Skip to main content

Technical Basis for Nuclear Magnetic Resonance Approach for Glycoproteins

  • Chapter
  • First Online:
Experimental Approaches of NMR Spectroscopy

Abstract

Glycophobia in structural biology is strongly associated with the unpredictable, heterogeneous nature of protein glycosylation and the complex, flexible structures of the glycoprotein glycans. Moreover, glycoproteins cannot be produced by conventional bacterial expression systems. Nuclear magnetic resonance (NMR) spectroscopy assisted by other analytical and preparative techniques can now successfully address these issues. Recombinant glycoproteins can be expressed with stable isotope labeling using a variety of eukaryotic production vehicles. Glycoforms of glycoproteins can be remodeled by genetic engineering of the production vehicles as well as in vitro enzymatic reactions. Stable-isotope-assisted NMR techniques have provided detailed information regarding conformational dynamics and interactions of the carbohydrate chains in solution, giving insights into the functional mechanisms of glycoprotein glycans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boehr, D.D., Nussinov, R., Wright, P.E.: The role of dynamic conformational ensembles in biomolecular recognition. Nat. Chem. Biol. 5, 789–796 (2009)

    Article  CAS  Google Scholar 

  2. Kovermann, M., Rogne, P., Wolf-Watz, M.: Protein dynamics and function from solution state NMR spectroscopy. Q. Rev. Biophys. 49, e6 (2016)

    Article  Google Scholar 

  3. Rosenzweig, R., Kay, L.E.: Bringing dynamic molecular machines into focus by methyl-TROSY NMR. Annu. Rev. Biochem. 83, 291–315 (2014)

    Article  CAS  Google Scholar 

  4. Freedberg, D.I., Selenko, P.: Live cell NMR. Annu. Rev. Biophys. 43, 171–192 (2014)

    Article  CAS  Google Scholar 

  5. Skinner, A.L., Laurence, J.S.: High-field solution NMR spectroscopy as a tool for assessing protein interactions with small molecule ligands. J. Pharm. Sci. US 97, 4670–4695 (2008)

    Article  CAS  Google Scholar 

  6. Dias, D.M., Ciulli, A.: NMR approaches in structure-based lead discovery: recent developments and new frontiers for targeting multi-protein complexes. Prog. Biophys. Mol. Biol. 116, 101–112 (2014)

    Article  CAS  Google Scholar 

  7. Carlson, E.D., Gan, R., Hodgman, C.E., Jewett, M.C.: Cell-free protein synthesis: applications come of age. Biotechnol. Adv. 30, 1185–1194 (2012)

    Article  CAS  Google Scholar 

  8. Apweiler, R., Hermjakob, H., Sharon, N.: On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database. Biochim. Biophys. Acta 1473, 4–8 (1999)

    Article  CAS  Google Scholar 

  9. Varki, A., Cummings, R.D., Esko, J.D., Freeze, H.H., Stanley, P., Bertozzi, C.R., Hart, G.W., Etzler, M.E.: Essentials of Glycobiology, 2nd edn. Cold Spring Harbor Laboratory Press, New York (2009)

    Google Scholar 

  10. Bubb, W.A.: NMR spectroscopy in the study of carbohydrates: characterizing the structural complexity. Concepts Magn. Resonance Part A 19A, 1–19 (2003)

    Article  CAS  Google Scholar 

  11. Prestegard, J.H., Koerner, T.A.W., Demou, P.C., Yu, R.K.: Complete analysis of oligosaccharide primary structure using two-dimensional high-field proton NMR. J. Am. Chem. Soc. 104, 4993–4995 (1982)

    Article  CAS  Google Scholar 

  12. Vliegenthart, J.F.: High resolution 1H-NMR spectroscopy of carbohydrate structures. Adv. Exp. Med. Biol. 125, 77–91 (1980)

    Article  CAS  Google Scholar 

  13. Albrecht, S., Unwin, L., Muniyappa, M., Rudd, P.M.: Glycosylation as a marker for inflammatory arthritis. Cancer Biomark. 14, 17–28 (2014)

