Skip to main content

NMR Analysis of Molecular Complexity

  • Chapter
  • First Online:

Abstract

NMR offers tremendous advantages in analysis of molecular complexity of natural mixtures, such as crude biological extracts, supramacromolecular complexes, and geochemical samples as well as intact cells and tissues. Here, I introduce recent applications of several NMR approaches for evaluation of human and environmental health (i.e., maintaining a homeostatic state) by metabolic profiling and data science. Further challenges in addressing macromolecular complexity include supramolecular structures, composition, and interactions of plant biomass, soil humic substances, and aqueous particulate organic matter. To support the study of these topics, I also introduce sample preparation techniques for molecular complexity studies as well as solid-state NMR approaches. Because solution and solid-state NMR can produce numerical matrix data (e.g., chemical shifts versus intensity) with high reproducibility and inter-institution convertibility, further data science approaches are desired, such as multivariate analysis and machine learning. Therefore, I also introduce informatics techniques for data pretreatment before solid-state NMR, for feature extraction from heterogeneously measured spectroscopic data and for extraction of submerged information using data science approaches.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Lindon, J.C., Holmes, E., Nicholson, J.K.: Pattern recognition methods and applications in biomedical magnetic resonance. Prog. Nucl. Magn. Reson. Spectrosc. 39, 1–40 (2001)

    Article  CAS  Google Scholar 

  2. Nicholson, J.K., Lindon, J.C.: Systems biology: metabonomics. Nature 455, 1054–1056 (2008)

    Article  CAS  Google Scholar 

  3. Dunn, W.B., Broadhurst, D.I., Atherton, H.J., Goodacre, R., Griffin, J.L.: Systems level studies of mammalian metabolomes: the roles of mass spectrometry and nuclear magnetic resonance spectroscopy. Chem. Soc. Rev. 40, 387–426 (2011)

    Article  CAS  Google Scholar 

  4. Harris, D.M., et al.: Cellulose microfibril crystallinity is reduced by mutating C-terminal transmembrane region residues CESA1A903V and CESA3T942I of cellulose synthase. Proc. Natl. Acad. Sci. U S A 109, 4098–4103 (2012)

    Article  CAS  Google Scholar 

  5. Groger, C., Lutz, K., Brunner, E.: NMR studies of biomineralisation. Prog. Nucl. Magn. Reson. Spectrosc. 54, 54–68 (2009)

    Article  CAS  Google Scholar 

  6. Jantschke, A., et al.: Insight into the supramolecular architecture of intact diatom biosilica from DNP-supported solid-state NMR spectroscopy. Angew. Chem. Int. Ed. 54, 15069–15073 (2015)

    Article  CAS  Google Scholar 

  7. Goldberg, S.J., et al.: Refractory dissolved organic nitrogen accumulation in high-elevation lakes. Nat. Commun. 6, 6347 (2015)

    Article  CAS  Google Scholar 

  8. Hedges, J.I., et al.: Evidence for non-selective preservation of organic matter in sinking marine particles. Nature 409, 801–804 (2001)

    Article  CAS  Google Scholar 

  9. Gelinas, Y., Baldock, J.A., Hedges, J.I.: Organic carbon composition of marine sediments: effect of oxygen exposure on oil generation potential. Science (New York, N.Y.) 294, 145–148 (2001)

    Article  CAS  Google Scholar 

  10. Beckonert, O., et al.: High-resolution magic-angle-spinning NMR spectroscopy for metabolic profiling of intact tissues. Nat. Protoc. 5, 1019–1032 (2010)

    Article  CAS  Google Scholar 

  11. Kruger, N.J., Troncoso-Ponce, M.A., Ratcliffe, R.G.: 1H NMR metabolite fingerprinting and metabolomic analysis of perchloric acid extracts from plant tissues. Nat. Protoc. 3, 1001–1012 (2008)

    Article  CAS  Google Scholar 

  12. Beckonert, O., et al.: Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nat. Protoc. 2, 2692–2703 (2007)

    Article  CAS  Google Scholar 

  13. Frost, G., et al.: The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nat. Commun. 5, 3611 (2014)

    Article  CAS  Google Scholar 

  14. Blaise, B.J., et al.: Metabotyping of Caenorhabditis elegans reveals latent phenotypes. Proc. Natl. Acad. Sci. U S A 104, 19808–19812 (2007)

    Article  CAS  Google Scholar 

  15. Mansfield, S.D., Kim, H., Lu, F.C., Ralph, J.: Whole plant cell wall characterization using solution-state 2D NMR. Nat. Protoc. 7, 1579–1589 (2012)

