Skip to main content

NMR of Paramagnetic Compounds

  • Chapter
  • First Online:
Experimental Approaches of NMR Spectroscopy

Abstract

Paramagnetic ions and molecules have been exploited quite extensively as extrinsic shift and relaxation probes for investigating the structure and dynamics of biological molecules. The prodigious growth of related research areas is easily discernible as the remarkably widening scope of application in diverse fields in life and material sciences. Sperm whale myoglobin (Mb) is well known as the first protein to have its three-dimensional structure revealed by X-ray crystallographic study and is also known as one of the first paramagnetic proteins studied by NMR. The heme Fe atom in Mb can exhibit a variety of oxidation, ligation, and spin states. In this chapter, Mb is selected as a reference paramagnetic compound to provide an overview of the relationship between the spectral features and the number of unpaired electrons, because the effects of a change in the spin quantum number S, i.e., the number of unpaired electrons, on NMR spectral parameters of a single compound can be readily understood. Field-dependent broadening of signals of proteins with a series of S values is also described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wüthrich, K.: Structural studies of hemes and hemoproteins by nuclear magnetic resonance spectroscopy. Struct. Bond. 8, 53–121 (1970)

    Article  Google Scholar 

  2. La, M.G.N., Horrocks, W.D.W., Holm, R.H. (eds.): NMR of Paramagnetic Molecules, Principles and Applications. Academic Press, New York (1973)

    Google Scholar 

  3. Morrow, J.S., Gurd, F.R.N.: Nuclear magnetic resonance studies of hemoglobin: functional state correlations and isotopic enrichment strategies. CRC Crit. Rev. Biochem. 3, 221–287 (1975)

    Article  CAS  Google Scholar 

  4. Wüthrich, K.: NMR in Biological Research: Peptides and Proteins, Chap. 6. North-Holland Publishing, Amsterdam (1976)

    Google Scholar 

  5. Morishima, I., Ogawa, S., Inubushi, T., Iizuka, T.: Nuclear magnetic resonance studies of high-spin ferric hemoproteins. Adv. Biophys. 11, 217–245 (1978)

    CAS  Google Scholar 

  6. La Mar, G.N.: Model compound as aids in interpreting NMR spectra of hemoproteins. In: Shulman, R.G. (ed.) Biological Application of Magnetic Resonance, pp. 305–343. Academic Press, New York (1979)

    Chapter  Google Scholar 

  7. Inagaki, F., Miyazawa, T.: NMR analyses of molecular conformations and conformational equilibria with the lanthanide probe method. Prog. NMR Spectrosc. 14, 67–111 (1981)

    Article  Google Scholar 

  8. Keller, R.M., Wüthrich, K.: Multiple irradiation 1H NMR experiments with hemopoteins. Biol. Magn. Reson. 3, 1–51 (1981)

    CAS  Google Scholar 

  9. Jardetzky, O., Roberts, G.C.K.: NMR in Molecular Biology, Chap. III. Academic Press, New York, pp. 69–114 (1981)

    Google Scholar 

  10. Bertini, I., Luchinat, C.: NMR of Paramagnetic Molecules in Biological Systems. Benjamin/Cummings Publishing, Menlo Park (1986)

    Google Scholar 

  11. Satterlee, J.D.: MNR spectroscopy of paramagnetic haem proteins. Annu. Rep. NMR Spectrosc. 17, 79–178 (1986)

    Article  Google Scholar 

  12. Satterlee, J.D.: Proton NMR studies of biological problems involving paramagnetic heme proteins. Met. Ions Biol. Syst. 21, 121–185 (1986)

    Google Scholar 

  13. Bertini, I., Turano, P., Vila, A.J.: Nuclear magnetic resonance of paramagnetic metalloproteins. Chem. Rev. 93, 2833–2932 (1993)

    Article  CAS  Google Scholar 

  14. Yamamoto, Y.: NMR study of active sites in paramagnetic haemoproteins. Annu. Rep. NMR Spectrosc. 36, 1–77 (1998)

    Article  CAS  Google Scholar 

  15. La Mar, G.N., Satterlee, J.D., de Ropp, J.S.: Nuclear magnetic resonance of hemoproteins. In: Kadish, K.M., Smith, K.M., Guilard, R. (eds.) The Porphyrin Handbook, pp. 185–298. Academic Press, San Diego (2000)

