Skip to main content

Importance of Biomaterials In Vivo Microenvironment pH (μe-pH) in the Regeneration Process of Osteoporotic Bone Defects

  • Chapter
  • First Online:
Developments and Applications of Calcium Phosphate Bone Cements

Part of the book series: Springer Series in Biomaterials Science and Engineering ((SSBSE,volume 9))

Abstract

In scenario of osteoporotic fracture, significantly higher activity of osteoclasts than osteoblasts may lead to continuous loss of bone in fracture/defect site. Impaired bone regeneration efficiency is the major barrier that influences endosseous implants to get a better performance, and this substantially increases the risk of a second fracture, nonunion, and aseptic implant loosening. Although great effects have been made, there are still no clinically approved biomaterials specifically tailored for applications in osteoporotic bones. The key issue for developing such biomaterials is to reestablish normal bone regeneration at the fracture site. Acid-base property could directly influence the behavior of bone cells, thus making it an important factor to modulate the unbalanced activity between osteoclast and osteoblast in osteoporotic conditions. More importantly, it is adjustable through implant biodegradation. Therefore, a rational strategy to reconstruct the regeneration balance in the fracture site is to regulate the microenvironmental pH (μe-pH) through the application of biodegradable materials. The present chapter provides an overview on how pH change influences bone cells behaviors as well as recent development on revealing the role of μe-pH in guiding the localized bone regeneration. We proposed that the μe-pH is an important and accessible factor which should be taken into consideration in the development of orthopedic biomaterials, in particular for repair of osteoporotic bone fracture/defect.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Johnell O, Kanis JA (2006) An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos Int 17(12):1726–1733. doi:10.1007/s00198-006-0172-4

    Article  Google Scholar 

  2. Feng X, McDonald JM (2011) Disorders of bone remodeling. Annu Rev Pathol 6:121–145. doi:10.1146/annurev-pathol-011110-130203

    Article  Google Scholar 

  3. Italian Society of Osteoporosis MM, Skeletal D, Italian Society of R, Varenna M, Bertoldo F, Di Monaco M, Giusti A, Martini G, Rossini M (2013) Safety profile of drugs used in the treatment of osteoporosis: a systematical review of the literature. Reumatismo 65(4):143–166. doi:10.4081/reumatismo.2013.143

    Google Scholar 

  4. Fleisch H (2003) Bisphosphonates in osteoporosis. Eur Spine J 12(Suppl 2):S142–S146. doi:10.1007/s00586-003-0622-z

    Article  Google Scholar 

  5. Neer RM, Arnaud CD, Zanchetta JR, Prince R, Gaich GA, Reginster JY, Hodsman AB, Eriksen EF, Ish-Shalom S, Genant HK, Wang O, Mitlak BH (2001) Effect of parathyroid hormone (1-34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med 344(19):1434–1441. doi:10.1056/NEJM200105103441904

    Article  Google Scholar 

  6. Meunier PJ, Slosman DO, Delmas PD, Sebert JL, Brandi ML, Albanese C, Lorenc R, Pors-Nielsen S, de Vernejoul MC, Roces A, Reginster JY (2002) Strontium ranelate: dose-dependent effects in established postmenopausal vertebral osteoporosis – a 2-year randomized placebo controlled trial. J Clin Endocrinol Metab 87(5):2060–2066

    Google Scholar 

  7. Black DM, Delmas PD, Eastell R, Reid IR, Boonen S, Cauley JA, Cosman F, Lakatos P, Leung PC, Man Z, Mautalen C, Mesenbrink P, Hu H, Caminis J, Tong K, Rosario-Jansen T, Krasnow J, Hue TF, Sellmeyer D, Eriksen EF, Cummings SR, Trial HPF (2007) Once-yearly zoledronic acid for treatment of postmenopausal osteoporosis. N Engl J Med 356(18):1809–1822. doi:10.1056/NEJMoa067312