    Article  CAS  Google Scholar 

  16. Ward, J.L., Baker, J.M., Llewellyn, A.M., Hawkins, N.D., Beale, M.H.: Metabolomic analysis of Arabidopsis reveals hemiterpenoid glycosides as products of a nitrate ion-regulated, carbon flux overflow. Proc. Natl. Acad. Sci. U S A 108, 10762–10767 (2011)

    Article  CAS  Google Scholar 

  17. Choe, A., et al.: Sex-specific mating pheromones in the nematode Panagrellus redivivus. Proc. Natl. Acad. Sci. U S A 109, 20949–20954 (2012)

    Article  CAS  Google Scholar 

  18. Mao, J.D., Xing, B., Schmidt-Rohr, K.: New structural information on a humic acid from two-dimensional 1H-13C correlation solid-state nuclear magnetic resonance. Environ. Sci. Technol. 35, 1928–1934 (2001)

    Article  CAS  Google Scholar 

  19. Wang, T., et al.: Sensitivity-enhanced solid-state NMR detection of expansin’s target in plant cell walls. Proc. Natl. Acad. Sci. U S A 110, 16444–16449 (2013)

    Article  CAS  Google Scholar 

  20. Simpson, A.J., Simpson, M.J., Soong, R.: Nuclear magnetic resonance spectroscopy and its key role in environmental research. Environ. Sci. Technol. 46, 11488–11496 (2012)

    Article  CAS  Google Scholar 

  21. Cao, X., Lattao, C., Pignatello, J.J., Mao, J., Schmidt-Rohr, K.: Sorption selectivity in natural organic matter probed with fully deuterium-exchanged and carbonyl-13C-labeled benzophenone and 1H-13C NMR spectroscopy. Environ. Sci. Technol. 48, 8645–8652 (2014)

    Article  CAS  Google Scholar 

  22. Feng, X., Simpson, A.J., Simpson, M.J.: Investigating the role of mineral-bound humic acid in phenanthrene sorption. Environ. Sci. Technol. 40, 3260–3266 (2006)

    Article  CAS  Google Scholar 

  23. Lattao, C., et al.: Sorption selectivity in natural organic matter studied with nitroxyl paramagnetic relaxation probes. Environ. Sci. Technol. 46, 12814–12822 (2012)

    Article  CAS  Google Scholar 

  24. Eisenreich, W., et al.: 13C isotopologue perturbation studies of Listeria monocytogenes carbon metabolism and its modulation by the virulence regulator PrfA. Proc. Natl. Acad. Sci. U S A 103, 2040–2045 (2006)

    Article  CAS  Google Scholar 

  25. Ohyama, K., Suzuki, M., Kikuchi, J., Saito, K., Muranaka, T.: Dual biosynthetic pathways to phytosterol via cycloartenol and lanosterol in Arabidopsis. Proc. Natl. Acad. Sci. U S A 106, 725–730 (2009)

    Article  CAS  Google Scholar 

  26. Peyraud, R., et al.: Demonstration of the ethylmalonyl-CoA pathway by using 13C metabolomics. Proc. Natl. Acad. Sci. U S A 106, 4846–4851 (2009)

    Article  CAS  Google Scholar 

  27. Kikuchi, J., Shinozaki, K., Hirayama, T.: Stable isotope labeling of Arabidopsis thaliana for an NMR-based metabolomics approach. Plant Cell Physiol. 45, 1099–1104 (2004)

    Article  CAS  Google Scholar 

  28. Tokuda, G., et al.: Metabolomic profiling of 13C-labelled cellulose digestion in a lower termite: insights into gut symbiont function. Proc. Biol. Sci. 281, 20140990 (2014)

    Article  CAS  Google Scholar 

  29. Mori, T., et al.: Multidimensional high-resolution magic angle spinning and solution-state NMR characterization of 13C-labeled plant metabolites and lignocellulose. Sci. Rep. 5, 11848 (2015)

    Article  Google Scholar 

  30. Komatsu, T., Ohishi, R., Shino, A., Kikuchi, J.: Structure and metabolic-flow analysis of molecular complexity in a 13C-labeled tree by 2D and 3D NMR. Angew. Chem. Int. Ed. 55, 6000–6003 (2016)

    Article  CAS  Google Scholar 

  31. Dumas, M.E., et al.: Assessment of analytical reproducibility of 1H NMR spectroscopy based metabonomics for large-scale epidemiological research: the INTERMAP Study. Anal. Chem. 78, 2199–2208 (2006)