    Google Scholar 

  16. Bertini, I., Luchinat, C., Parigi, G.: Solution NMR of Paramagnetic Molecules. Elsevier, Amsterdam (2001)

    Google Scholar 

  17. de Ropp, J.S., Yu, L.P., La Mar, G.N.: 2D NMR of paramagnetic metalloenzymes: cyanide-inhibited horseradish peroxidase. J. Biomol. NMR 1, 175–190 (1991)

    Article  Google Scholar 

  18. Banci, L., Piccioli, M., Scozzafava, A.: Advances in the NMR investigation of paramagnetic molecules in solution. Coord. Chem. Rev. 120, 1–28 (1992)

    Article  CAS  Google Scholar 

  19. Ubbink, M., Worrall, J.A.R., Canters, G.W., Groenen, E.J.J., Huber, M.: Paramagnetic resonance of biological metal centers. Annu. Rev. Biophys. Biomol. Struct. 31, 393–422 (2002)

    Article  CAS  Google Scholar 

  20. Amesano, F., Banci, L., Piccioli, M.: NMR structures of paramagnetic metalloproteins. Q. Rev. Biophys. 38, 167–219 (2005)

    Article  CAS  Google Scholar 

  21. Bertini, I., Luchinat, C., Parigi, G., Pierattelli, R.: NMR spectroscopy of paramagnetic metalloproteins. ChemBioChem 6, 1536–1549 (2005)

    Article  CAS  Google Scholar 

  22. Tang, C., Iwahara, J., Clore, G.M.: Visualization of transient encounter complexes in protein-protein association. Nature 444, 383–386 (2006)

    Article  CAS  Google Scholar 

  23. Clore, G.M., Tang, C., Iwahara, J.: Elucidating transient macromolecular interactions using paramagnetic relaxation enhancement. Curr. Opin. Struct. Biol. 17, 603–616 (2007)

    Article  CAS  Google Scholar 

  24. Tang, C., Schwieters, C.D., Clore, G.M.: Open-to-closed transition in apo maltose-binding protein observed by paramagnetic NMR. Nature 449, 1078–1082 (2007)

    Article  CAS  Google Scholar 

  25. John, M., Schmitz, C., Park, A.Y., Dixon, N.E., Huber, T., Otting, G.: Sequence-specific and stereospecific assignment of methyl groups using paramagnetic lanthanides. J. Am. Chem. Soc. 129, 13749–13757 (2007)

    Article  CAS  Google Scholar 

  26. Pintacuda, G., John, M., Su, X.C., Otting, G.: NMR structure determination of protein–ligand complexes by lanthanide labeling. Acc. Chem. Res. 40, 206–212 (2007)

    Article  CAS  Google Scholar 

  27. Bertini, I., Luchinat, C., Parigi, G., Pierattelli, R.: Perspectives in paramagnetic NMR of metalloproteins. Dalton Trans. 29, 3782–3790 (2008)

    Article  CAS  Google Scholar 

  28. Clore, G.M., Iwahara, J.: Theory, practice, and applications of paramagnetic relaxation enhancement for the characterization of transient low-population states of biological macromolecules and their complexes. Chem. Rev. 109, 4108–4139 (2009)

    Article  CAS  Google Scholar 

  29. Otting, G.: Protein NMR using paramagnetic ions. Annu. Rev. Biophys. 39, 387–405 (2010)

    Article  CAS  Google Scholar 

  30. Bertini, I., Emsley, L., Lelli, M., Luchinat, C., Mao, J., Pintacuda, G.: Ultrafast MAS solid-state NMR permits extensive 13C and 1H detection in paramagnetic metalloproteins. J. Am. Chem. Soc. 132, 5558–5559 (2010)

    Article  CAS  Google Scholar 

  31. Iwahara, J., Clore, G.M.: Structure-independent analysis of the breadth of the positional distribution of disordered groups in macromolecules from order parameters for long, variable-length vectors using NMR paramagnetic relaxation enhancement. J. Am. Chem. Soc. 132, 13346–13356 (2010)

