Skip to main content

3D Printing of Calcium Phosphate Bio-scaffolds for Bone Therapy and Regeneration

  • Chapter
  • First Online:
  • 1627 Accesses

Part of the book series: Springer Series in Biomaterials Science and Engineering ((SSBSE,volume 9))

Abstract

Bone cancer brings patients great sufferings and puts an end to normal activities in life. In clinic, the most common treatment for bone cancer is the combination of surgery and chemo-/radiotherapy. However, surgery is difficult to eliminate tumor cells completely and results in large bone defect. Chemo-/radiotherapy is associated with chemo-/radioresistance and evident short-/long-term toxic effects. Therefore, the development of a novel bio-scaffold for local treatment of residual tumor cells and regeneration of bone defect induced by surgery has become a very urgent need. Some progress has been made in the development of scaffolds with the ability of both tumor therapy and bone regeneration. These scaffolds function as local agents and selectively kill the tumor cells via photothermal/magnetothermal therapy or local chemotherapy. Compared with traditional treatment, they have no side effects. In addition, scaffolds possess satisfactory biocompatibility, stimulating the migration, adhesion, proliferation, and differentiation of bone marrow stroma cells. Furthermore, they can promote gene expression of BMSCs and formation of new bone. Therefore, to bone tumor-suffering patients, it is a very meaningful progress in the biomedical application. Hopefully, more efforts and progress will be made in the development of scaffolds for the treatment of tumor-induced bone defects, and more research will continue to inform and guide this field.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Driel M, Leeuwen JPTM (2014) Cancer and bone: a complex complex. Arch Biochem Biophys 561:159–166

    Article  Google Scholar 

  2. Mundy GR (2002) Metastasis: metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev Cancer 2:584–593

    Article  Google Scholar 

  3. Buenrostro D, Mulcrone PL, Owens P, Sterling JA (2016) The bone microenvironment: a fertile soil for tumor growth. Curr Osteoporos Rep 14:151–158

    Article  Google Scholar 

  4. Paget S (1889) The distribution of secondary growths in cancer of the breast. Lancet 1:571–573

    Article  Google Scholar 

  5. Guise TA, Yin JJ, Taylor SD et al (1996) Evidence for a causal role of parathyroid hormone-related protein in the pathogenesis of human breast cancer-mediated osteolysis. J Clin Invest 98:1544–1549

    Article  Google Scholar 

  6. Yin JJ, Selander K, Chirgwin JM et al (1999) TGF-β signaling blockade inhibits PTHrP secretion by breast cancer cells and bone metastases development. J Clin Invest 103:197–206

    Article  Google Scholar 

  7. Hiraga T, Williams PJ, Mundy GR, Yoneda T (2001) The bisphosphonate ibandronate promotes apoptosis in MDA-MB-231 human breast cancer cells in bone metastases. Cancer Res 61:4418–4424

    Google Scholar 

  8. Fidler IJ (2003) The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer 3:453–458

    Article  Google Scholar 

  9. Chou AJ, Geller DS, Gorlick R (2008) Therapy for osteosarcoma: where do we go from here? Paediatr Drugs 10:315–327

    Article  Google Scholar 

  10. Yasko AW (2009) Surgical management of primary osteosarcoma. Cancer Treat Res 152:125–145

    Article  Google Scholar 

  11. Marulanda GA, Henderson ER, Johnson DA, Letson GD, Cheong D (2008) Orthopedic surgery options for the treatment of primary osteosarcoma. Cancer Control 15:13–20

    Article  Google Scholar 

  12. Errani C, Longhi A, Rossi G et al (2011) Palliative therapy for osteosarcoma. Expert Rev Anticancer Ther 11:217–227

    Article  Google Scholar 

  13. Grimer RJ, Taminiau AM, Cannon SR (2002) Surgical outcomes in osteosarcoma. J Bone Joint Surg Br 84-B:395–400

    Article  Google Scholar 

  14. Healy KE, Guldberg RE (2007) Bone tissue engineering. J Musculoskelet Neuronal Interact 7(4):328–330

    Google Scholar 

  15. Bird JE (2014) Advances in the surgical management of bone tumors. Curr Oncol Rep 16:392–397

    Article  Google Scholar 

  16. Chao P-HG, Grayson W, Vunjak-Novakovic G (2007) Engineering cartilage and bone using human mesenchymal stem cells. J Orthop Sci 12:398–404