    Article  CAS  Google Scholar 

  32. Viant, M.R., et al.: International NMR-based environmental metabolomics intercomparison exercise. Environ. Sci. Technol. 43, 219–225 (2009)

    Article  CAS  Google Scholar 

  33. Lacy, P., et al.: Signal intensities derived from different NMR probes and parameters contribute to variations in quantification of metabolites. PLoS ONE 9, e85732 (2014)

    Article  CAS  Google Scholar 

  34. Ward, J.L., et al.: An inter-laboratory comparison demonstrates that [H]-NMR metabolite fingerprinting is a robust technique for collaborative plant metabolomic data collection. Metabolomics 6, 263–273 (2010)

    Article  CAS  Google Scholar 

  35. Hao, J., et al.: Bayesian deconvolution and quantification of metabolites in complex 1D NMR spectra using BATMAN. Nat. Protoc. 9, 1416–1427 (2014)

    Article  CAS  Google Scholar 

  36. Gallo, V., et al.: Performance assessment in fingerprinting and multi component quantitative NMR analyses. Anal. Chem. 87, 6709–6717 (2015)

    Article  CAS  Google Scholar 

  37. Kikuchi, J., et al.: SpinCouple: development of a web tool for analyzing metabolite mixtures via two-dimensional J-Resolved NMR Database. Anal. Chem. 88, 659–665 (2016)

    Article  CAS  Google Scholar 

  38. Clayton, T.A., et al.: Pharmaco-metabonomic phenotyping and personalized drug treatment. Nature 440, 1073–1077 (2006)

    Article  CAS  Google Scholar 

  39. Schlipalius, D.I., et al.: A core metabolic enzyme mediates resistance to phosphine gas. Science (New York, N.Y.) 338, 807–810 (2012)

    Article  CAS  Google Scholar 

  40. Auro, K., et al.: A metabolic view on menopause and ageing. Nat. Commun. 5, 4708 (2014)

    Article  CAS  Google Scholar 

  41. Suhre, K., et al.: A genome-wide association study of metabolic traits in human urine. Nat. Genet. 43, 565–569 (2011)

    Article  CAS  Google Scholar 

  42. Kettunen, J., et al.: Genome-wide association study identifies multiple loci influencing human serum metabolite levels. Nat. Genet. 44, 269–276 (2012)

    Article  CAS  Google Scholar 

  43. Kettunen, J., et al.: Genome-wide study for circulating metabolites identifies 62 loci and reveals novel systemic effects of LPA. Nat. Commun. 7, 11122 (2016)

    Article  CAS  Google Scholar 

  44. Fukuda, S., et al.: Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature 469, 543–547 (2011)

    Article  CAS  Google Scholar 

  45. Furusawa, Y., et al.: Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504, 446–450 (2013)

    Article  CAS  Google Scholar 

  46. Brindle, J.T., et al.: Rapid and noninvasive diagnosis of the presence and severity of coronary heart disease using 1H-NMR-based metabonomics. Nat. Med. 8, 1439–1444 (2002)

    Article  CAS  Google Scholar 

  47. Holmes, E., et al.: Human metabolic phenotype diversity and its association with diet and blood pressure. Nature 453, 396–400 (2008)

    Article  CAS  Google Scholar 

  48. Smith, M.I., et al.: Gut microbiomes of Malawian twin pairs discordant for kwashiorkor. Science (New York, N.Y.) 339, 548–554 (2013)

    Article  CAS  Google Scholar 

  49. Watanabe, M., Ohta, Y., Licang, S., Motoyama, N., Kikuchi, J.: Profiling contents of water-soluble metabolites and mineral nutrients to evaluate the effects of pesticides and organic and chemical fertilizers on tomato fruit quality. Food Chem. 169, 387–395 (2015)

    Article  CAS  Google Scholar 

  50. Tomita, S., et al.: A NMR-based, non-targeted multistep metabolic profiling revealed l-rhamnitol as a metabolite that characterised apples from different geographic origins. Food Chem. 174, 163–172 (2015)

    Article  CAS  Google Scholar 

  51. Tomita, S., et al.: A survey of metabolic changes in potato leaves by NMR-based metabolic profiling in relation to resistance to late blight disease under field conditions. Magn. Reson. Chem. 55, 120–127 (2017)

