Skip to main content

Quadrupole Nuclei in Inorganic Materials

  • Chapter
  • First Online:
  • 2485 Accesses

Abstract

The solid-state NMR of quadrupolar nuclei is becoming more important to date. The anisotropy of quadrupolar coupling cannot be eliminated by magic-angle spinning. Although large quadrupolar couplings often prevent us to observe NMR signals of quadrupolar nuclei as sufficiently separated signals, the recent development of the equipment and methods including DNP, are spreading our opportunities of NMR observation to a wider range of materials and in deeper levels of information. The quadrupolar parameters, which can be taken from NMR spectra of quadrupolar nuclei, have a potential usefulness to distinguish atoms depending on their local electrostatic environment. MQMAS or STMAS enable us not only to observe quadrupolar nuclei in separated signals but also to get quadrupolar parameters and isotopic chemical shifts of each the separated signal component in a 2D spectrum. J- or D-HMQC, CP-HETCOR and related techniques provide us information about inter-atomic chemical bonding or geometrical correlations. When the sensitivity is insufficient, besides isotopes enrichment, for quadrupolar nuclei specifically, enhancement through intra-spin population transfer methods, RAPT, FAM, DFS, WURST and HS can be applied. WURST, when combined with QCPMG method, can provide us a method for obtaining NMR spectra for those nuclei having huge quadrupolar coupling that we cannot observe the whole signal shape by simple methods. This article is dealing with the NMR methods being standard at the present, or becoming standard in the near future, especially for the practical samples, for example, mixed samples or amorphous samples. A number of experimental hints and a couple of experimental examples of 27Al and 17O are described.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The ESR and Mössbauer spectra also have similar characteristics.

  2. 2.

    It is at least two orders lower even compared to the peak frequency of the Universe’s 3.7 K background radiation, having its peak frequency at 160.2 GHz, which is around 2 orders lower to that of the earth’s environmental temperatures.

  3. 3.

    According to Cohen 1954, the order of quadrupolar interaction is as large as \(Q_{jk}^{\prime} \left( {\partial^{2} V/\partial x_{i} \partial x_{j} } \right) \sim er_{n}^{2} \left( {\frac{e}{{r_{e}^{3} }}} \right) = eV_{0} \left( {r_{n} /r_{e} } \right)^{2}\). The quadrupolar interaction is around 10−8 compared to the electrostatic force between the charges within the nucleus.

References

  1. Man, P.P.: Quadrupole Coupling in NMR. http://www.pascal-man.com

  2. Cohen, M.H., Reif, F.: Quadrupole effects in nuclear magnetic resonance studies of solids. In: Zeitz, F., Turnbull, D. (eds.) Solid State Physics, Advances in Research Applications, vol. 5, pp. 321–455. Academic Press, New York (1957)

    Google Scholar 

  3. Abragham, A.: Principles of Nuclear Magnetism. Oxford University Press, London (1961)

    Google Scholar 

  4. Slichter, C.P.: Principles of Magnetic Resonance. (Springer Series in Solid-State Science 1) Third Enlarged and Updated edn. Springer, New York (1996)

    Google Scholar 

  5. Hashi, K., Ohki, S., Matsumoto, S., Nishijima, G., Goto, A., Deguchi, K., Yamada, K., Noguchi, T., Sakai, S., Takahashi, M., Yanagisawa, Y., Iguchi, S., Yamazaki, T., Maeda, H., Tanaka, R., Nemoto, T., Suematsu, H., Miki, T., Saito, K., Shimizu, T.: Acievement of 1020 MHz. J. Magn. Res. 256, 30–33 (2015)

    Article  CAS  Google Scholar 

  6. Nishiyama, Y., Endo, Y., Nemoto, T., Utsumi, H., Yamaguchi, K., Hioka, K., Asakura, T.: Very fast magic angle spinning 1H-14N 2D solid-state NMR: sub-micro-liter sample data collection in a few minutes. J. Magn. Reson. 208, 44–48 (2011). doi:10.1016/j.jmr.2010.10.001