    Article  CAS  Google Scholar 

  14. Adamczyk, B., Albrecht, S., Stockmann, H., Ghoneim, I.M., Al-Eknah, M., Al-Busadah, K.A., Karlsson, N.G., Carrington, S.D., Rudd, P.M.: Pregnancy-associated changes of IgG and serum N-glycosylation in Camel (Camelus dromedarius). J. Proteome Res. 15, 3255–3265 (2016)

    Article  CAS  Google Scholar 

  15. Parekh, R.B., Dwek, R.A., Sutton, B.J., Fernandes, D.L., Leung, A., Stanworth, D., Rademacher, T.W., Mizuochi, T., Taniguchi, T., Matsuta, K., et al.: Association of rheumatoid arthritis and primary osteoarthritis with changes in the glycosylation pattern of total serum IgG. Nature 316, 452–457 (1985)

    Article  CAS  Google Scholar 

  16. Yamada, E., Tsukamoto, Y., Sasaki, R., Yagyu, K., Takahashi, N.: Structural changes of immunoglobulin G oligosaccharides with age in healthy human serum. Glycoconj. J. 14, 401–405 (1997)

    Article  CAS  Google Scholar 

  17. Kibe, T., Fujimoto, S., Ishida, C., Togari, H., Wada, Y., Okada, S., Nakagawa, H., Tsukamoto, Y., Takahashi, N.: Glycosylation and placental transport of immunoglobulin G. J. Clin. Biochem. Nutr. 21, 57–63 (1996)

    Article  CAS  Google Scholar 

  18. Park, S.S., Park, J., Ko, J., Chen, L., Meriage, D., Crouse-Zeineddini, J., Wong, W., Kerwin, B.A.: Biochemical assessment of erythropoietin products from Asia versus US Epoetin alfa manufactured by Amgen. J. Pharm. Sci. 98, 1688–1699 (2009)

    Article  CAS  Google Scholar 

  19. Zeck, A., Pohlentz, G., Schlothauer, T., Peter-Katalinic, J., Regula, J.T.: Cell type-specific and site directed N-glycosylation pattern of FcγRIIIa. J. Proteome Res. 10, 3031–3039 (2011)

    Article  CAS  Google Scholar 

  20. Lindhorst, T.K.: Essentials of Carbohydrate Chemistry and Biochemistry, 3rd Completely Revised and Enlarged Edition edn. Wiley, London (2007)

    Google Scholar 

  21. de Graaf, M., Fouchier, R.A.: Role of receptor binding specificity in influenza A virus transmission and pathogenesis. EMBO J. 33, 823–841 (2014)

    Article  Google Scholar 

  22. Wormald, M.R., Petrescu, A.J., Pao, Y.L., Glithero, A., Elliott, T., Dwek, R.A.: Conformational studies of oligosaccharides and glycopeptides: complementarity of NMR, X-ray crystallography, and molecular modelling. Chem. Rev. 102, 371–386 (2002)

    Article  CAS  Google Scholar 

  23. Masuda, K., Yamaguchi, Y., Takahashi, N., Jefferis, R., Kato, K.: Mutational deglycosylation of the Fc portion of immunoglobulin G causes O-sulfation of tyrosine adjacently preceding the originally glycosylated site. FEBS Lett. 584, 3474–3479 (2010)

    Article  CAS  Google Scholar 

  24. Shibata-Koyama, M., Iida, S., Okazaki, A., Mori, K., Kitajima-Miyama, K., Saitou, S., Kakita, S., Kanda, Y., Shitara, K., Kato, K., Satoh, M.: The N-linked oligosaccharide at FcγRIIIa Asn-45: an inhibitory element for high FcγRIIIa binding affinity to IgG glycoforms lacking core fucosylation. Glycobiology 19, 126–134 (2009)

    Article  CAS  Google Scholar 

  25. Yamaguchi, Y., Kato, K.: Dynamics and interactions of glycoconjugates probed by stable-isotope-assisted NMR spectroscopy. Methods Enzymol. 478, 305–322 (2010)