    Article  CAS  Google Scholar 

  52. Sekiyama, Y., Okazaki, K., Kikuchi, J., Ikeda, S.: NMR-based metabolic profiling of field-grown leaves from sugar beet plants harbouring different levels of resistance to Cercospora leaf spot disease. Metabolites 7, 4 (2017)

    Article  CAS  Google Scholar 

  53. Li, M., et al.: Symbiotic gut microbes modulate human metabolic phenotypes. Proc. Natl. Acad. Sci. U S A 105, 2117–2122 (2008)

    Article  CAS  Google Scholar 

  54. Sugahara, H., et al.: Probiotic Bifidobacterium longum alters gut luminal metabolism through modification of the gut microbial community. Sci. Rep. 5, 13548 (2015)

    Article  CAS  Google Scholar 

  55. Morita, H., et al.: Comparative genome analysis of Lactobacillus reuteri and Lactobacillus fermentum reveal a genomic island for reuterin and cobalamin production. DNA Res. 15, 151–161 (2008)

    Article  CAS  Google Scholar 

  56. Kato, T., et al.: Multiple omics uncovers host-gut microbial mutualism during prebiotic fructooligosaccharide supplementation. DNA Res. 21, 469–480 (2014)

    Article  CAS  Google Scholar 

  57. Bundy, J.G., et al.: Metabolic profile biomarkers of metal contamination in a sentinel terrestrial species are applicable across multiple sites. Environ. Sci. Technol. 41, 4458–4464 (2007)

    Article  CAS  Google Scholar 

  58. Collette, T.W., et al.: Impacts of an anti-androgen and an androgen/anti-androgen mixture on the metabolite profile of male fathead minnow urine. Environ. Sci. Technol. 44, 6881–6886 (2010)

    Article  CAS  Google Scholar 

  59. Ellis, R.P., et al.: (1)H NMR metabolomics reveals contrasting response by male and female mussels exposed to reduced seawater pH, increased temperature, and a pathogen. Environ. Sci. Technol. 48, 7044–7052 (2014)

    Article  CAS  Google Scholar 

  60. Samuelsson, L.M., Bjorlenius, B., Forlin, L., Larsson, D.G.: Reproducible (1)H NMR-based metabolomic responses in fish exposed to different sewage effluents in two separate studies. Environ. Sci. Technol. 45, 1703–1710 (2011)

    Article  CAS  Google Scholar 

  61. Whitfield Aslund, M.L., et al.: Earthworm sublethal responses to titanium dioxide nanomaterial in soil detected by (1)H NMR metabolomics. Environ. Sci. Technol. 46, 1111–1118 (2012)

    Article  CAS  Google Scholar 

  62. Yoshida, S., Date, Y., Akama, M., Kikuchi, J.: Comparative metabolomic and ionomic approach for abundant fishes in estuarine environments of Japan. Sci. Rep. 4, 7005 (2014)

    Article  CAS  Google Scholar 

  63. Sekiyama, Y., Chikayama, E., Kikuchi, J.: Profiling polar and semipolar plant metabolites throughout extraction processes using a combined solution-state and high-resolution magic angle spinning NMR approach. Anal. Chem. 82, 1643–1652 (2010)

    Article  CAS  Google Scholar 

  64. Sekiyama, Y., Chikayama, E., Kikuchi, J.: Evaluation of a semipolar solvent system as a step toward heteronuclear multidimensional NMR-based metabolomics for 13C-labeled bacteria, plants, and animals. Anal. Chem. 83, 719–726 (2011)

    Article  CAS  Google Scholar 

  65. Kikuchi, J., Hirayama, T.: Practical aspects of uniform stable isotope labeling of higher plants for heteronuclear NMR-based metabolomics. Methods Mol. Biol. 358, 273–286 (2007)

    Article  CAS  Google Scholar 

  66. Tian, C., et al.: Top-down phenomics of Arabidopsis thaliana: metabolic profiling by one- and two-dimensional nuclear magnetic resonance spectroscopy and transcriptome analysis of albino mutants. J. Biol. Chem. 282, 18532–18541 (2007)

    Article  CAS  Google Scholar 

  67. Komatsu, T., Kobayashi, T., Hatanaka, M., Kikuchi, J.: Profiling planktonic biomass using element-specific, multicomponent nuclear magnetic resonance spectroscopy. Environ. Sci. Technol. 49, 7056 (2015)

    Article  CAS  Google Scholar 

  68. Yamazawa, A., Iikura, T., Shino, A., Date, Y., Kikuchi, J.: Solid-, solution-, and gas-state NMR monitoring of C-13-cellulose degradation in an anaerobic microbial ecosystem. Molecules 18, 9021–9033 (2013)

