Scholar 

  812. dos Santos LA, Carrodéguas RG, Rogero SO, Higa OZ, Boschi AO, de Arruda AC (2002) Alpha-tricalcium phosphate cement: “in vitro” cytotoxicity. Biomaterials 23:2035–2042

    Article  Google Scholar 

  813. Baroud G, Steffen T (2005) A new cannula to ease cement injection during vertebroplasty. Eur Spine J 14:474–479

    Article  Google Scholar 

  814. Joseph C, Gardner D, Jefferson T, Isaacs B, Lark B (2011) Self-healing cementitious materials: a review of recent work. Proc Inst Civil Eng Constr Mater 164:29–41

    Article  Google Scholar 

  815. Wu M, Johannesson B, Geiker M (2012b) A review: self-healing in cementitious materials and engineered cementitious composite as a self-healing material. Constr Build Mater 28:571–583

    Article  Google Scholar 

  816. Mihashi H, Nishiwaki T (2012) Development of engineered self-healing and self-repairing concrete – state-of-the-art report. J Adv Concrete Technol 10:170–184

    Article  Google Scholar 

  817. van Tittelboom K, de Belie N (2013) Self-healing in cementitious materials – a review. Materials 6:2182–2217

    Article  Google Scholar 

  818. Zhang J, Liu W, Schnitzler V, Tancret F, Bouler JM (2014) Calcium phosphate cements for bone substitution: chemistry, handling and mechanical properties. Acta Biomater 10:1035–1049

    Article  Google Scholar 

  819. Anderson JM (2006) The future of biomedical materials. J Mater Sci Mater Med 17:1025–1028

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey V. Dorozhkin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Dorozhkin, S.V. (2018). Self-Setting Calcium Orthophosphate (CaPO4) Formulations. In: Liu, C., He, H. (eds) Developments and Applications of Calcium Phosphate Bone Cements. Springer Series in Biomaterials Science and Engineering, vol 9. Springer, Singapore. https://doi.org/10.1007/978-981-10-5975-9_2

Download citation

Publish with us

Policies and ethics