    Article  Google Scholar 

  8. Kanis JA, Burlet N, Cooper C, Delmas PD, Reginster JY, Borgstrom F, Rizzoli R, European Society for C, Economic Aspects of O, Osteoarthritis (2008) European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos Int J Established Result Cooperation Between Eur Found Osteoporos National Osteoporos Found USA 19(4):399–428. doi:10.1007/s00198-008-0560-z

    Article  Google Scholar 

  9. Arcos D, Boccaccini AR, Bohner M, Diez-Perez A, Epple M, Gomez-Barrena E, Herrera A, Planell JA, Rodriguez-Manas L, Vallet-Regi M (2014) The relevance of biomaterials to the prevention and treatment of osteoporosis. Acta Biomater 10(5):1793–1805. doi:10.1016/j.actbio.2014.01.004

    Article  Google Scholar 

  10. Kim CH, Takai E, Zhou H, Von Stechow D, Muller R, Dempster DW, Guo XE (2003) Trabecular bone response to mechanical and parathyroid hormone stimulation: the role of mechanical microenvironment. J Bone Miner Res 18(12):2116–2125. doi:10.1359/jbmr.2003.18.12.2116

    Article  Google Scholar 

  11. Leblanc AD, Schneider VS, Evans HJ, Engelbretson DA, Krebs JM (1990) Bone-mineral loss and recovery after 17 weeks of bed rest. J Bone Miner Res 5(8):843–850

    Article  Google Scholar 

  12. Fini M, Giavaresi G, Torricelli P, Krajewski A, Ravaglioli A, Belmonte MM, Biagini G, Giardino R (2001) Biocompatibility and osseointegration in osteoporotic bone. J Bone Joint Surg Br 83(1):139–143

    Article  Google Scholar 

  13. Boron WF (2004) Regulation of intracellular pH. Adv Physiol Educ 28(4):160–179. doi:10.1152/advan.00045.2004

    Article  Google Scholar 

  14. Bushinsky DA, Ori Y (1993) Effects of metabolic and respiratory acidosis on bone. Curr Opin Nephrol Hypertens 2(4):588–596

    Article  Google Scholar 

  15. Lopez I, Aguilera-Tejero E, Felsenfeld AJ, Estepa JC, Rodriguez M (2002) Direct effect of acute metabolic and respiratory acidosis on parathyroid hormone secretion in the dog. J Bone Miner Res 17(9):1691–1700. doi:10.1359/jbmr.2002.17.9.1691

    Article  Google Scholar 

  16. Bushinsky DA (1996) Metabolic alkalosis decreases bone calcium efflux by suppressing osteoclasts and stimulating osteoblasts. Am J Phys 271(1 Pt 2):F216–F222

    Google Scholar 

  17. Lopez I, Rodriguez M, Felsenfeld AJ, Estepa JC, Aguilera-Tejero E (2003) Direct suppressive effect of acute metabolic and respiratory alkalosis on parathyroid hormone secretion in the dog. J Bone Miner Res 18(8):1478–1485. doi:10.1359/jbmr.2003.18.8.1478

    Article  Google Scholar 

  18. Arnett T (2003) Regulation of bone cell function by acid-base balance. Proc Nutr Soc 62(2):511–520

    Article  Google Scholar 

  19. Bushinsky DA, Krieger NS, Geisser DI, Grossman EB, Coe FL (1983) Effects of pH on bone calcium and proton fluxes in vitro. Am J Phys 245(2):F204–F209

    Google Scholar 

  20. Brandao-Burch A, Utting JC, Orriss IR, Arnett TR (2005) Acidosis inhibits bone formation by osteoblasts in vitro by preventing mineralization. Calcif Tissue Int 77(3):167–174. doi:10.1007/s00223-004-0285-8

    Article  Google Scholar 

  21. Bushinsky DA (2001) Acid-base imbalance and the skeleton. Eur J Nutr 40(5):238–244. doi:10.1007/s394-001-8351-5

    Article  Google Scholar 

  22. Carter PH, Schipani E (2006) The roles of parathyroid hormone and calcitonin in bone remodeling: prospects for novel therapeutics. Endocr Metab Immune Disord Drug Targets 6(1):59–76