    Article  CAS  Google Scholar 

  7. Mizuno, T., Takegoshi, K.: Development of a cryogenic duplexer for solid-state nuclear magnetic resonance. Rev. Sci. Instrum. 80, 124072 (2009). doi:10.1063/1.3263908

    Article  Google Scholar 

  8. Hyberts, S.G., Arthanari, H., Wagner, G.: Applications of non-uniform sampling and processing. Top. Curr. Chem. 316, 125–148 (and references therein)

    Article  Google Scholar 

  9. Barnes, A.B., De Paëpe, G., van der Wel, P.C.A., Hu, K.-N., Joo, C.-G., Bajaj, V.S., Mak-Jurkauskas, M.L., Sirigiri, J.R., Herzfel, J., Temkin, R.J., Griffin, R.G.: High-field dynamic nuclear polarization for solid and solution biological NMR. Appl. Magn. Res. 34(3–4), 237–263 (2008). doi:10.1007/s00723-008-0129-1

    Article  CAS  Google Scholar 

  10. Oxford Instruments: Hyper Sense DNP Polarizer. https://www.oxford-instruments.com/products/spectrometers/nuclear-magnetic-resonance-nmr/hypersense

  11. Bruker Biospin: DNP NMR. https://www.bruker.com/products/mr/nmr/dnp-nmr/overview.html?gclid=CPuNydr-6tQCFYcDKgod_OwAhg

  12. Tolman, J.R., Flanagan, J.M., Kennedy, M.A., Prestegard, J.H.: Nuclear magnetic dipole interactions in field-oriented proteins: information for structure determination in solution. Proc. Natl. Acad. Sci. U.S.A. 92, 9279–9283 (1995)

    Google Scholar 

  13. Hexem, J.G., Frey, M.H., Opella, S.J.: Influence of 14N on 13C NMR spectra of solids. J. Am. Chem. Soc. 103, 224–226 (1981)

    Article  CAS  Google Scholar 

  14. Naito, A., Gnanapathy, A.C., McDowell, C.A.: High resolution solid state 13C NMR spectra of carbons bonded to nitrogen in a sample spinning at the magic angle. J. Chem. Phys. 74, 5393–5397 (1981)

    Article  CAS  Google Scholar 

  15. Cavadini, S., Lupulescu, A., Antonijevic, S., Bodenhausen, G.: Nitrogen-14 NMR spectroscopy using residual dipolar splittings in solids. J. Am. Chem. Soc. 128, 7706–7707 (2006)

    Article  CAS  Google Scholar 

  16. McManus, J., Kemp-Harper, R., Wimperis, S.: Second-order quadrupolar-dipolar broadening in two-dimensional multiple-quantum MAS NMR. Chem. Phys. Lett. 311(3), 292–298 (1999)

    Article  CAS  Google Scholar 

  17. Wi, S-s, Frydman, L.: Residual dipolar couplings between quadrupolar nuclei in high resolution solid state NMR: description and observations in the high-field limit. J. Chem. Phys. 112(7), 3248–3261 (2000)

    Article  CAS  Google Scholar 

  18. Ashbrook, S.E., Wimperis, S.: Second-order cross-term interactions in high-resolution MAS NMR of quadrupolar nuclei. Prog. Nucl. Magn. Reson. Spectrosc. 55, 160–181 (2009)

    Article  CAS  Google Scholar 

  19. Man, P.P., Couty, R., Fraissard, J.: Determination of line intensities of 27Al in Al2O3. J. Magn. Reson. 86, 613–617 (1990)

    Google Scholar 

  20. Bryce, D.L., Taulelle, F.: NMR crystallography. Acta Cryst. C73, 126–127 (2017)

    Google Scholar 

  21. Man, P.P.: Quadrupolar interactions in solid-state NMR, general. In: Meyers, R.A. (ed.) Encyclopedia of Magnetic Resonance, pp. 12224–13365. Wiley, Chichester (1990)