    Article  CAS  Google Scholar 

  32. Bertini, I., Giachetti, A., Luchinat, C., Parigi, G., Petoukhov, M.V., Pierattelli, R., Ravera, E., Svergun, D.I.: Conformational space of flexible biological macromolecules from average data. J. Am. Chem. Soc. 132, 13553–13558 (2010)

    Article  CAS  Google Scholar 

  33. Ravera, E., Salmon, L., Fragai, M., Parigi, G., Al-Hashimi, H., Luchinat, C.: Insights into domain-domain motions in proteins and RNA from solution NMR. Acc. Chem. Res. 47, 3118–3126 (2014)

    Article  CAS  Google Scholar 

  34. Yamaguchi, T., Sakae, Y., Zhang, Y., Yamamoto, S., Okamoto, Y., Kato, K.: Exploration of conformational spaces of high-mannose-type oligosaccharides by an NMR-validated simulation. Angew. Chem. Int. Ed. Engl. 53, 10941–10944 (2014)

    Article  CAS  Google Scholar 

  35. Brath, U., Swamy, S.I., Veiga, A.X., Tung, C.-C., Van Petegem, F., Erdélyi, M.: Paramagnetic ligand tagging to identify protein binding sites. J. Am. Chem. Soc. 137, 11391–11398 (2015)

    Article  CAS  Google Scholar 

  36. Schlagnitweit, J., Tang, M., Baias, M., Richardson, S., Schantz, S., Emsley, L.: Nanostructure of materials determined by relayed paramagnetic relaxation enhancement. J. Am. Chem. Soc. 137, 12482–12485 (2015)

    Article  CAS  Google Scholar 

  37. Matei, E., Gronenborn, A.M.: 19F paramagnetic relaxation enhancement: a valuable tool for distance measurements in proteins. Angew. Chem. Int. Ed. Engl. 55, 150–154 (2016)

    Article  CAS  Google Scholar 

  38. Ravera, E., Luchinat, C., Parigi, G.: Basic facts and perspectives of Overhauser DNP NMR. J. Magn. Reson. 264, 78–87 (2016)

    Article  CAS  Google Scholar 

  39. Kato, K., Yamaguchi, T.: Paramagnetic NMR probes for characterization of the dynamic conformations and interactions of oligosaccharides. Glycoconj. J. 32, 505–513 (2015)

    Article  CAS  Google Scholar 

  40. Feintuch, A., Otting, G., Goldfarb, D.: Gd3+ spin labeling for measuring distances in biomacromolecules: why and how? Methods Enzymol. 563, 415–457 (2015)

    Article  Google Scholar 

  41. Bertmer, M.: Paramagnetic solid-state NMR of materials. Solid State Nucl. Magn. Reson. 81, 1–7 (2017)

    Article  CAS  Google Scholar 

  42. Chen, J.L., Wang, X., Yang, F., Cao, C., Otting, G., Su, X.C.: 3D structure determination of an unstable transient enzyme intermediate by paramagnetic NMR spectroscopy. Angew. Chem. Int. Ed. Engl. 55, 13744–13748 (2016)

    Article  CAS  Google Scholar 

  43. Pilla, K.B., Otting, G., Huber, T.: Pseudocontact shift-driven iterative resampling for 3D structure determinations of large proteins. J. Mol. Biol. 428, 522–532 (2016)

    Article  CAS  Google Scholar 

  44. Orton, H.W., Kuprov, I., Loh, C.-T., Otting, G.: Using paramagnetism to slow down nuclear relaxation in protein NMR. J. Phys. Chem. Lett. 7, 4815–4818 (2016)

    Article  CAS  Google Scholar 

  45. Pilla, K.B., Otting, G., Huber, T.: 3D computational modeling of proteins using sparse paramagnetic NMR data. Methods Mol. Biol. 1526, 3–21 (2017)

    Article  Google Scholar 

  46. Can, T.V., Ni, Q.Z., Griffin, R.G.: Mechanisms of dynamic nuclear polarization in insulating solids. J. Magn. Reson. 253, 23–35 (2015)

    Article  CAS  Google Scholar 

  47. Su, Y., Andreas, L., Griffin, R.G.: Magic angle spinning NMR of proteins: high-frequency dynamic nuclear polarization and 1H detection. Annu. Rev. Biochem. 84, 465–497 (2015)