    Article  CAS  Google Scholar 

  26. Sastry, M., Xu, L., Georgiev, I.S., Bewley, C.A., Nabel, G.J., Kwong, P.D.: Mammalian production of an isotopically enriched outer domain of the HIV-1 gp120 glycoprotein for NMR spectroscopy. J. Biomol. NMR 50, 197–207 (2011)

    Article  CAS  Google Scholar 

  27. Kato, K., Yamaguchi, Y., Arata, Y.: Stable-isotope-assisted NMR approaches to glycoproteins using immunoglobulin G as a model system. Prog. Nucl. Magn. Reson. Spectrosc. 56, 346–359 (2010)

    Article  CAS  Google Scholar 

  28. Yamaguchi, Y., Yagi, H., Kato, K.: Stable isotope labeling of glycoproteins for NMR study. In: NMR in Glycoscience and Glycotechnology, pp. 194–207. RSC Publishing, Cambridge (2017)

    Google Scholar 

  29. Kato, K., Yamaguchi, Y.: Glycoproteins and antibodies: solution NMR studies. In: Encyclopedia of Magnetic Resonance, vol. 3, pp. 1779–1790. Wiley, Chichester (2012)

    Google Scholar 

  30. Kato, K., Matsunaga, C., Igarashi, T., Kim, H., Odaka, A., Shimada, I., Arata, Y.: Complete assignment of the methionyl carbonyl carbon resonances in switch variant anti-dansyl antibodies labeled with [1-13C]methionine. Biochemistry 30, 270–278 (1991)

    Article  CAS  Google Scholar 

  31. Yagi, H., Zhang, Y., Yagi-Utsumi, M., Yamaguchi, T., Iida, S., Yamaguchi, Y., Kato, K.: Backbone 1H, 13C, and 15N resonance assignments of the Fc fragment of human immunoglobulin G glycoprotein. Biomol. NMR Assign. 9, 257–260 (2015)

    Article  CAS  Google Scholar 

  32. Kato, K., Yamaguchi, Y.: Structural analyses of glycoconjugates by NMR. In: Experimental Glycoscience, pp. 45–50. Springer, Tokyo (2008)

    Google Scholar 

  33. Yamaguchi, Y., Kato, K., Shindo, M., Aoki, S., Furusho, K., Koga, K., Takahashi, N., Arata, Y., Shimada, I.: Dynamics of the carbohydrate chains attached to the Fc portion of immunoglobulin G as studied by NMR spectroscopy assisted by selective 13C labeling of the glycans. J. Biomol. NMR 12, 385–394 (1998)

    Article  CAS  Google Scholar 

  34. Yagi, H., Fukuzawa, N., Tasaka, Y., Matsuo, K., Zhang, Y., Yamaguchi, T., Kondo, S., Nakazawa, S., Hashii, N., Kawasaki, N., Matsumura, T., Kato, K.: NMR-based structural validation of therapeutic antibody produced in Nicotiana benthamiana. Plant Cell Rep. 34, 959–968 (2015)

    Article  CAS  Google Scholar 

  35. Yagi, H., Nakamura, M., Yokoyama, J., Zhang, Y., Yamaguchi, T., Kondo, S., Kobayashi, J., Kato, T., Park, E.Y., Nakazawa, S., Hashii, N., Kawasaki, N., Kato, K.: Stable isotope labeling of glycoprotein expressed in silkworms using immunoglobulin G as a test molecule. J. Biomol. NMR 62, 157–167 (2015)

    Article  CAS  Google Scholar 

  36. Walton, W.J., Kasprzak, A.J., Hare, J.T., Logan, T.M.: An economic approach to isotopic enrichment of glycoproteins expressed from Sf9 insect cells. J. Biomol. NMR 36, 225–233 (2006)

    Article  CAS  Google Scholar 

  37. Blanchard, V., Gadkari, R.A., George, A.V., Roy, S., Gerwig, G.J., Leeflang, B.R., Dighe, R.R., Boelens, R., Kamerling, J.P.: High-level expression of biologically active glycoprotein hormones in Pichia pastoris strains–selection of strain GS115, and not X-33, for the production of biologically active N-glycosylated 15N-labeled phCG. Glycoconj. J. 25, 245–257 (2008)