    Google Scholar 

  22. MacKensie, K.J.D., Smith, M.E.: Multinuclear solid-state NMR of inorganic materials. In: Cahn, R.W. (ed.) Pergamon Materials Series, 6th edn. Elsevier, Oxford (2002)

    Google Scholar 

  23. Wasylishen, R.E., Ashbrook, S.E., Wimperis, S. (ed.) NMR of Quadrupolar Nuclei in Solid Materials. Wiley, Hoboken (2012)

    Google Scholar 

  24. Freude, D.: Quadrupolar nuclei in solid-state nuclear magnetic resonance. In: Meyers, R.A. (ed.) Encyclopedia of Analytical Chemistry, pp. 12188–12224. Wiiley, Chichester (2000)

    Google Scholar 

  25. De-Lacaillerie, J.B.D., Fretigny, C., Massiot, D.: MAS NMR spectra of quadrupolar nuclei in disordered solids: the Czjzek model. J. Magn. Reson. 192, 244–251 (2008)

    Article  Google Scholar 

  26. Frydman, L., Harwood, J.S.: Isotropic spectra of half-integer quadrupolar spins from bidimensional magic-angle spinning NMR. J. Am. Chem. Soc. 117, 5363–5364 (1995)

    Article  Google Scholar 

  27. (a) Brown, S.P., Heyes, S.J., Wimperis, S., Two-dimensional MAS multiple-quantum NMR of quadrupolar nuclei. Removal of inhomogeneous second-order broadening.  J. Magn. Reson. Ser. A 119, 280–284 (1996); (b) Amoureux, J-P., Fernandez, C., Steuernagel, S., Z Filtering in MQMAS NMR. J. Magn. Reson. Ser. A123, 116–118 (1996)

    Google Scholar 

  28. Massiot, D., Touzo, B., Trumeau, D., Coutures, J.P., Virlet, J., Florian, P., Grandinetti, P.J.: Two-dimensional MAS isotropin reconstruction sequences for quadrupolar nuclei. Solid State NMR 6, 73–83 (1996)

    Article  CAS  Google Scholar 

  29. Brown, S.P., Wimperis, S.: Two-dimensional MQ-MAS NR of quadrupolar nuclai. Solid State NMR 6, 73–83 (1996)

    Article  Google Scholar 

  30. Brown, S.P., Wimperis, S.: Two-dimensional MQMAS NMR of quadrupolar nuclei: a comparison of methods. J. Magn. Reson. 128, 42–61 (1997)

    Article  CAS  Google Scholar 

  31. Gan, Z.H., Kwak, H.T.: Enhancing MQMAS sensitivity using signals from multiple coherence transfer pathways. J. Magn. Reson. 168, 346–351 (2004)

    Article  CAS  Google Scholar 

  32. Amoureix, J.-P., Flambard, A., Delevoye, L., Montagne, L.: A very sensitive high-resolution NMR method for quadrupolar nuclei. Chem. Commun. 27, 3573–3574 (2005)

    Google Scholar 

  33. Gan, Z.: Isotopic NMR spectra of half-integer quadrupolar nuclei using satellite transitions and magic-angle spinning. J. Am. Chem. Soc. 122, 3242–3243 (2000)

    Article  CAS  Google Scholar 

  34. Gan, Z., Gor’kov, T.A., Samoson, A., Massiot, D.: Seeking higher resolution and sensitivity for NMR of quadrupolar nuclei. J. Am. Chem. Soc. 124, 5634–5635 (2002)

    Article  CAS  Google Scholar 

  35. Amoureux, J.-P., Delevoye, L., Fink, G., Taulelle, F., Flambard, A., Montagne, L.: Unified representation of MQMAS and STMAS NMR of half-integer quadrupolar nuclei. Chem. Phys. Lett. 356, 3200–3201 (2001)