    Article  Google Scholar 

  23. Eastell R (1998) Treatment of postmenopausal osteoporosis. N Engl J Med 338(11):736–746

    Article  Google Scholar 

  24. Morley P, Whitfield JF, Willick GE (2001) Parathyroid hormone: an anabolic treatment for osteoporosis. Curr Pharm Des 7(8):671–687

    Article  Google Scholar 

  25. Frick KK, Bushinsky DA (1998) Chronic metabolic acidosis reversibly inhibits extracellular matrix gene expression in mouse osteoblasts. Am J Phys 275(5 Pt 2):F840–F847

    Google Scholar 

  26. Kato K, Matsushita M (2014) Proton concentrations can be a major contributor to the modification of osteoclast and osteoblast differentiation, working independently of extracellular bicarbonate ions. J Bone Miner Metab 32(1):17–28. doi:10.1007/s00774-013-0462-9

    Article  Google Scholar 

  27. Kaunitz JD, Yamaguchi DT (2008) TNAP, TrAP, Ecto-purinergic signaling, and bone remodeling. J Cell Biochem 105(3):655–662. doi:10.1002/Jcb.21885

    Article  Google Scholar 

  28. Bushinsky DA (1996) Metabolic alkalosis decreases bone calcium efflux by suppressing osteoclasts and stimulating osteoblasts. Am J Physiol Renal Fluid Electrolyte Physiol 271(1):F216–F222

    Google Scholar 

  29. Kaysinger KK, Ramp WK (1998) Extracellular pH modulates the activity of cultured human osteoblasts. J Cell Biochem 68(1):83–89. doi:10.1002/(Sici)1097-4644(19980101)68:1<83::Aid-Jcb8>3.0.Co;2-S

    Article  Google Scholar 

  30. Kohn DH, Sarmadi M, Helman JI, Krebsbach PH (2002) Effects of pH on human bone marrow stromal cells in vitro: implications for tissue engineering of bone. J Biomed Mater Res 60(2):292–299

    Article  Google Scholar 

  31. Harada M, Udagawa N, Fukasawa K, Hiraoka BY, Mogi M (1986) Inorganic pyrophosphatase activity of purified bovine pulp alkaline-phosphatase at physiological pH. J Dent Res 65(2):125–127. doi:10.1177/00220345860650020601

    Article  Google Scholar 

  32. Goldhaber P, Rabadjija L (1987) H+ stimulation of cell-mediated bone-resorption in tissue-culture. Am J Phys 253(1):E90–E98

    Google Scholar 

  33. Arnett TR (2008) Extracellular pH regulates bone cell function. J Nutr 138(2):415S–418S

    Google Scholar 

  34. Arnett TR, Spowage M (1996) Modulation of the resorptive activity of rat osteoclasts by small changes in extracellular pH near the physiological range. Bone 18(3):277–279. doi:10.1016/8756-3282(95)00486-6

    Article  Google Scholar 

  35. Meghji S, Morrison MS, Henderson B, Arnett TR (2001) pH dependence of bone resorption: mouse calvarial osteoclasts are activated by acidosis. Am J Physiol Endocrinol Metab 280(1):E112–E119

    Google Scholar 

  36. Biskobing DM, Fan D (2000) Acid pH increases carbonic anhydrase II and calcitonin receptor mRNA expression in mature osteoclastsi. Calcif Tissue Int 67(2):178–183. doi:10.1007/S00223001107

    Article  Google Scholar 

  37. Bromme D, Okamoto K, Wang BB, Biroc S (1996) Human cathepsin O2, a matrix protein-degrading cysteine protease expressed in osteoclasts. Functional expression of human cathepsin O2 in Spodoptera frugiperda and characterization of the enzyme. J Biol Chem 271(4):2126–2132