    Article  CAS  Google Scholar 

  38. Kamiya, Y., Yamamoto, S., Chiba, Y., Jigami, Y., Kato, K.: Overexpression of a homogeneous oligosaccharide with 13C labeling by genetically engineered yeast strain. J. Biomol. NMR 50, 397–401 (2011)

    Article  CAS  Google Scholar 

  39. Cubeddu, L., Moss, C.X., Swarbrick, J.D., Gooley, A.A., Williams, K.L., Curmi, P.M., Slade, M.B., Mabbutt, B.C.: Dictyostelium discoideum as expression host: isotopic labeling of a recombinant glycoprotein for NMR studies. Protein Exp. Purif. 19, 335–342 (2000)

    Article  CAS  Google Scholar 

  40. Nettleship, J.E., Assenberg, R., Diprose, J.M., Rahman-Huq, N., Owens, R.J.: Recent advances in the production of proteins in insect and mammalian cells for structural biology. J. Struct. Biol. 172, 55–65 (2010)

    Article  CAS  Google Scholar 

  41. Kamiya, Y., Yanagi, K., Kitajima, T., Yamaguchi, T., Chiba, Y., Kato, K.: Application of metabolic 13C labeling in conjunction with high-field nuclear magnetic resonance spectroscopy for comparative conformational analysis of high mannose-type oligosaccharides. Biomolecules 3, 108–123 (2013)

    Article  CAS  Google Scholar 

  42. Sattler, M., Fesik, S.W.: Use of deuterium labeling in NMR: overcoming a sizeable problem. Structure 4, 1245–1249 (1996)

    Article  CAS  Google Scholar 

  43. Kainosho, M., Guntert, P.: SAIL–stereo-array isotope labeling. Q. Rev. Biophys. 42, 247–300 (2009)

    Article  CAS  Google Scholar 

  44. Opitz, C., Isogai, S., Grzesiek, S.: An economic approach to efficient isotope labeling in insect cells using homemade 15N-, 13C- and 2H-labeled yeast extracts. J. Biomol. NMR 62, 373–385 (2015)

    Article  CAS  Google Scholar 

  45. Guarino, C., DeLisa, M.P.: A prokaryote-based cell-free translation system that efficiently synthesizes glycoproteins. Glycobiology 22, 596–601 (2012)

    Article  CAS  Google Scholar 

  46. Slynko, V., Schubert, M., Numao, S., Kowarik, M., Aebi, M., Allain, F.H.: NMR structure determination of a segmentally labeled glycoprotein using in vitro glycosylation. J. Am. Chem. Soc. 131, 1274–1281 (2009)

    Article  CAS  Google Scholar 

  47. Takahashi, N., Nakagawa, H., Fujikawa, K., Kawamura, Y., Tomiya, N.: Three-dimensional elution mapping of pyridylaminated N-linked neutral and sialyl oligosaccharides. Anal. Biochem. 226, 139–146 (1995)

    Article  CAS  Google Scholar 

  48. Takahashi, N., Kato, K.: GALAXY(Glycoanalysis by the Three Axes of MS and Chromatography): a Web Application that Assists Structural Analyses of N-glycans. Trends Glycosci. Glycotech. 15, 235–251 (2003)

    Article  CAS  Google Scholar 

  49. Yamaguchi, Y., Nishimura, M., Nagano, M., Yagi, H., Sasakawa, H., Uchida, K., Shitara, K., Kato, K.: Glycoform-dependent conformational alteration of the Fc region of human immunoglobulin G1 as revealed by NMR spectroscopy. Biochim. Biophys. Acta 1760, 693–700 (2006)

    Article  CAS  Google Scholar 

  50. Yagi, H., Kuo, C.W., Obayashi, T., Ninagawa, S., Khoo, K.H., Kato, K.: Direct mapping of additional modifications on phosphorylated O-glycans of alpha-dystroglycan by mass spectrometry analysis in conjunction with knocking out of causative genes for dystroglycanopathy. Mol. Cell. Proteomics 15, 3424–3434 (2016)