    Article  CAS  Google Scholar 

  48. Matsuki, Y., Idehara, T., Fukazawa, J., Fujiwara, T.: Advanced instrumentation for DNP-enhanced MAS NMR for higher magnetic fields and lower temperatures. J. Magn. Reson. 264, 107–115 (2016)

    Article  CAS  Google Scholar 

  49. Comment, A.: Dissolution DNP for in vivo preclinical studies. J. Magn. Reson. 264, 39–48 (2016)

    Article  CAS  Google Scholar 

  50. McConnell, H.M., Holm, C.H.: Proton resonance shifts in nickelocene. J. Chem. Phys. 27, 314–315 (1957)

    Article  CAS  Google Scholar 

  51. McConnell, H.M., Holm, C.H.: Proton resonance shifts in paramagnetic metal aromatic complexes. J. Chem. Phys. 28, 749–750 (1958)

    Article  CAS  Google Scholar 

  52. Bloembergen, N.: Proton relaxation times in paramagnetic solutions. J. Chem. Phys. 27, 572–573 (1957)

    Article  CAS  Google Scholar 

  53. McConnell, H.M., Chesnut, D.B.: Theory of isotropic hyperfine interactions in π-electron radicals. J. Chem. Phys. 28, 107–117 (1958)

    Article  CAS  Google Scholar 

  54. McConnell, H.M., Robertson, R.E.: Isotropic nuclear resonance shifts. J. Chem. Phys. 29, 1361–1365 (1958)

    Article  CAS  Google Scholar 

  55. Karplus, M.: Contact electron-spin coupling of nuclear magnetic moments. J. Chem. Phys. 30, 11–15 (1959)

    Article  CAS  Google Scholar 

  56. Abragam, A.: The Principles of Nuclear Magnetism. Oxford University Press, Oxford (1961)

    Google Scholar 

  57. Karplus, M., Fraenkel, G.K.: Theoretical interpretation of carbon-13 hyperfine interactions in electron spin resonance spectra. J. Chem. Phys. 35, 1312–1323 (1961)

    Article  CAS  Google Scholar 

  58. Fitzgerald, R.J., Drago, R.S.: Contact-shift studies and delocalization mechanisms of nickel (II)-benzylamine complexes. J. Am. Chem. Soc. 89, 2879–2883 (1967)

    Article  CAS  Google Scholar 

  59. Fitzgerald, R.J., Drago, R.S.: Contact-shift studies, delocalization mechanisms, and extended Hückel calculations of nickel(II)-alkylamine complexes. J. Am. Chem. Soc. 90, 2523–2527 (1968)

    Article  CAS  Google Scholar 

  60. Kurland, R., McGarvey, B.R.: Isotropic NMR shifts in transition metal complexes: the calculation of the Fermi contact and pseudocontact terms. J. Magn. Reson. 2, 286–301 (1970)

    CAS  Google Scholar 

  61. Abragam, A., Bleaney, B.: Electron Paramagnetic Resonance of Transition Metal Ions. Oxford University Press, Oxford (1970)

    Google Scholar 

  62. Schwarzhans, K.E.: NMR spectroscopy of paramagnetic complexes. Angew. Chem. Int. Ed. Engl. 9, 946–953 (1970)

    Article  CAS  Google Scholar 

  63. Crans, D.C., Yang, L., Gaidamauskas, E., Khan, R., Jin, W., Simonis, U.: Applications of paramagnetic NMR spectroscopy for monitoring transition metal complex stoichiometry and speciation. In: Telser, J. (ed.) Paramagnetic Resonance of Metallobiomolecules, ACS Book Series 858, pp. 304–326. American Chemical Society, Washington (2003)

    Chapter  Google Scholar 

  64. Bertini, I., Luchinat, C., Parigi, G., Ravera, E.: NMR of Paramagnetic Molecules, Applications to Metallobiomolecules and Models, 2nd edn. Elsevier Science, Amsterdam (2016)

    Google Scholar 

  65. Walker, F.A.: Magnetic spectroscopic (EPR, ESEEM, Mössbauer, MCD and NMR) studies of low-spin ferriheme centers and their corresponding heme proteins. Coord. Chem. Rev. 185–186, 471–534 (1999)