    Google Scholar 

  36. Ashbrook, S.E., WImperis, S.: High-resolution NMR of quadrupolar nuclei in solids: the satellite-transition magic angle spinning (STMAS) experiment. Prog. Nucl. Magn. Reson. Spectrosc. 46, 52–108 (2004)

    Google Scholar 

  37. Takahashi, T., Kanehashi, K., Shimoikeda, Y., Nemoto, T., Saito, K.: Practical comparison of sensitivity and resolution between STMAS and MQMAS for 27Al. J. Magn. Reson. 198, 228–235 (2009)

    Article  CAS  Google Scholar 

  38. Antonijevic, S., Ashbrook, S.E., Biedasek, S., Walton, R.I., Wimperis, S., Yang, H.: Dynamics on the microsecond timescale in microporous aluminophosphate ALPO-14 as evidenced by 27Al MQMAS and STMAS NMR spectroscopy. J. Am. Chem. Soc. 128, 8054–8062 (2006)

    Article  CAS  Google Scholar 

  39. Takegoshi, K., Nomura, K., Terao, T.: Rotational resonance in the tilted rotating frame. Chem. Phys. Lett. 232, 424–428 (1995)

    Google Scholar 

  40. Marks, D., Vega, S.: A theory of cross-polarization NMR of non-spinning and spinning samples. J. Magn. Reson. Ser. A118, 157–172 (1996)

    Article  Google Scholar 

  41. Van Rossum, B.-J.,  de Groot, C. P., Ladizhansky, V., Vega, S., de Groot, H. J. M.: A Method for measuring heteronuclear (1H-13C) distances in high speed MAS NMR. J. Am. Chem. Soc. 122, 3465–3472 (2000)

    Google Scholar 

  42. Amoureux, J.-P., Pruski, M.: Theoretical and experimental assessment of single and multi-quantum cross-polarization in solid state NMR. Mol. Phys. 100, 1595–1613 (2002)

    Google Scholar 

  43. Vega, A.: CP/MAS of S = 3/2 quadrupolar nuclei. Solid State NMR 1, 17–32 (1992)

    Google Scholar 

  44. (a) Hayashi, S., Hayamizu, K.: Line-shapes in CP/MAS NMR of quadrupolar nuclei. Chem. Phys. Lett. 203, 319–324 (1993);(b) Hayashi, S., Hayamizu, K.: Errata: line–shapes in CP/MAS NMR of quadrupolar nuclei. Chem. Phys. Lett. 205, 597 (1993)

    Google Scholar 

  45. Pandey, M.K., Amoureux, J.-P., Asakura, T., Nishiyama, Y.: Sensitivity enhanced 14N/14N correlations to probe inter-beta-sheet interactions using fast magic angle spinning solid-state NMR in biological solids.  Phys. Chem. Chem. Phys. 18, 22583–22589 (2016)

    Google Scholar 

  46. (a) Pruski, M., Lang, D. P., Fernandez, C., Amoureux, J.P.: Multiple-quantum magic-angle spinning NMR with cross-polarization: Spectral editing of high-resolution spectra of quadrupolar nuclei. Solid State Nucl. Magn. Reson., 7, 327–331 (1997); (b) Ashbrook, S.E., Wimperis, S.: Multiple-quantum cross-polarization and two-dimensional MQMAS NMR of quadrupolar nuclei, J. Magn. Reson. 147, 238–249 (2000)

    Google Scholar 

  47. (a) Wang, S.H., De Paul, S.M., Bull, L.M.: High-resolution heteronuclear correlation between quadrupolar and spin-1/2 nuclei using multiple-quantum magic-angle spinning.  J. Magn. Reson., 125 364–368 (1997); (b) Fernandez, C., Morais, C., Rocha, J., Pruski, M.: High-resolution heteronuclear correlation spectra between 31P and 27Al in microporous aluminophosphates. Solid State NMR 21, 61–70 (2002)