    Article  CAS  Google Scholar 

  69. Komatsu, T., Ohishi, R., Shino, A., Akashi, K., Kikuchi, J.: Multi-spectroscopic analysis of seed quality and 13C-stable-iotopologue monitoring in initial growth metabolism of Jatropha curcas L. Metabolites 4, 1018–1033 (2014)

    Article  CAS  Google Scholar 

  70. Ratcliffe, R.G., Shachar-Hill, Y.: Measuring multiple fluxes through plant metabolic networks. Plant J. 45, 490–511 (2006)

    Article  CAS  Google Scholar 

  71. Sekiyama, Y., Kikuchi, J.: Towards dynamic metabolic network measurements by multi-dimensional NMR-based fluxomics. Phytochemistry 68, 2320–2329 (2007)

    Article  CAS  Google Scholar 

  72. Fonville, J.M., et al.: Evaluation of full-resolution J-resolved 1H NMR projections of biofluids for metabonomics information retrieval and biomarker identification. Anal. Chem. 82, 1811–1821 (2010)

    Article  CAS  Google Scholar 

  73. Chikayama, E., Suto, M., Nishihara, T., Shinozaki, K., Kikuchi, J.: Systematic NMR analysis of stable isotope labeled metabolite mixtures in plant and animal systems: coarse grained views of metabolic pathways. PLoS ONE 3, e3805 (2008)

    Article  CAS  Google Scholar 

  74. Wishart, D.S., et al.: HMDB 3.0—The Human Metabolome Database in 2013. Nucleic Acids Res. 41, D801–D807 (2013)

    Article  CAS  Google Scholar 

  75. Ulrich, E.L., et al.: BioMagResBank. Nucleic Acid Res. 36, D402–D408 (2008)

    Article  CAS  Google Scholar 

  76. Cui, Q., et al.: Metabolite identification via the Madison metabolomics consortium database. Nat. Biotechnol. 26, 162–164 (2008)

    Article  CAS  Google Scholar 

  77. Chikayama, E., et al.: Statistical indices for simultaneous large-scale metabolite detections for a single NMR spectrum. Anal. Chem. 82, 1653–1658 (2010)

    Article  CAS  Google Scholar 

  78. Bingol, K., Zhang, F., Bruschweiler-Li, L., Brüschweiler, R.: TOCCATA: a customized carbon total correlation spectroscopy NMR metabolomics database. Anal. Chem. 84, 9395–9401 (2012)

    Article  CAS  Google Scholar 

  79. Ludwig, C., et al.: Birmingham metabolite library: a publicly accessible database of 1-D 1H and 2-D 1H J-resolved NMR spectra of authentic metabolite standards (BML-NMR). Metabolomics 8, 8–18 (2012)

    Article  CAS  Google Scholar 

  80. Kikuchi, J., Ogata, Y., Shinozaki, K.: ECOMICS: ECosytem trans-OMICS tools and methods for complex environmental samples and datasets. J. Ecosyst. Ecogr. S2, 001 (2011)

    Google Scholar 

  81. Ogata, Y., et al.: ECOMICS: a web-based toolkit for investigating the biomolecular web in ecosystems using a trans-omics approach. PLoS ONE 7, e30263 (2012)

    Article  CAS  Google Scholar 

  82. Chikayama, E., et al.: FoodPro: a web-based tool for evaluating covariance and correlation NMR spectra associated with food processes. Metabolites 6, 36 (2016)

    Article  CAS  Google Scholar 

  83. Willoughby, P.H., Jansma, M.J., Hoye, T.R.: A guide to small-molecule structure assignment through computation of ((1)H and (1)(3)C) NMR chemical shifts. Nat. Protoc. 9, 643–660 (2014)

    Article  CAS  Google Scholar 

  84. Lodewyk, M.W., Siebert, M.R., Tantillo, D.J.: Computational prediction of 1H and 13C chemical shifts: a useful tool for natural product, mechanistic, and synthetic organic chemistry. Chem. Rev. 112, 1839–1862 (2012)

    Article  CAS  Google Scholar 

  85. Odoh, S.O., Cramer, C.J., Truhlar, D.G., Gagliardi, L.: Quantum-chemical characterization of the properties and reactivities of metal-organic frameworks. Chem. Rev. 115, 6051–6111 (2015)