    Article  Google Scholar 

  66. Kendrew, J.C., Bodo, G., Dintzis, H.M., Parrish, R.G., Wyckoff, H., Phillips, D.C.: A three-dimensional model of the myoglobin molecule obtained by x-ray analysis. Nature 181, 662–666 (1958)

    Article  CAS  Google Scholar 

  67. Kowalsky, A.: Nuclear magnetic resonance studies of cytochrome c. Possible electron delocalization. J. Biol. Chem. 237, 1807–1819 (1962)

    CAS  Google Scholar 

  68. Shulman, R.G., Wüthrich, K., Yamane, T., Antonini, E., Brunori, M.: Nuclear magnetic resonances of reconstituted myoglobins. Proc. Natl. Acad. Sci. U S A 63, 623–628 (1969)

    Article  CAS  Google Scholar 

  69. Wüthrich, K., Shulman, R.G., Peisach, J.: High-resolution proton magnetic resonance spectra of sperm whale cyanometmyoglobin. Proc. Natl. Acad. Sci. U S A 60, 373–380 (1968)

    Article  Google Scholar 

  70. Ogawa, S., Shulman, R.G., Yamane, T.: High resolution nuclear magnetic resonance spectra of hemoglobin. I. The cyanide complexes of α and β chains. J. Mol. Biol. 70, 291–300 (1972)

    Article  CAS  Google Scholar 

  71. La Mar, G.N., Budd, D.L., Viscio, D.B., Smith, K.M., Langry, K.C.: Proton nuclear magnetic resonance characterization of heme disorder in hemoproteins. Proc. Natl. Acad. Sci. U S A 75, 5755–5759 (1978)

    Article  Google Scholar 

  72. Morishima, I., Iizuka, T.: Nuclear magnetic resonance studies of hemoproteins. Unusual temperature dependence of hyperfine shifts and spin equilibrium in ferric myoglobin and hemoglobin derivatives. J. Am. Chem. Soc. 96, 5279–5283 (1974)

    Article  CAS  Google Scholar 

  73. Tolman, J.R., Flanagan, J.M., Kennedy, M.A., Prestegard, J.H.: Nuclear magnetic dipole interactions in field-oriented proteins: Information for structure determination in solution. Proc. Natl. Acad. Sci. U S A 92, 9279–9283 (1995)

    Article  CAS  Google Scholar 

  74. Tjandra, N., Omichinski, J.G., Gronenborn, A.M., Clore, G.M., Bax, A.: Use of dipolar 1H-15N and 1H-13C couplings in the structure determination of magnetically oriented macromolecules in solution. Nat. Struct. Biol. 4, 732–738 (1997)

    Article  CAS  Google Scholar 

  75. Antonini, E., Brunori, M.: Hemoglobin and Myoglobin in Their Reactions with Ligands. North Holland Publishing, Amsterdam (1971)

    Google Scholar 

  76. Takano, T.: Structure of myoglobin refined at 2.0 Å resolution. I. Crystallographic refinement of metmyoglobin from sperm whale. J. Mol. Biol. 110, 537–568 (1977)

    Article  CAS  Google Scholar 

  77. Takano, T.: Structure of myoglobin refined at 2.0 Å resolution. II. Structure of deoxy myoglobin from sperm whale. J. Mol. Biol. 110, 569–584 (1977)

    Article  CAS  Google Scholar 

  78. Vojtechovský, J., Chu, K., Berendzen, J., Sweet, R.M., Schlichting, I.: Crystal structures of myoglobin-ligand complexes at near-atomic resolution. Biophys. J. 77, 2153–2174 (1999)

    Article  Google Scholar 

  79. Hong, S., Sutherlin, K.D., Park, J., Kwon, E., Siegler, M.A., Solomon, E.I., Nam, W.: Crystallographic and spectroscopic characterization and reactivities of a mononuclear non-haem iron(III)-superoxo complex. Nat. Commun. 5, 5440–5446 (2014)

    Article  CAS  Google Scholar 

  80. Neya, S., Funasaki, N.: Proton nuclear magnetic resonance investigation of the spin-state equilibrium of the α and β subunits in intact azidomethemoglobin. Biochemistry 25, 1221–1226 (1986)