    Article  Google Scholar 

  38. Komarova SV, Pereverzev A, Shum JW, Sims SM, Dixon SJ (2005) Convergent signaling by acidosis and receptor activator of NF-kappaB ligand (RANKL) on the calcium/calcineurin/NFAT pathway in osteoclasts. Proc Natl Acad Sci U S A 102(7):2643–2648. doi:10.1073/pnas.0406874102

    Article  Google Scholar 

  39. Arnett TR, Dempster DW (1986) Effect of pH on bone resorption by rat osteoclasts in vitro. Endocrinology 119(1):119–124. doi:10.1210/endo-119-1-119

    Article  Google Scholar 

  40. Hench LL (2006) The story of bioglass (R). J Mater Sci-Mater M 17(11):967–978. doi:10.1007/s10856-006-0432-z

    Article  Google Scholar 

  41. Huang WH, Day DE, Kittiratanapiboon K, Rahaman MN (2006) Kinetics and mechanisms of the conversion of silicate (45S5), borate, and borosilicate glasses to hydroxyapatite in dilute phosphate solutions. J Mater Sci Mater Med 17(7):583–596. doi:10.1007/s10856-006-9220-z

    Article  Google Scholar 

  42. Ogino M, Ohuchi F, Hench LL (1980) Compositional dependence of the formation of calcium-phosphate films on bioglass. J Biomed Mater Res 14(1):55–64. doi:10.1002/jbm.820140107

    Article  Google Scholar 

  43. Rahaman MN, Day DE, Bal BS, Fu Q, Jung SB, Bonewald LF, Tomsia AP (2011) Bioactive glass in tissue engineering. Acta Biomater 7(6):2355–2373. doi:10.1016/j.actbio.2011.03.016

    Article  Google Scholar 

  44. O’Donnell MD, Watts SJ, Hill RG, Law RV (2009) The effect of phosphate content on the bioactivity of soda-lime-phosphosilicate glasses. J Mater Sci Mater Med 20(8):1611–1618. doi:10.1007/s10856-009-3732-2

    Article  Google Scholar 

  45. Lossdorfer S, Schwartz Z, Lohmann CH, Greenspan DC, Ranly DM, Boyan BD (2004) Osteoblast response to bioactive glasses in vitro correlates with inorganic phosphate content. Biomaterials 25(13):2547–2555. doi:10.1016/j.biomaterials.2003.09.094

    Article  Google Scholar 

  46. Bi LX, Jung S, Day D, Neidig K, Dusevich V, Eick D, Bonewald L (2012) Evaluation of bone regeneration, angiogenesis, and hydroxyapatite conversion in critical-sized rat calvarial defects implanted with bioactive glass scaffolds. J Biomed Mater Res A 100A(12):3267–3275. doi:10.1002/jbm.a.34272

    Article  Google Scholar 

  47. Shen YH, Liu WC, Wen CY, Pan HB, Wang T, Darvell BW, Lu WW, Huang WH (2012) Bone regeneration: importance of local pH-strontium-doped borosilicate scaffold. J Mater Chem 22(17):8662–8670

    Article  Google Scholar 

  48. Ruan CS, Hu N, Hu Y, Jiang LX, Cai QQ, Wang HY, Pan HB, Lu WW, Wang YL (2014) Piperazine-based polyurethane-ureas with controllable degradation as potential bone scaffolds. Polymer 55(4):1020–1027. doi:10.1016/j.polymer.2014.01.011

    Article  Google Scholar 

  49. Fu Q, Rahaman MN, Bal BS, Bonewald LF, Kuroki K, Brown RF (2010) Silicate, borosilicate, and borate bioactive glass scaffolds with controllable degradation rate for bone tissue engineering applications. II. In vitro and in vivo biological evaluation. J Biomed Mater Res A 95(1):172–179. doi:10.1002/jbm.a.32823

    Article  Google Scholar 

  50. Korostynska O, Arshak K, Gill E, Arshak A (2008) Review paper: materials and techniques for in vivo pH monitoring. IEEE Sensors J 8(1–2):20–28. doi:10.1109/Jsen.2007.912522