    Article  CAS  Google Scholar 

  86. Misawa, T., Komatsu, T., Date, Y., Kikuchi, J.: SENSI: signal enhancement by spectral integration for the analysis of metabolic mixtures. Chem. Commun. 52, 2964–2967 (2016)

    Article  CAS  Google Scholar 

  87. Ito, K., Tsutsumi, Y., Date, Y., Kikuchi, J.: Fragment assembly approach based on graph/network theory with quantum chemistry verifications for assigning multidimensional NMR signals in metabolite mixtures. ACS Chem. Biol. 11, 1030–1038 (2016)

    Article  CAS  Google Scholar 

  88. Chikayama, E., Shimbo, Y., Komatsu, K., Kikuchi, J.: The effect of molecular conformation on the accuracy of theoretical 1H and 13C chemical shifts calculated by ab initio methods for metabolic mixture analysis. J. Phys. Chem. B 120, 3479–3487 (2016)

    Article  CAS  Google Scholar 

  89. Anderson, P.E., Reo, N.V., DelRaso, N.J., Doom, T.E., Raymer, M.L.: Gaussian binning: a new kernel-based method for processing NMR spectroscopic data for metabolomics. Metabolomics 4, 261–272 (2008)

    Article  CAS  Google Scholar 

  90. Fukuda, S., et al.: Evaluation and characterization of bacterial metabolic dynamics with a novel profiling technique, real-time metabolotyping. PLoS ONE 4, e4893 (2009)

    Article  CAS  Google Scholar 

  91. Dieterle, F., Ross, A., Schlotterbeck, G., Senn, H.: Probabilistic quotient normalization as robust method to account for dilution of complex biological mixtures. Application in 1H NMR metabonomics. Anal. Chem. 78, 4281–4290 (2006)

    Article  CAS  Google Scholar 

  92. Date, Y., Sakata, K., Kikuchi, J.: Chemical profiling of complex biochemical mixtures from various seaweeds. Polym. J. 44, 888–894 (2012)

    Article  CAS  Google Scholar 

  93. Ogawa, D.M.O., et al.: Biogeochemical typing of paddy field by a data-driven approach revealing sub-systems within a complex environment—a pipeline to filtrate, organize and frame massive dataset from multi-omics analyses. PLoS ONE 9, e110723 (2014)

    Article  CAS  Google Scholar 

  94. Ogura, T., Hoshino, R., Date, Y., Kikuchi, J.: Visualization of microfloral metabolism for marine waste recycling. Metabolites 6, 7 (2016)

    Article  CAS  Google Scholar 

  95. Date, Y., Iikura, T., Yamazawa, A., Moriya, S., Kikuchi, J.: Metabolic sequences of anaerobic fermentation on glucose-based feeding substrates based on correlation analyses of microbial and metabolite profiling. J. Proteome Res. 11, 5602–5610 (2012)

    Article  CAS  Google Scholar 

  96. Shiokawa, Y., Misawa, T., Date, Y., Kikuchi, J.: Application of market basket analysis for the visualization of transaction data based on human lifestyle and spectroscopic measurements. Anal. Chem. 88, 2714–2719 (2016)

    Article  CAS  Google Scholar 

  97. Chatzimichali, E.A., Bessant, C.: Novel application of heuristic optimisation enables the creation and thorough evaluation of robust support vector machine ensembles for machine learning applications. Metabolomics 12, 16 (2016)

    Article  CAS  Google Scholar 

  98. Poulson-Ellestad, K.L., et al.: Metabolomics and proteomics reveal impacts of chemically mediated competition on marine plankton. Proc. Natl. Acad. Sci. U S A 111, 9009–9014 (2014)

    Article  CAS  Google Scholar 

  99. Vergara, F., Kikuchi, J., Breuer, C.: Artificial autopolyploidization modifies the tricarboxylic acid cycle and GABA shunt in Arabidopsis thaliana Col-0. Sci. Rep. 6, 26515 (2016)

    Article  CAS  Google Scholar 

  100. Okamoto, M., Tsuboi, Y., Chikayama, E., Kikuchi, J., Hirayama, T.: Metabolic movement upon abscisic acid and salicylic acid combined treatments. Plant Biotechnol. 26, 551–560 (2009)

    Article  CAS  Google Scholar 

  101. Mochida, K., Furuta, T., Ebana, K., Shinozaki, K., Kikuchi, J.: Correlation exploration of metabolic and genomic diversity in rice. BMC Genomics 10, 568 (2009)

    Article  CAS  Google Scholar 

  102. van Duynhoven, J., et al.: Metabolic fate of polyphenols in the human superorganism. Proc. Natl. Acad. Sci. U S A 108(Suppl 1), 4531–4538 (2011)