    Article  CAS  Google Scholar 

  51. Masuda, K., Yamaguchi, Y., Kato, K., Takahashi, N., Shimada, I., Arata, Y.: Pairing of oligosaccharides in the Fc region of immunoglobulin G. FEBS Lett. 473, 349–357 (2000)

    Article  CAS  Google Scholar 

  52. Thaysen-Andersen, M., Packer, N.H.: Advances in LC-MS/MS-based glycoproteomics: getting closer to system-wide site-specific mapping of the N- and O-glycoproteome. Biochim. Biophys. Acta 1844, 1437–1452 (2014)

    Article  CAS  Google Scholar 

  53. Terral, G., Beck, A., Cianferani, S.: Insights from native mass spectrometry and ion mobility-mass spectrometry for antibody and antibody-based product characterization. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 1032, 79–90 (2016)

    Article  CAS  Google Scholar 

  54. Ito, H., Kameyama, A., Sato, T., Narimatsu, H.: Preparation of a glycan library using a variety of glycosyltransferases. Methods Mol. Biol. 534, 283–291 (2009)

    CAS  Google Scholar 

  55. Kato, K., Yamaguchi, Y., Takahashi, N., Nishimura, M., Iwamoto, S., Sekiya, S., Tanaka, K.: Discrimination of isomeric fragment ions observed in tandem mass spectra of biantennary oligosaccharides by use of selective isotope labeling. J. Mass Spectrom. Soc. Jpn. 52, 284–288 (2004)

    Article  CAS  Google Scholar 

  56. Tanji, H., Ohto, U., Shibata, T., Miyake, K., Shimizu, T.: Structural reorganization of the Toll-like receptor 8 dimer induced by agonistic ligands. Science 339, 1426–1429 (2013)

    Article  CAS  Google Scholar 

  57. Matsumiya, S., Yamaguchi, Y., Saito, J., Nagano, M., Sasakawa, H., Otaki, S., Satoh, M., Shitara, K., Kato, K.: Structural comparison of fucosylated and nonfucosylated Fc fragments of human immunoglobulin G1. J. Mol. Biol. 368, 767–779 (2007)

    Article  CAS  Google Scholar 

  58. Mizushima, T., Yagi, H., Takemoto, E., Shibata-Koyama, M., Isoda, Y., Iida, S., Masuda, K., Satoh, M., Kato, K.: Structural basis for improved efficacy of therapeutic antibodies upon defucosylation of their Fc glycans. Genes Cells 16, 1071–1080 (2011)

    Article  CAS  Google Scholar 

  59. Shields, R.L., Lai, J., Keck, R., O’Connell, L.Y., Hong, K., Meng, Y.G., Weikert, S.H., Presta, L.G.: Lack of fucose on human IgG1N-linked oligosaccharide improves binding to human FcγRIII and antibody-dependent cellular toxicity. J. Biol. Chem. 277, 26733–26740 (2002)

    Article  CAS  Google Scholar 

  60. Shinkawa, T., Nakamura, K., Yamane, N., Shoji-Hosaka, E., Kanda, Y., Sakurada, M., Uchida, K., Anazawa, H., Satoh, M., Yamasaki, M., Hanai, N., Shitara, K.: The absence of fucose but not the presence of galactose or bisecting N-acetylglucosamine of human IgG1 complex-type oligosaccharides shows the critical role of enhancing antibody-dependent cellular cytotoxicity. J. Biol. Chem. 278, 3466–3473 (2003)

    Article  CAS  Google Scholar 

  61. Chiba, Y., Akeboshi, H.: Glycan engineering and production of ‘humanized’ glycoprotein in yeast cells. Biol. Pharm. Bull. 32, 786–795 (2009)

    Article  CAS  Google Scholar 

  62. Hamilton, S.R., Davidson, R.C., Sethuraman, N., Nett, J.H., Jiang, Y., Rios, S., Bobrowicz, P., Stadheim, T.A., Li, H., Choi, B.K., Hopkins, D., Wischnewski, H., Roser, J., Mitchell, T., Strawbridge, R.R., Hoopes, J., Wildt, S., Gerngross, T.U.: Humanization of yeast to produce complex terminally sialylated glycoproteins. Science 313, 1441–1443 (2006)