    Google Scholar 

  48. Siegel, R., Rocha, J., Mafra, L.: Combinating STMAS and CRAMPS NMR spectroscopy: High- resolution HETCOR NMR spectra of quadrupolar and 1H Nuclei in solids.Chem. Phys. Lett. 470, 337–341(2009)

    Google Scholar 

  49. Kwak, H.-T., Prasad, S., Clark, T., Grandinetti, P.J.: Enhancing sensitivity of quadrupolar nuclei in solid-state NMR with multiple rotor assisted population transfers. Solid State NMR 24, 71–77 (2003)

    Article  CAS  Google Scholar 

  50. Madhu, P.K., Goldbourt, A., Frydman, L., Vega, S.: Sensitivity enhancement of the MQMAS NMR experiment by fast amplitude modulation of the pulses. Chem. Phys. Lett. 307, 41–47 (1999)

    Article  CAS  Google Scholar 

  51. Kwak, H.-T., Prasad, S., Clark, T., Grandinetti, P.J.: Selective suppression and excitation of solid-state NMR resonances based on quadrupole coupling constants. J. Magn. Reson. 160, 107–113 (2003)

    Article  CAS  Google Scholar 

  52. Kentgens, A.P.M., Verhagen, R.: Advantages of double frequency sweeps in static, MAS and MQMAS NMR of spin I= 3/2 nuclei. Chem. Phys. Lett. 300, 435–443 (1999)

    Article  CAS  Google Scholar 

  53. Kupče, Ē., Freeman, R.: Optimized adiabatic pulses for wideband spin inversion. J. Magn. Reson. Ser. A 118, 299–303 (1996)

    Article  Google Scholar 

  54. Siegel, R., Nakashima, T.T., Wasylishen, R.E.: Sensitivity enhancement of NMR spectra of half-integer spin quadrupolar nuclei in solid using hyperbolic secant pulses. J. Magn. Reson. 184, 83–100 (2007)

    Article  Google Scholar 

  55. Wang, Q., Li, Y., Trebosc, J., Lafon, O., Hu., B., Xu, J., Feng, N., Chen, Q., Amourexu, J. P., Deng, F.: Population transfer HMQC for half-integer quadrupolar nuclei. J. Chem. Phys. 142, 094201 (2015)

    Google Scholar 

  56. Luke A. O’Dell: The WURST kind of pulses in solid-state NMR. Solid State Nucl. Magn. Reson. 55-56, 28–41 (2013)

    Google Scholar 

  57. O’Dell L. A. Schurko, R. W.: QCPMG using adiabatic pulses for faster acquisition of ultra-wideline NMR spectra. Chem. Phys. Lett. 464, 97–102 (2008)

    Google Scholar 

  58. Pandey, M. K., Hashi, K., Ohki, S., Nishimjima, G., Matsumoto, S., Noguchi, T., Deguchi, K., Gotoh, A., Shimizu, T., Maeda, H., Takahashi, M., Yanagisawa, T., Suematsu, H., Saito, K., Miki, T., Nishiyama, Y.: 24T high-resolution and—sensitivity solid-state NMR measurements of low-gamma half-integer quadrupolar nuclei 35Cl and 37Cl. Anal. Sci. 32(5), 1339–1345 (2016). doi: 10.1246/cI.160850

    Google Scholar 

  59. Naito, A.: Structure elucidation of membrane-associated peptides and proteins in oriented bilayers by solid-state NMR spectroscopy. Solid State Nucl. Magn. Reson.36, 67–76 (2009)

    Google Scholar 

  60. Klinowsky, J.: Solid-State NMR Studies of Molecular Sieve Catalysts. Chem. Rev. 91, 1459–1479 (1991)

    Google Scholar 

  61. Grey, C. P., Vega, A.J.:  Determination of the Quadrupole Coupling Constant of the Invisible Aluminium Spins in Zeolite HY with 1H/27Al TRAPDOR NMR. J. Am. Chem. Soc. 117, 8232–8242 (1995)