    Article  Google Scholar 

  17. Smeland S, Bruland ØS, Hjorth L et al (2011) Results of the Scandinavian Sarcoma Group XIV protocol for classical osteosarcoma. Acta Orthop 82:211–216

    Article  Google Scholar 

  18. Janeway KA, Grier HE (2010) Sequelae of osteosarcoma medical therapy: a review of rare acute toxicities and late effects. Lancet Oncol 11:670–678

    Article  Google Scholar 

  19. Chou AJ, Gorlick R (2014) Chemotherapy resistance in osteosarcoma: current challenges and future directions. Expert Rev Anticancer 6:1075–1085

    Article  Google Scholar 

  20. Hattinger CM, Pasello M, Ferrari S et al (2010) Emerging drugs for high-grade osteosarcoma. Expert Opin Emerg Dr 15:615–634

    Article  Google Scholar 

  21. Ozaki T, Flege S, Liljenqvist U et al (2002) Osteosarcoma of the spine. Cancer 94:1069–1077

    Article  Google Scholar 

  22. Meijer TWH, Kaanders JHAM, Span PN, Bussink J (2012) Targeting hypoxia, HIF-1, and tumor glucose metabolism to improve radiotherapy efficacy. Clin Cancer Res 18:5585–5594

    Article  Google Scholar 

  23. Zhuang Q, Zhang Z, Fu H et al (2011) Does radiation-induced fibrosis have an important role in pathophysiology of the osteoradionecrosis of jaw? Med Hypotheses 77:63–65

    Article  Google Scholar 

  24. Da Cunha SS, Sarmento V, Ramalho LMP et al (2007) Effect of laser therapy on bone tissue submitted to radiotherapy: experimental study in rats. Photomed Laser Surg 25:197–204

    Article  Google Scholar 

  25. Rabelo GD, Beletti ME, Dechichi P (2010) Histological analysis of the alterations on cortical bone channels network after radiotherapy: a rabbit study. Microsc Res Tech 73:1015–1018

    Article  Google Scholar 

  26. Mavrogenis AF, Angelini A, Vottis C et al (2016) Modern palliative treatments for metastatic bone disease. Clin J Pain 32:337–350

    Article  Google Scholar 

  27. Böhm P, Huber J (2002) The surgical treatment of bony metastases of the spine and limbs. J Bone Joint Surg (Br) 84-B:521–529

    Article  Google Scholar 

  28. Harrington KD (1997) Orthopedic surgical management of skeletal complications of malignancy. Cancer 80:1614–1627

    Article  Google Scholar 

  29. Habash RW, Bansal R, Krewski D, Alhafid HT (2006) Thermal therapy, part 2: hyperthermia techniques. Crit Rev Bioeng 34:491–542

    Google Scholar 

  30. Wunderlich CA, Woodman WB (1871) On the temperature in diseases: a manual of medical thermometry. The New Sydenham Society, London

    Google Scholar 

  31. Jaque D, Maestro LM, del Rosal B et al (2014) Nanoparticles for photothermal therapies. Nanoscale 6:9494–9530

    Article  Google Scholar 

  32. Habash RW, Bansal R, Krewski D, Alhafid HT (2006) Thermal therapy, part 1: an introduction to thermal therapy. Crit Rev Bioeng 34:459–489

    Google Scholar 

  33. Hildebrandt B, Wust P, Ahlers O, Dieing A et al (2002) The cellular and molecular basis of hyperthermia. Crit Rev Oncol Hemat 43:33–56

    Article  Google Scholar 

  34. Fisher JW, Sarkar S, Buchanan CF et al (2010) Photothermal response of human and murine cancer cells to multiwalled carbon nanotubes after laser irradiation. Cancer Res 70:9855–9864

    Article  Google Scholar 

  35. Takahashi HT, Nariai A, Niidome Y, Yamada S (2006) Photothermal reshaping of gold nanorods prevents further cell death. Nanotechnology 17:4431–4435

    Article  Google Scholar 

  36. Oleson JR, Samulski TV, Leopold KA, Clegg ST et al (1993) Sensitivity of hyperthermia trial outcomes to temperature and time: implication for thermal goals of treatment. Radiat Oncol Biol Phys 25:289–297