    Article  CAS  Google Scholar 

  63. Irani, Z.A., Kerkhoven, E.J., Shojaosadati, S.A., Nielsen, J.: Genome-scale metabolic model of Pichia pastoris with native and humanized glycosylation of recombinant proteins. Biotechnol. Bioeng. 113, 961–969 (2016)

    Article  CAS  Google Scholar 

  64. Kato, T., Kako, N., Kikuta, K., Miyazaki, T., Kondo, S., Yagi, H., Kato, K., Park, E.Y.: N-glycan modification of a recombinant protein via coexpression of human glycosyltransferases in silkworm pupae. Sci. Rep. 7, 1409 (2017)

    Article  Google Scholar 

  65. Kato, K., Sasakawa, H., Kamiya, Y., Utsumi, M., Nakano, M., Takahashi, N., Yamaguchi, Y.: 920 MHz ultra-high field NMR approaches to structural glycobiology. Biochim. Biophys. Acta 1780, 619–625 (2008)

    Article  CAS  Google Scholar 

  66. Blundell, C.D., Reed, M.A., Overduin, M., Almond, A.: NMR spectra of oligosaccharides at ultra-high field (900 MHz) have better resolution than expected due to favourable molecular tumbling. Carbohydr. Res. 341, 1985–1991 (2006)

    Article  CAS  Google Scholar 

  67. Canet, D., Robert, J.B.: Behaviour of the NMR relaxation parameters at high fields. In: NMR at very high field, vol. 25, pp 45–89. Springer, Berlin (1991)

    Google Scholar 

  68. Meersmann, T., Schwager, M., Varma, V., Bodenhausen, G.: Little-known advantages of very high fields in NMR. J. Magn. Reson. Ser. A 119, 275–279 (1996)

    Article  CAS  Google Scholar 

  69. Yamaguchi, T., Sakae, Y., Zhang, Y., Yamamoto, S., Okamoto, Y., Kato, K.: Exploration of conformational spaces of high-mannose-type oligosaccharides by an NMR-validated simulation. Angew. Chem. Int. Ed. Engl. 53, 10941–10944 (2014)

    Article  CAS  Google Scholar 

  70. Yamaguchi, Y., Takizawa, T., Kato, K., Arata, Y., Shimada, I.: 1H and 13C NMR assignments for the glycans in glycoproteins by using 2H/13C-labeled glucose as a metabolic precursor. J. Biomol. NMR 18, 357–360 (2000)

    Article  CAS  Google Scholar 

  71. Barb, A.W., Prestegard, J.H.: NMR analysis demonstrates immunoglobulin G N-glycans are accessible and dynamic. Nat. Chem. Biol. 7, 147–153 (2011)

    Article  CAS  Google Scholar 

  72. Gilhespy-Muskett, A.M., Partridge, J., Jefferis, R., Homans, S.W.: A novel 13C isotopic labelling strategy for probing the structure and dynamics of glycan chains in situ on glycoproteins. Glycobiology 4, 485–489 (1994)

    Article  CAS  Google Scholar 

  73. Yamaguchi, Y., Walchli, M., Nagano, M., Kato, K.: A C-13-detection NMR approach for large glycoproteins. Carbohyd. Res. 344, 535–538 (2009)

    Article  CAS  Google Scholar 

  74. Hanashima, S., Kato, K., Yamaguchi, Y.: 13C-NMR quantification of proton exchange at LewisX hydroxyl groups in water. Chem. Commun. (Camb.) 47, 10800–10802 (2011)

    Article  CAS  Google Scholar 

  75. Pfeffer, P.E., Valentine, K.M., Parrish, F.W.: Deuterium-induced differential isotope shift C-13 NMR. 1. Resonance re-assignments of monosaccharides and disaccharides. J. Am. Chem. Soc. 101, 1265–1274 (1979)

    Article  CAS  Google Scholar 

  76. Battistel, M.D., Azurmendi, H.F., Freedberg, D.I.: Glycan OH exchange rate determination in aqueous solution: seeking evidence for transient hydrogen bonds. J. Phys. Chem. B 121, 683–695 (2017)