    Article  CAS  Google Scholar 

  81. Shibata, T., Kanai, Y., Nishimura, R., Xu, L., Moritaka, Y., Suzuki, A., Neya, S., Nakamura, M., Yamamoto, Y.: Characterization of ground state electron configurations of high-spin quintet ferrous heme iron in deoxy myoglobin reconstituted with trifluoromethyl group-substituted heme cofactors. Inorg. Chem. 55, 12128–12136 (2016)

    Article  CAS  Google Scholar 

  82. Solomon, I.: Relaxation processes in a system of two spins. Phys. Rev. 99, 559–565 (1955)

    Article  CAS  Google Scholar 

  83. Gueron, M.: Nuclear relaxation in macromolecules by paramagnetic ions: a novel mechanism. J. Magn. Reson. 19, 58–66 (1975)

    CAS  Google Scholar 

  84. Vega, A.J., Fiat, D.: Nuclear relaxation processes of paramagnetic complexes the slow-motion case. Mol. Phys. 31, 347–355 (1976)

    Article  CAS  Google Scholar 

  85. Unger, S.W., Jue, T., La Mar, G.N.: Proton NMR dipolar relaxation by delocalized spin density in low-spin ferric porphyrin complexes. J. Magn. Reson. 61, 448–456 (1985)

    CAS  Google Scholar 

  86. Yamamoto, Y.: Analysis of 13C relaxation of heme peripheral methyl group in ferric low-spin myoglobin. J. Magn. Reson. B 103, 72–76 (1994)

    Article  CAS  Google Scholar 

  87. Mabbutt, B.C., Wright, P.E.: Assignment of heme and distal amino acid resonances in the 1H-NMR spectra of the carbon monoxide and oxygen complexes of sperm whale myoglobin. Biochim. Biophys. Acta 832, 175–185 (1985)

    Article  CAS  Google Scholar 

  88. Emerson, S.D., La Mar, G.N.: Solution structural characterization of cyanometmyoglobin: resonance assignment of heme cavity residues by two-dimensional NMR. Biochemistry 29, 1545–1556 (1990)

    Article  CAS  Google Scholar 

  89. La Mar, G.N., Budd, D.L., Smith, K.M., Langry, K.C.: Nuclear magnetic resonance of high-spin ferric hemoproteins. Assignment of proton resonances in met-aquo myoglobins using deuterium-labeled hemes. J. Am. Chem. Soc. 102, 1822–1827 (1980)

    Article  Google Scholar 

  90. Unger, S.W., Lecomte, J.T.J., La Mar, G.N.: The utility of the nuclear Overhauser effect for peak assignment and structure elucidation in paramagnetic proteins. J. Magn. Reson. 64, 521–526 (1985)

    CAS  Google Scholar 

  91. Yamamoto, Y., Chujo, R., Suzuki, T.: NMR study of Galeorhinus japonicus myoglobin. 1H-NMR evidence for a structural alteration on the active site of G. japonicus myoglobin upon azide ion binding. Eur. J. Biochem. 198, 285–291 (1991)

    Article  CAS  Google Scholar 

  92. Beetlestone, J., George, P.: A magnetochemical study of equilibria between high and low spin states of metmyoglobin complexes. Biochemistry 3, 707–714 (1964)

    Article  CAS  Google Scholar 

  93. Iizuka, T., Kotani, M.: Analysis of a thermal equilibrium phenomenon between high-spin and low-spin states of ferrimyoglobin azide. Biochim. Biophys. Acta 154, 417–419 (1968)

    Article  CAS  Google Scholar 

  94. Neya, S., Morishima, I.: Interaction of methemoglobin with inositol hexaphosphate. Presence of the T state in human adult methemoglobin in the low spin state. J. Biol. Chem. 256, 793–798 (1981)

    CAS  Google Scholar 

  95. Yamamoto, Y., Iwafune, K., Chujo, R., Inoue, Y., Imai, K., Suzuki, T.: 1H-NMR comparative study of the active site in shark (Galeorhinus japonicus), horse, and sperm whale deoxy myoglobins. J. Biochem. 112, 414–420 (1992)