    Article  Google Scholar 

  37. Chu KF, Dupuy DE (2014) Thermal ablation of tumours: biological mechanisms and advances in therapy. Nat Rev Cancer 14:199–208

    Article  Google Scholar 

  38. Chen Q, Wen J, Li H et al (2016) Recent advances in different modal imaging-guided photothermal therapy. Biomaterials 106:144–166

    Article  Google Scholar 

  39. Young JK, Figueroa ER, Drezek RA (2012) Tunable nanostructures as photothermal theranostic agents. Ann Biomed Eng 40:438–459

    Article  Google Scholar 

  40. Cheng L, Wang C, Feng L et al (2014) Functional nanomaterials for phototherapies of cancer. Chem Rev 114:10869–10939

    Article  Google Scholar 

  41. Wang Z, Huang P, Jacobson O et al (2016) Biomineralization-inspired synthesis of Copper Sulfide–Ferritin Nanocages as cancer theranostics. ACS Nano 10:3453–3460

    Article  Google Scholar 

  42. Yang Y, Liu J, Liang C et al (2016) Nanoscale metal–organic particles with rapid clearance for magnetic resonance imaging-guided photothermal therapy. ACS Nano 10:2774–2781

    Article  Google Scholar 

  43. Smith AM, Mancini MC, Nie S (2009) Bioimaging: second window for in vivo imaging. Nat Nanotechnol 4:710–711

    Article  Google Scholar 

  44. Weissleder R (2001) A clearer vision for in vivo imaging. Nat Biotechnol 19:316–317

    Article  Google Scholar 

  45. Gilchrist RK, Medal R, Shorey WD, Hanselman RC et al (1957) Selective inductive heating of lymph nodes. Ann Surg 146:596–606

    Article  Google Scholar 

  46. Pankhurst QA, Connolly J, Jones SK, Dobson J (2003) Applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys 36:167–181

    Article  Google Scholar 

  47. Mornet SP, Vasseur SB, Grasset F, Duguet E (2004) Magnetic nanoparticle design for medical diagnosis and therapy. J Mater Chem 14:2161–2175

    Article  Google Scholar 

  48. Hergt R, Dutz S, Röder M (2006) Effects of size distribution on hysteresis losses of magnetic nanoparticles for hyperthermia. J Phys Condens Matter 18:2919–2934

    Article  Google Scholar 

  49. Ma H, Jiang C, Zhai D et al (2016) A bifunctional biomaterial with photothermal effect for tumor therapy and bone regeneration. Adv Funct Mater 26:1197–1208

    Article  Google Scholar 

  50. Zhang Y, Nayak TR, Hong H, Cai W (2012) Graphene: a versatile nanoplatform for biomedical applications. Nanoscale 4:3833–3842

    Article  Google Scholar 

  51. Lee WC, Lim CHYX, Shi H et al (2011) Origin of enhanced stem cell growth and differentiation on graphene and graphene oxide. ACS Nano 5:7334–7341

    Article  Google Scholar 

  52. Yang K, Zhang S, Zhang G et al (2010) Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett 10:3318–3323

    Article  Google Scholar 

  53. Robinson JT, Tabakman SM, Liang Y et al (2011) Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy. J Am Chem Soc 133:6825–6831

    Article  Google Scholar 

  54. Gonçalves G, Vila M, Portolés M-T et al (2013) Nano-graphene oxide: a potential multifunctional platform for cancer therapy. Adv Healthc Mater 2:1072–1090

    Article  Google Scholar 

  55. Ivaska KK, Hentunen TA, Vaaraniemi J et al (2004) Release of intact and fragmented osteocalcin molecules from bone matrix during bone resorption in vitro. J Biol Chem 279:18361–18369

    Article  Google Scholar 

  56. Alford AI, Hankenson KD (2006) Matricellular proteins: extracellular modulators of bone development, remodeling, and regeneration. Bone 38:749–757

    Article  Google Scholar 

  57. Wu C, Xia L, Han P et al (2015) Graphene-oxide-modified β-tricalcium phosphate bioceramics stimulate in vitro and in vivo osteogenesis. Carbon 93:116–129

    Article  Google Scholar 

  58. Hong J, Shah NJ, Drake AC et al (2012) Graphene multilayers as gates for multi-week sequential release of proteins from surfaces. ACS Nano 6:81–88