    Article  Google Scholar 

  103. Hsieh, C.Y., et al.: Strengthening of the intestinal epithelial tight junction by Bifidobacterium bifidum. Physiol Rep 3, e12327 (2015)

    Article  CAS  Google Scholar 

  104. Date, Y., et al.: In vitro evaluation method for screening of candidate prebiotic foods. Food Chem. 152, 251–260 (2014)

    Article  CAS  Google Scholar 

  105. Vergara, F., Shino, A., Kikuchi, J.: Cannibalism affects core metabolic processes in Helicoverpa armigera larvae—a 2D NMR metabolomics study. Int. J. Mol. Sci. 17, 1470 (2016)

    Article  CAS  Google Scholar 

  106. Asakura, T., Sakata, K., Yoshida, S., Date, Y., Kikuchi, J.: Noninvasive analysis of metabolic changes following nutrient input into diverse fish species, as investigated by metabolic and microbial profiling approaches. PeerJ 2, e550 (2014)

    Article  Google Scholar 

  107. Misawa, T., Date, Y., Kikuchi, J.: Human metabolic, mineral, and microbiota fluctuations across daily nutritional intake visualized by a data-driven approach. J. Proteome Res. 14, 1526–1534 (2015)

    Article  CAS  Google Scholar 

  108. Yamazawa, A., et al.: Cellulose digestion and metabolism induced biocatalytic transitions in anaerobic microbial ecosystems. Metabolites 4, 36–52 (2013)

    Article  CAS  Google Scholar 

  109. Ogura, T., Date, Y., Kikuchi, J.: Differences in cellulosic supramolecular structure of compositionally similar rice straw affect biomass metabolism by paddy soil microbiota. PLoS ONE 8, e66919 (2013)

    Article  CAS  Google Scholar 

  110. Ogura, T., Date, Y., Tsuboi, Y., Kikuchi, J.: Metabolic dynamics analysis by massive data integration: application to tsunami-affected field soils in Japan. ACS Chem. Biol. 10, 1908–1915 (2015)

    Article  CAS  Google Scholar 

  111. Date, Y., et al.: New monitoring approach for metabolic dynamics in microbial ecosystems using stable-isotope-labeling technologies. J. Biosci. Bioeng. 110, 87–93 (2010)

    Article  CAS  Google Scholar 

  112. Dick-Perez, M., et al.: Structure and interactions of plant cell-wall polysaccharides by two- and three-dimensional magic-angle-spinning solid-state NMR. Biochemistry 50, 989–1000 (2011)

    Article  CAS  Google Scholar 

  113. Komatsu, T., Kikuchi, J.: Comprehensive signal assignment of 13C-labeled lignocellulose using multidimensional solution NMR and 13C chemical shift comparison with solid-state NMR. Anal. Chem. 85, 8857–8865 (2013)

    Article  CAS  Google Scholar 

  114. Mao, J.D., Schmidt-Rohr, K.: Accurate quantification of aromaticity and nonprotonated aromatic carbon fraction in natural organic matter by 13C solid-state nuclear magnetic resonance. Environ. Sci. Technol. 38, 2680–2684 (2004)

    Article  CAS  Google Scholar 

  115. Mao, J., Kong, X., Schmidt-Rohr, K., Pignatello, J.J., Perdue, E.M.: Advanced solid-state NMR characterization of marine dissolved organic matter isolated using the coupled reverse osmosis/electrodialysis method. Environ. Sci. Technol. 46, 5806–5814 (2012)

    Article  CAS  Google Scholar 

  116. Wang, T., Salazar, A., Zabotina, O.A., Hong, M.: Structure and dynamics of Brachypodium primary cell wall polysaccharides from two-dimensional 13C solid-state nuclear magnetic resonance spectroscopy. Biochemistry 53, 2840–2854 (2014)

    Article  CAS  Google Scholar 

  117. Wang, T., Park, Y.B., Cosgrove, D.J., Hong, M.: Cellulose-pectin spatial contacts are inherent to never-dried Arabidopsis primary cell walls: evidence from solid-state nuclear magnetic resonance. Plant Physiol. 168, 871–884 (2015)

    Article  CAS  Google Scholar 

  118. Komatsu, T., Kikuchi, J.: Selective signal detection in solid-state NMR using rotor-synchronized dipolar dephasing for the analysis of hemicellulose in lignocellulosic biomass. J. Phys. Chem. Lett. 4, 2279–2283 (2013)