    Article  Google Scholar 

  51. Zhou DD (USA, 2008) Microelectrodes for in-vivo determination of pH. In: Zhang XJ, Ju HX, Wang J (eds) Electrochemical sensors, biosensors and their biomedical applications. Academic, pp 261–305

    Google Scholar 

  52. Pandolfino JE, Ghosh S, Zhang Q, Heath M, Bombeck T, Kahrilas PJ (2006) Slimline vs. glass pH electrodes: what degree of accuracy should we expect? Aliment Pharmacol Ther 23(2):331–340. doi:10.1111/j.1365-2036.2006.02750.x

    Article  Google Scholar 

  53. Ruan CM, Zeng KF, Grimes CA (2003) A mass-sensitive pH sensor based on a stimuli-responsive polymer. Anal Chim Acta 497(1–2):123–131. doi:10.1016/j.aca.2003.08.051

    Article  Google Scholar 

  54. Bock C, Sartoris FJ, Wittig RM, Portner HO (2001) Temperature-dependent pH regulation in stenothermal Antarctic and eurythermal temperate eelpout (Zoarcidae): an in-vivo NMR study. Polar Biol 24(11):869–874. doi:10.1007/s003000100298

    Article  Google Scholar 

  55. Lee H, Akers W, Bhushan K, Bloch S, Sudlow G, Tang R, Achilefu S (2011) Near-infrared pH-activatable fluorescent probes for imaging primary and metastatic breast tumors. Bioconjug Chem 22(4):777–784. doi:10.1021/bc100584d

    Article  Google Scholar 

  56. Pirkebner D, Fuetsch M, Wittmann W, Weiss H, Haller T, Schramek H, Margreiter R, Amberger A (2004) Reduction of intracellular pH inhibits constitutive expression of cyclooxygenase-2 in human colon cancer cells. J Cell Physiol 198(2):295–301. doi:10.1002/jcp.10408

    Article  Google Scholar 

  57. Hilderbrand SA, Weissleder R (2007) Optimized pH-responsive cyanine fluorochromes for detection of acidic environments. Chem Commun (Camb) 26:2747–2749. doi:10.1039/b703764c

    Article  Google Scholar 

  58. Luo S, Zhang E, Su Y, Cheng T, Shi C (2011) A review of NIR dyes in cancer targeting and imaging. Biomaterials 32(29):7127–7138. doi:10.1016/j.biomaterials.2011.06.024

    Article  Google Scholar 

  59. Gerweck LE, Seetharaman K (1996) Cellular pH gradient in tumor versus normal tissue: potential exploitation for the treatment of cancer. Cancer Res 56(6):1194–1198

    Google Scholar 

  60. Han JY, Burgess K (2010) Fluorescent indicators for intracellular pH. Chem Rev 110(5):2709–2728. doi:10.1021/cr900249z

    Article  Google Scholar 

  61. Ge FY, Chen LG (2008) pH fluorescent probes: chlorinated fluoresceins. J Fluoresc 18(3–4):741–747. doi:10.1007/s10895-007-0305-y

    Article  Google Scholar 

  62. Giuliano KA, Gillies RJ (1987) Determination of intracellular Ph of Balb/C-3t3 cells using the fluorescence of pyranine. Anal Biochem 167(2):362–371. doi:10.1016/0003-2697(87)90178-3

    Article  Google Scholar 

  63. Li L, Schwendeman SP (2005) Mapping neutral microclimate pH in PLGA microspheres. J Control Release 101(1–3):163–173. doi:10.1016/j.jconrel.2004.07.029

    Article  Google Scholar 

  64. Ding AG, Schwendeman SP (2008) Acidic microclimate pH distribution in PLGA microspheres monitored by confocal laser scanning microscopy. Pharm Res 25(9):2041–2052. doi:10.1007/s11095-008-9594-3

    Article  Google Scholar 

  65. Orte A, Alvarez-Pez JM, Ruedas-Rama MJ (2013) Fluorescence lifetime imaging microscopy for the detection of intracellular pH with quantum dot nanosensors. ACS Nano 7(7):6387–6395. doi:10.1021/nn402581q