    Google Scholar 

  77. Hadad, M., J,, Zhang, W., Turney, T., Sernau, L., Wang, X., Woods, R.J., Incandela, A., Surjancev, I., Wang, A., Yoon, M.Y., Coscia, A., Euell, C., Meredith, R., Carmichael, I., Serianni, A.: NMR Spin-couplings in saccharides: relationships between structure, conformation and the magnitudes of JHH, JCH and JCC values. In: NMR in Glycoscience and Glycotechnology, pp. 20–100. RSC Publishing, Cambridge (2017)

    Google Scholar 

  78. Prestegard, J.H., Eletsky, A.: Paramagnetic, RDC and RCSA constraints in the structural analysis of glycans. In: NMR in Glycoscience and Glycotechnology, pp. 123–149. RSC Publishing, Cambridge (2017)

    Google Scholar 

  79. Schubert, M.: Insights into carbohydrate recognition by 3D structure determination of protein–carbohydrate complexes using NMR. In: NMR in Glycoscience and Glycotechnology, pp. 101–122. RSC Publishing, Cambridge. (2017)

    Google Scholar 

  80. Yamaguchi, Y., Hirao, T., Sakata, E., Kamiya, Y., Kurimoto, E., Yoshida, Y., Suzuki, T., Tanaka, K., Kato, K.: Fbs1 protects the malfolded glycoproteins from the attack of peptide: N-glycanase. Biochem. Biophys. Res. Commun. 362, 712–716 (2007)

    Article  CAS  Google Scholar 

  81. Nestor, G., Anderson, T., Oscarson, S., Gronenborn, A.M.: Exploiting uniformly 13C-labeled carbohydrates for probing carbohydrate-protein interactions by nmr spectroscopy. J. Am. Chem. Soc. 139, 6210–6216 (2017)

    Article  CAS  Google Scholar 

  82. Yamaguchi, Y., Kato, K.: Analyses of sugar–protein interactions by NMR. In: Experimental Glycoscience, pp. 121–123. Springer, Tokyo (2008)

    Google Scholar 

  83. Mayer, M., Meyer, B.: Group epitope mapping by saturation transfer difference NMR to identify segments of a ligand in direct contact with a protein receptor. J. Am. Chem. Soc. 123, 6108–6117 (2001)

    Article  CAS  Google Scholar 

  84. Jimenes-Barbero, J., Peters, T.: TR-NOE experiments to study carbohydrate-protein interactions. In: NMR Spectroscopy of Glycoconjugates, pp. 289–309. Wiley-VCH, Weinheim (2006)

    Google Scholar 

  85. Canales, A., Mallagaray, A., Pérez-Castells, J., Boos, I., Unverzagt, C., André, S., Gabius, H.-J., Cañada, F.J., Jiménez-Barbero, J.: Breaking pseudo-symmetry in multiantennary complex N-glycans using lanthanide-binding tags and NMR pseudo-contact shifts. Angew. Chem. Int. Ed. 52, 13789–13793 (2013)

    Article  CAS  Google Scholar 

  86. Kato, K., Yamaguchi, T.: Paramagnetic NMR probes for characterization of the dynamic conformations and interactions of oligosaccharides. Glycoconj. J. 32, 505–513 (2015)

    Article  CAS  Google Scholar 

  87. Kato, K., Yagi, H., Yamaguchi, T.: NMR characterization of dynamic conformations and interactions of oligosaccharides. In: Modern Magnetic Resonance. Springer, Berlin (2017, in press)

    Google Scholar 

  88. Yamaguchi, T., Kamiya, Y., Choo, Y.M., Yamamoto, S., Kato, K.: Terminal spin labeling of a high-mannose-type oligosaccharide for quantitative NMR analysis of its dynamic conformation. Chem. Lett. 42, 544–546 (2013)

    Article  CAS  Google Scholar 

  89. Yan, G., Yamaguchi, T., Suzuki, T., Yanaka, S., Sato, S., Fujita, M., Kato, K.: Hyper-assembly of self-assembled glycoclusters mediated by specific carbohydrate–carbohydrate interactions. Chem. Asian J. 12, 968–972 (2017)