    Article  CAS  Google Scholar 

  96. La Mar, G.N., Davis, L., Johnson, R.D., Smith, W.S., Hauksson, J.B., Budd, D.L., Dalichow, F., Langry, K.C., Morris, I.K., Smith, K.M.: Nuclear magnetic resonance investigation of the electronic structure of deoxymyoglobin. J. Am. Chem. Soc. 115, 3869–3876 (1993)

    Article  Google Scholar 

  97. Bertin, I., Luchinat, C., Turano, P., Battaini, G., Casella, L.: The magnetic properties of myoglobin as studied by NMR spectroscopy. Chem. Eur. J. 9, 2316–2322 (2003)

    Article  CAS  Google Scholar 

  98. La Mar, G.N., Budd, D.L., Goff, H.: Assignment of proximal histidine proton NMR peaks in myoglobin and hemoglobin. Biochem. Biophys. Res. Commun. 77, 104–110 (1977)

    Article  Google Scholar 

  99. Thériault, Y., Pochapsky, T.C., Dalvit, C., Chiu, M.L., Sligar, S.G., Wright, P.E.: 1H and 15N resonance assignments and secondary structure of the carbon monoxide complex of sperm whale myoglobin. J. Biomol. NMR 4, 491–504 (1994)

    Article  Google Scholar 

  100. Yamamoto, Y.: 1H NMR probes for inter-segmental hydrogen bonds in myoglobins. J. Biochem. 120, 126–132 (1996)

    Article  CAS  Google Scholar 

  101. Bougault, C.M., Dou, Y., Ikeda-Saito, M., Langry, K.C., Smith, K.M., La Mar, G.N.: Solution 1H NMR study of the electronic structure and magnetic properties of high-spin ferrous or deoxy myoglobins. J. Am. Chem. Soc. 120, 2113–2123 (1998)

    Article  CAS  Google Scholar 

  102. Nishimura, R., Shibata, T., Tai, H., Ishigami, I., Yanagisawa, S., Ogura, T., Neya, S., Suzuki, A., Yamamoto, Y.: Effect of the electron density of the heme Fe atom on the Fe–histidine coordination bond in deoxy myoglobin. Bull. Chem. Soc. Jpn 87, 905–911 (2014)

    Article  Google Scholar 

  103. La Mar, G.N., de Ropp, J.S.: Proton NMR characterization of the state of protonation of the axial imidazole in reduced horseradish peroxidase. J. Am. Chem. Soc. 104, 5203–5206 (1982)

    Article  Google Scholar 

  104. Matsukawa, S., Mawatari, K., Yoneyama, Y., Kitagawa, T.: Correlation between the iron-histidine stretching frequencies and oxygen affinity of hemoglobins. A continuous strain model. J. Am. Chem. Soc. 107, 1108–1113 (1985)

    Article  CAS  Google Scholar 

  105. Johnson, M.E., Fung, L.W.-M., Ho, C.: Magnetic field and temperature induced line broadening in the hyperfine-shifted proton resonances of myoglobin and hemoglobin. J. Am. Chem. Soc. 99, 1245–1250 (1977)

    Article  CAS  Google Scholar 

  106. Emerson, S.D., La Mar, G.N.: NMR determination of the orientation of the magnetic susceptibility tensor in cyanometmyoglobin: a new probe of steric tilt of bound ligand. Biochemistry 29, 1556–1566 (1990)

    Article  CAS  Google Scholar 

  107. Yamamoto, Y., Nanai, N., Chujo, R., Suzuki, T.: Heme methyl hyperfine shift pattern as a probe for determining the orientation of the functionally relevant proximal histidyl imidazole with respect to the heme in hemoproteins. FEBS Lett. 264, 113–116 (1990)

    Article  CAS  Google Scholar 

  108. La Mar, G.N., Walker, F.A.: Proton nuclear magnetic resonance line widths and spin relaxation in paramagnetic metalloporphyrins of chromium(III), manganese(III), and iron(III). J. Am. Chem. Soc. 95, 6950–6956 (1973)

    Article  Google Scholar 

  109. La Mar, G.N., de Ropp, J.S., Smith, K.M., Langry, K.C.: Proton nuclear magnetic resonance investigation of the electronic structure of compound I of horseradish peroxidase. J. Biol. Chem. 256, 237–243 (1981)