    Google Scholar 

  62. Kentgens, A. P. M., Iuga, D., Kalwei, M., Koller, H.: Direct observations of Brønsted acidic sites dehydrated zeolites, H-ZSM5 using DFS enhanced 27Al MQMAS NMR spectroscopy. J. Am. Chem. Soc. 123, 2925–2926 (2001)

    Google Scholar 

  63. Ehresmann, J.O., Wang, W., Herreros, B., Luigi, D.-P., Venkatraman, T. N., Song, W., Nicholas, J. B., Haw, J. F.: Theoretical and experimental investigation of the effect of proton transfer on the 27Al MAS NMR Line Shapes of zeolite-adsorbate complexes: An independent measure of solid acid strength.  J. Am. Chem. Soc. 124, 10868–10874 (2002)

    Google Scholar 

  64. Hunger, M., Horvath, T.: A new MAS NMR probe for in situ investigations of hydrocarbon conversion on solid catalysts under continuous-flow conditions. J. Chem. Soc. Chem. Commun. 1423–1424 (1995)

    Google Scholar 

  65. Jiao, J.: Chap. 8 Number and nature of framework aluminum atoms in non-hydrated zeolites Y studied by adsorption of probe molecules in Quantitative characterization of aluminum in non-hydrated zeolite catalysts by multi-nuclear solid-state NMR spectroscopy. Thesis at Universitet Stuttgart, (2006) which is presently accessible at https://elib.uni-stuttgart.de/bitstream/11682/824/1/thesis_jiao.pdf

  66. Yamada, K. Chapter 3 - Recent Applications of Solid-State 17O NMR. Annual Rep NMR Spectrosc, pp 115–158 (2010)

    Google Scholar 

  67. Ashbrook, S. E., Smith, M. E.: Solid state 17O NMR - an introduction to the background principles and applications to inorganic materials. Chem. Soc. Reviw. 35, 718–735 (2006)

    Google Scholar 

  68. Peng, L., Liu, Y., Kim, N., Readman, J. E., Grey, C. P.: Detection of Brønsted acid sites in zeolite HY with high-field 17O-MAS-NMR techniques. Nature Materials. 4, 216–219 (2005)

    Google Scholar 

  69. Peng, L., Huo, H., Gan, Z., Grey, C. P.: 17O MQMAS NMR studies of zeolite HY. Microporous and Mesoporous Materials. 109, 156–162 (2008)

    Google Scholar 

  70. Huo, H., Peng, L., Gan, Z., Grey, C. P.: Solid-State MAS NMR Studies of Brønsted Acid Sites in Zeolite H-Mordenite. J. Am. Chem. Soc. 134, 9708–9720 (2012)

    Google Scholar 

Download references

Acknowledgements

The author is fully thanking to Prof. Naito, an editor of this book, for his kind and enduring help and encouragement; without his help, I couldn’t complete my task. I thank Prof. Takegoshi for his frank and helpful discussion. I also thank to Dr. Hayashi who gave me instruction of the solid-state NMR especially in my launching days. I also thank to the comittee members of Japanese Solid-state NMR and Material Forum (no English site, the site only in Japanesse, http://kuchem.kyoto-u.ac.jp/bun/forum/nmr.html) and the Nuclear Magnetic Resonance Society of Japan ( http://www.nmrj.jp/index.php?page=index-e) and people who have been gathering there and giving me a plenty of fruitful infromation and discussions. Finally, I would express another deep acknowlegement to National Institute of Indurstiral Science and Technology (AIST), and New Energy and Industry Technology Developement Organization (NEDO) and people who are working there for their financial and everyday supports in everywhere.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshikazu Takahashi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Takahashi, T. (2018). Quadrupole Nuclei in Inorganic Materials. In: The Nuclear Magnetic Resonance Society of Japan (eds) Experimental Approaches of NMR Spectroscopy. Springer, Singapore. https://doi.org/10.1007/978-981-10-5966-7_20

Download citation

Publish with us

Policies and ethics