    Article  CAS  Google Scholar 

  90. Demarco, M.L., Woods, R.J., Prestegard, J.H., Tian, F.: Presentation of membrane-anchored glycosphingolipids determined from molecular dynamics simulations and NMR paramagnetic relaxation rate enhancement. J. Am. Chem. Soc. 132, 1334–1338 (2010)

    Article  CAS  Google Scholar 

  91. Zhang, Y., Yamamoto, S., Yamaguchi, T., Kato, K.: Application of paramagnetic NMR-validated molecular dynamics simulation to the analysis of a conformational ensemble of a branched oligosaccharide. Molecules 17, 6658 (2012)

    Article  CAS  Google Scholar 

  92. Yamamoto, S., Zhang, Y., Yamaguchi, T., Kameda, T., Kato, K.: Lanthanide-assisted NMR evaluation of a dynamic ensemble of oligosaccharide conformations. Chem. Commun. 48, 4752–4754 (2012)

    Article  CAS  Google Scholar 

  93. Suzuki, T., Kajino, M., Yanaka, S., Zhu, T., Yagi, H., Satoh, T., Yamaguchi, T., Kato, K.: Conformational analysis of a high-mannose-type oligosaccharide displaying glucosyl determinant recognised by molecular chaperones using NMR-validated molecular dynamics simulation. ChemBioChem 18, 396–401 (2017)

    Google Scholar 

  94. Kamiya, Y., Satoh, T., Kato, K.: Recent advances in glycoprotein production for structural biology: toward tailored design of glycoforms. Curr. Opin. Struct. Biol. 26, 44–53 (2014)

    Article  CAS  Google Scholar 

  95. Valderrama-Rincon, J.D., Fisher, A.C., Merritt, J.H., Fan, Y.Y., Reading, C.A., Chhiba, K., Heiss, C., Azadi, P., Aebi, M., DeLisa, M.P.: An engineered eukaryotic protein glycosylation pathway in Escherichia coli. Nat. Chem. Biol. 8, 434–436 (2012)

    Article  CAS  Google Scholar 

  96. Schwarz, F., Huang, W., Li, C., Schulz, B.L., Lizak, C., Palumbo, A., Numao, S., Neri, D., Aebi, M., Wang, L.X.: A combined method for producing homogeneous glycoproteins with eukaryotic N-glycosylation. Nat. Chem. Biol. 6, 264–266 (2010)

    Article  CAS  Google Scholar 

  97. Kajihara, Y., Tanabe, Y., Sasaoka, S., Okamoto, R.: Homogeneous human complex-type oligosaccharides in correctly folded intact glycoproteins: evaluation of oligosaccharide influence on protein folding, stability, and conformational properties. Chemistry 18, 5944–5953 (2012)

    Article  CAS  Google Scholar 

  98. DeLano, W.L.: The PyMOL Molecular Graphics System. DeLano Scientific, San Carlos (2002)

    Google Scholar 

Download references

Acknowledgements

We thank Mr. Masaki Kato (Structural Glycobiology Team, RIKEN) for statistic analysis of PDB data and Drs. Takumi Yamaguchi (School of Material Science, Japan Advanced Institute of Science and Technology) and Maho Yagi-Utsumi (Institute for Molecular Science, National Institutes of Natural Sciences) for useful discussion. This work was partly supported by the Nanotechnology Platform Program (Molecule and Material Synthesis) of MEXT, MEXT/JSPS Grants in Aid for Scientific Research (JP25102008, JP15K07935 and JP17H05893), the Japan Agency for Medical Research and Development, and the Cooperative Research Program of Institute for Protein Research, Osaka University, NMRCR-16-05.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koichi Kato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kato, K., Yanaka, S., Yagi, H. (2018). Technical Basis for Nuclear Magnetic Resonance Approach for Glycoproteins. In: The Nuclear Magnetic Resonance Society of Japan (eds) Experimental Approaches of NMR Spectroscopy. Springer, Singapore. https://doi.org/10.1007/978-981-10-5966-7_15

Download citation

Publish with us

Policies and ethics