    Article  CAS  Google Scholar 

  119. Ito, K., Sakata, K., Date, Y., Kikuchi, J.: Integrated analysis of seaweed components during seasonal fluctuation by data mining across heterogeneous chemical measurements with network visualization. Anal. Chem. 86, 1098–1105 (2014)

    Article  CAS  Google Scholar 

  120. Wei, F., Ito, K., Sakata, K., Date, Y., Kikuchi, J.: Pretreatment and integrated analysis of spectral data reveal seaweed similarities based on chemical diversity. Anal. Chem. 87, 2819–2826 (2015)

    Article  CAS  Google Scholar 

  121. Okushita, K., Komatsu, T., Chikayama, E., Kikuchi, J.: Statistical approach for solid-state NMR spectra of cellulose derived from a series of variable parameters. Polym. J. 44, 895–900 (2012)

    Article  CAS  Google Scholar 

  122. Okushita, K., Chikayama, E., Kikuchi, J.: Solubilization mechanism and characterization of the structural change of bacterial cellulose in regenerated states through ionic liquid treatment. Biomacromol 13, 1323–1330 (2012)

    Article  CAS  Google Scholar 

  123. Mori, T., et al.: Exploring the conformational space of amorphous cellulose using NMR chemical shifts. Carbohydr. Polym. 90, 1197–1203 (2012)

    Article  CAS  Google Scholar 

  124. Teramura, H., et al.: Changes in lignin and polysaccharide components in 13 cultivars of rice straw following dilute acid pretreatment as studied by solution-state 2D 1H-13C NMR. PLoS ONE 10, e0128417 (2015)

    Article  CAS  Google Scholar 

  125. Sasaki, K., et al.: Precipitate obtained following membrane separation of hydrothermally pretreated rice straw liquid revealed by 2D NMR to have high lignin content. Biotechnol. Biofuels 8, 88 (2015)

    Article  CAS  Google Scholar 

  126. Sasaki, K., et al.: Toward the complete utilization of rice straw: methane fermentation and lignin recovery by a combinational process involving mechanical milling, supporting material and nanofiltration. Bioresour. Technol. 216, 830–837 (2016)

    Article  CAS  Google Scholar 

  127. Teramura, H., et al.: Organosolv pretreatment of sorghum bagasse using a low concentration of hydrophobic solvents such as 1-butanol or 1-pentanol. Biotechnol. Biofuels 9, 27 (2016)

    Article  CAS  Google Scholar 

  128. Tsuji, Y., et al.: Introduction of chemically labile substructures into Arabidopsis lignin through the use of LigD, the calpha-dehydrogenase from Sphingobium sp. strain SYK-6. Plant Biotechnol. J. 13, 821–832 (2015)

    Article  CAS  Google Scholar 

  129. Ogura, T., et al.: Improvement of physical, chemical, and biological properties of aridisol from Botswana by the incorporation of torrefied biomass. Sci. Rep. 6, 28011 (2016)

    Article  CAS  Google Scholar 

  130. Mladenov, N., et al.: Dissolved organic matter quality in a shallow aquifer of Bangladesh: implications for arsenic mobility. Environ. Sci. Technol. 49, 10815–10824 (2015)

    Article  CAS  Google Scholar 

  131. Asakura, T., Date, Y., Kikuchi, J.: Comparative analysis of chemical and microbial profiles in estuarine sediments sampled from Kanto and Tohoku regions in Japan. Anal. Chem. 86, 5425–5432 (2014)

    Article  CAS  Google Scholar 

  132. Kaiser, E., Simpson, A.J., Dria, K.J., Sulzberger, B., Hatcher, P.G.: Solid-state and multidimensional solution-state NMR of solid phase extracted and ultrafiltered riverine dissolved organic matter. Environ. Sci. Technol. 37, 2929–2935 (2003)

    Article  CAS  Google Scholar 

  133. Mitchell, J., Gladden, L.F., Chandrasekera, T.C., Fordham, E.J.: Low-field permanent magnets for industrial process and quality control. Prog. Nucl. Magn. Reson. Spectrosc. 76, 1–60 (2014)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Kikuchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kikuchi, J. (2018). NMR Analysis of Molecular Complexity. In: The Nuclear Magnetic Resonance Society of Japan (eds) Experimental Approaches of NMR Spectroscopy. Springer, Singapore. https://doi.org/10.1007/978-981-10-5966-7_17

Download citation

Publish with us

Policies and ethics