    Article  Google Scholar 

  66. Zhang XM, Lin YX, Gillies RJ (2010) Tumor pH and its measurement. J Nucl Med 51(8):1167–1170. doi:10.2967/jnumed.109.068981

    Article  Google Scholar 

  67. Bartsch I, Willbold E, Rosenhahn B, Witte F (2014) Non-invasive pH determination adjacent to degradable biomaterials in vivo. Acta Biomater 10(1):34–39. doi:10.1016/j.actbio.2013.08.047

    Article  Google Scholar 

  68. Benavides F, Oberyszyn TM, VanBuskirk AM, Reeve VE, Kusewitt DF (2009) The hairless mouse in skin research. J Dermatol Sci 53(1):10–18. doi:10.1016/j.jdermsci.2008.08.012

    Article  Google Scholar 

  69. Buck RP, Rondinini S, Covington AK, Baucke FGK, Brett CMA, Camoes MF, Milton MJT, Mussini T, Naumann R, Pratt KW, Spitzer P, Wilson GS (2002) Measurement of pH. Definition, standards, and procedures. Pure Appl Chem 74(11):2169–2200. doi:10.1351/pac200274112169

    Article  Google Scholar 

  70. Rundle C (2015) A beginner’s guide to ion-selective electrode measurements. http://www.nico2000.net/Book/Guide1.htm. 2015

  71. Kanda Y, Aoshima R, Takada A (1981) Blood compatibility of components and materials in silicon integrated-circuits. Artif Organs 5(3):307–307

    Google Scholar 

  72. Frost MC, Batchelor MM, Lee YM, Zhang HP, Kang YJ, Oh BK, Wilson GS, Gifford R, Rudich SM, Meyerhoff ME (2003) Preparation and characterization of implantable sensors with nitric oxide release coatings. Microchem J 74(3):277–288. doi:10.1016/S0026-265x(03)00033-X

    Article  Google Scholar 

  73. Ziaie B, VonArx JA, Dokmeci MR, Najafi K (1996) A hermetic glass-silicon micropackage with high-density on-chip feedthroughs for sensors and actuators. J Microelectromech Syst 5(3):166–179. doi:10.1109/84.536623

    Article  Google Scholar 

  74. Guth U, Oelssner W, Vonau W (2001) Investigation of corrosion phenomena on chemical microsensors. Electrochim Acta 47(1–2):201–210. doi:10.1016/S0013-4686(01)00545-X

    Article  Google Scholar 

  75. Schoning MJ, Brinkmann D, Rolka D, Demuth C, Poghossian A (2005) CIP (cleaning-in-place) suitable “non-glass” pH sensor based on a Ta2O5-gate EIS structure. Sensors Actuators B Chem 111:423–429. doi:10.1016/j.snb.2005.03.053

    Article  Google Scholar 

  76. Vonau W, Gabel J, Jahn H (2005) Potentiometric all solid-state pH glass sensors. Electrochim Acta 50(25–26):4981–4987. doi:10.1016/j.electacta.2005.02.084

    Article  Google Scholar 

  77. Espadastorre C, Meyerhoff ME (1995) Thrombogenic properties of untreated and poly(ethylene oxide)-modified polymeric matrices useful for preparing intraarterial ion-selective electrodes. Anal Chem 67(18):3108–3114. doi:10.1021/Ac00114a003

    Article  Google Scholar 

  78. Martinoia S, Massobrio G, Lorenzellib L (2005) Modeling ISFET microsensor and ISFET-based microsystems: a review. Sensors Actuators B Chem 105(1):14–27. doi:10.1016/j.snb.2004.02.046

    Article  Google Scholar 

  79. Pourciel-Gouzy ML, Sant W, Humenyuk I, Malaquin L, Dollat X, Temple-Boyer P (2004) Development of pH-ISFET sensors for the detection of bacterial activity. Sensors Actuators B Chem 103(1–2):247–251. doi:10.1016/j.snb.2004.04.056