    Article  Google Scholar 

  59. La W-G, Park S, Yoon H-H et al (2013) Delivery of a therapeutic protein for bone regeneration from a substrate coated with graphene oxide. Small 9:4051–4060

    Article  Google Scholar 

  60. Andronescu E, Ficai M, Voicu G et al (2010) Synthesis and characterization of collagen/hydroxyapatite: magnetite composite material for bone cancer treatment. J Mater Sci Mater Med 21:2237–2242

    Article  Google Scholar 

  61. Kawashita M, Kawamura K, Li Z (2010) PMMA-based bone cements containing magnetite particles for the hyperthermia of cancer. Acta Biomater 6:3187–3192

    Article  Google Scholar 

  62. Tampieri A, D’Alessandro T, Sandri M et al (2012) Intrinsic magnetism and hyperthermia in bioactive Fe-doped hydroxyapatite. Acta Biomater 8:843–851

    Article  Google Scholar 

  63. Gloria A, Russo T, D’Amora U et al (2013) Magnetic poly(ε-caprolactone)/iron-doped hydroxyapatite nanocomposite substrates for advanced bone tissue engineering. J R Soc Interface 10:20120833

    Google Scholar 

  64. Wei G, Ma PX (2008) Nanostructured biomaterials for regeneration. Adv Funct Mater 18:3568–3582

    Article  Google Scholar 

  65. Bañobre-López M, Pineiro-Redondo Y, Sandri M et al (2014) Hyperthermia induced in magnetic scaffolds for bone tissue engineering. IEEE Trans Magn 50:1–7

    Article  Google Scholar 

  66. Zhang Y, Zhai D, Xu M et al (2016) 3D-printed bioceramic scaffolds with a Fe3O4/graphene oxide nanocomposite interface for hyperthermia therapy of bone tumor cells. J Mater Chem B 4:2874–2886

    Article  Google Scholar 

  67. Zhang J, Zhao S, Zhu M et al (2014) 3D-printed magnetic Fe3O4/MBG/PCL composite scaffolds with multifunctionality of bone regeneration, local anticancer drug delivery and hyperthermia. J Maters Chem B 2:7583–7595

    Article  Google Scholar 

  68. Wu C, Fan W, Chang J (2013) Functional mesoporous bioactive glass nanospheres: synthesis, high loading efficiency, controllable delivery of doxorubicin and inhibitory effect on bone cancer cells. J Mater Chem B 1:2710–2718

    Article  Google Scholar 

  69. Tsai HC, Chang WH, Lo CL et al (2010) Graft and diblock copolymer multifunctional micelles for cancer chemotherapy and imaging. Biomaterials 31:2293–2301

    Article  Google Scholar 

  70. Verstappen CCP, Heimans JJ, Hoekman K, Postma TJ (2003) Neurotoxic complications of chemotherapy in patients with cancer. Drugs 63:1549–1563

    Article  Google Scholar 

  71. Meazza C, Scanagatta P (2016) Metastatic osteosarcoma: a challenging multidisciplinary treatment. Expert Rev of Anticancer 16:543–556

    Article  Google Scholar 

  72. Chen KH, Po-Kuei Wu PK, Chen CF, Chen WM (2015) Zoledronic acid-loaded bone cement as a local adjuvant therapy for giant cell tumor of the sacrum after intralesional curettage. Eur Spine J 24:2182–2188

    Article  Google Scholar 

Download references

Acknowledgments

Funding for this study was provided by the Recruitment Program of Global Young Talent, China (Dr. Wu), National Key Research and Development Program of China (2016YFB0700803), the National High Technology Research and Development Program of China (863 Program, SS2015AA020302), Natural Science Foundation of China (Grant 81430012, 31370963), Key Research Program of Frontier Sciences, CAS (QYZDB-SSW-SYS027), and Program of Shanghai Outstanding Academic Leaders (15XD1503900).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengtie Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Ma, H., Chang, J., Wu, C. (2018). 3D Printing of Calcium Phosphate Bio-scaffolds for Bone Therapy and Regeneration. In: Liu, C., He, H. (eds) Developments and Applications of Calcium Phosphate Bone Cements. Springer Series in Biomaterials Science and Engineering, vol 9. Springer, Singapore. https://doi.org/10.1007/978-981-10-5975-9_12

Download citation

Publish with us

Policies and ethics