    Google Scholar 

  110. Yamamoto, Y., Osawa, A., Inoue, Y., Chujo, R.: A 1H-NMR study of electronic structure of the active site of Galeorhinus japonicus. Eur. J. Biochem. 192, 225–229 (1990)

    Article  CAS  Google Scholar 

  111. Kao, Y.-H., Lecomte, J.T.J.: Determination of the zero-field splitting constant for proton NMR chemical shift analysis in metaquomyoglobin. The dipolar shift as a structural probe. J. Am. Chem. Soc. 115, 9754–9762 (1993)

    Article  CAS  Google Scholar 

  112. Trewhella, J., Wright, P.E., Appleby, C.A.: Molecular basis for proton-dependent anion binding by soybean leghaemoglobin a. Nature 280, 87–88 (1979)

    Article  CAS  Google Scholar 

  113. Johnson, R.D., Ramaprasad, S., La Mar, G.N.: A method of assigning functionally relevant amino acid residue resonances in paramagnetic hemoproteins using proton NOE measurements. J. Am. Chem. Soc. 105, 7205–7206 (1983)

    Article  CAS  Google Scholar 

  114. Plateau, P., Guéron, M.: Exchangeable proton NMR without base-line distortion, using new strong-pulse sequences. J. Am. Chem. Soc. 104, 7310–7311 (1982)

    Article  CAS  Google Scholar 

  115. Case, D.A., Karplus, M.: Dynamics of ligand binding to heme proteins. J. Mol. Biol. 132, 343–368 (1979)

    Article  CAS  Google Scholar 

  116. Karplus, M., McCammon, J.A.: The internal dynamics of globular proteins. CRC Crit. Rev. Biochem. 9, 293–349 (1981)

    Article  CAS  Google Scholar 

  117. McCammon, J.A., Karplus, M.: The dynamic picture of protein structure. Acc. Chem. Res. 16, 187–193 (1983)

    Article  CAS  Google Scholar 

  118. Woodward, C.K., Hilton, B.D.: Hydrogen exchange kinetics and internal motions in proteins and nucleic acids. Annu. Rev. Biophys. Bioeng. 8, 99–127 (1979)

    Article  CAS  Google Scholar 

  119. Krishna, M.M.G., Hoang, L., Lin, Y., Englander, S.W.: Hydrogen exchange methods to study protein folding. Methods 34, 51–64 (2004)

    Article  CAS  Google Scholar 

  120. Anthis, N.J., Clore, G.M.: Visualizing transient dark states by NMR spectroscopy. Q. Rev. Biophys. 48, 35–116 (2015)

    Article  CAS  Google Scholar 

  121. Lecomte, J.T.J., La Mar, G.N.: Proton NMR study of labile proton exchange in the heme cavity as a probe for the potential ligand entry channel in myoglobin. Biochemistry 24, 7388–7395 (1985)

    Article  CAS  Google Scholar 

  122. Han, K.-H., La Mar, G.N.: Nuclear magnetic resonance study of the isotope exchange of the proximal histidyl ring labile protons in hemoglobin A. The exchange rates and mechanisms of individual subunits in deoxy and oxy-hemoglobin. J. Mol. Biol. 189, 541–552 (1986)

    Article  CAS  Google Scholar 

  123. Yamamoto, Y., Kurihara, N., Egawa, T., Shimada, H., Ishimura, Y.: Hydrogen bonding interaction of the amide group of Asn and Gln at distal E7 of bovine myoglobin with bound-ligand and its functional consequences. Biochim. Biophys. Acta 1433, 27–44 (1999)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Professor Toshiyuki Tanaka (Graduate School of Life and Environmental Sciences, University of Tsukuba) for the use of a Bruker AVANCE III 800 spectrometer at TARA Center, University of Tsukuba.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuhiko Yamamoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yamamoto, Y., Shibata, T. (2018). NMR of Paramagnetic Compounds. In: The Nuclear Magnetic Resonance Society of Japan (eds) Experimental Approaches of NMR Spectroscopy. Springer, Singapore. https://doi.org/10.1007/978-981-10-5966-7_18

Download citation

Publish with us

Policies and ethics