    Article  Google Scholar 

  80. Lehmann M, Baumann W, Brischwein M, Ehret R, Kraus M, Schwinde A, Bitzenhofer M, Freund I, Wolf B (2000) Non-invasive measurement of cell membrane associated proton gradients by ion-sensitive field effect transistor arrays for microphysiological and bioelectronical applications. Biosens Bioelectron 15(3–4):117–124. doi:10.1016/S0956-5663(00)00065-8

    Article  Google Scholar 

  81. Jabre A, Bao YC, Spatz EL (2000) Brain pH monitoring during ischemia. Surg Neurol 54(1):55–58. doi:10.1016/S0090-3019(00)00238-X

    Article  Google Scholar 

  82. Khabbaz KR, Zankoul F, Warner KG (2001) Intraoperative metabolic monitoring of the heart: II. Online measurement of myocardial tissue pH. Ann Thorac Surg 72(6):S2227–S2233. doi:10.1016/S0003-4975(01)03284-2

    Article  Google Scholar 

  83. Harrison DK, Walker WF (1979) Microelectrode measurement of skin pH in humans during ischemia, hypoxia and local hypothermia. J Physiol-London 291:339–350

    Article  Google Scholar 

  84. Padnick-Silver L, Linsenmeier RA (2002) Quantification of in vivo anaerobic metabolism in the normal cat retina through intraretinal pH measurements. Vis Neurosci 19(6):793–806. doi:10.1017/S095252380219609x

    Article  Google Scholar 

  85. Jahde E, Rajewsky MF, Baumgartl H (1982) pH distributions in transplanted neural tumors and normal-tissues of bdix rats as measured with pH microelectrodes. Cancer Res 42(4):1498–1504

    Google Scholar 

  86. Chakkalakal DA, Mashoof AA, Novak J, Strates BS, McGuire MH (1994) Mineralization and pH relationships in healing skeletal defects grafted with demineralized bone matrix. J Biomed Mater Res 28(12):1439–1443. doi:10.1002/jbm.820281209

    Article  Google Scholar 

  87. Shen YH, Liu WC, Lin KL, Pan HB, Darvell BW, Peng SL, Wen CY, Deng LF, Lu WW, Chang JA (2011) Interfacial pH: a critical factor for ssteoporotic bone regeneration. Langmuir 27(6):2701–2708. doi:10.1021/La104876w

    Article  Google Scholar 

  88. Zhu H, Guo ZK, Jiang XX, Li H, Wang XY, Yao HY, Zhang Y, Mao N (2010) A protocol for isolation and culture of mesenchymal stem cells from mouse compact bone. Nat Protoc 5(3):550–560. doi:10.1038/nprot.2009.238

    Article  Google Scholar 

  89. Liu W, Wang T, Yang C, Darvell BW, Wu J, Lin K, Chang J, Pan H, Lu WW (2016) Alkaline biodegradable implants for osteoporotic bone defects-importance of microenvironment pH. Osteoporos Int 27(1):93–104. doi:10.1007/s00198-015-3217-8

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (No. 81672227; 51372170), Shenzhen Peacock Program (No. 110811003586331), Highlight research of frontier science, Chinese academy of sciences (No. QYZDB-SSW-JSC030), Shenzhen Science and Technology Research funding (No. CXZZ20150401152251209; JSGG2015103014032514; JSGG20150331154931068, CXZZ20140417113430716, JCYJ20170413162104773) and Youth Innovation Promotion Association CAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haobo Pan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Liu, W., Dan, X., Lu, W.W., Pan, H. (2018). Importance of Biomaterials In Vivo Microenvironment pH (μe-pH) in the Regeneration Process of Osteoporotic Bone Defects. In: Liu, C., He, H. (eds) Developments and Applications of Calcium Phosphate Bone Cements. Springer Series in Biomaterials Science and Engineering, vol 9. Springer, Singapore. https://doi.org/10.1007/978-981-10-5975-9_11

Download citation

Publish with us

Policies and ethics