Skip to main content

The Physical Linked-Measure Works as Vortex with Linking to Turbulence

  • Chapter
  • First Online:
Scientific Metrics: Towards Analytical and Quantitative Sciences

Part of the book series: Understanding Complex Systems ((UCS))

  • 662 Accesses

Abstract

A physical linked-measure is mathematically consisted of a complex scalar, a complex vector and a bi-vector and is geometrically equivalent to a vortex. When the complex scalar means mass, the complex vector implies directed momentum and the bi-vector rotates angular momentum, with using the least action principle to the linked-measure, yielding energy-mass-momentum-angular momentum joint conservation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson, J.D.: Fundamental of Aerodynamics. McGraw-Hill, Boston (2001)

    Google Scholar 

  • Ashtekar, A.: Black hole mechanics. In: Francoise, J. P., Naber, G. L., Tsou, S. T., et al. (eds.) Encyclopedia of Mathematical Physics, 300–305. Springer, Heidelberg (2006)

    Google Scholar 

  • Chow, J.S., Zilliac, G.G., Bradshaw, P.: Mean and turbulence measurements in the near field of a wingtip vortex. AIAA J. 35(10), 1561–1567 (1997)

    Article  Google Scholar 

  • Davidson, L.: Fluid Mechanics, Turbulent Flow and Turbulence Modeling. Chalmers University of Technology, Sweden (2015)

    Google Scholar 

  • Doran, C.J.L., Lasenby, A.N.: Geometric Algebra for Physicists. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

  • Ecke, R.: The Turbulence problem: an experimentalist’s perspective. Los Alamos Sci. 29, 124–141 (2005)

    Google Scholar 

  • Farge, M.: Wavelet transforms and their applications to turbulence. Annu. Rev. Fluid Mech. 24, 395–457 (1992)

    Article  Google Scholar 

  • Farge, M., Schneider, K.: Wavelets: Application to Turbulence. In: Francoise, J.P., Naber, G.L., Tsou, S.T., et al. (eds.) Encyclopedia of Mathematical Physics, 5th edn, pp. 408-420. Springer, Heidelberg (2006)

    Google Scholar 

  • Frolov, V.P., Novikov, I.D.: Black Hole Physics: Basic Concepts and New Developments (Fundamental Theories of Physics 96). Kluwer, Amsterdam (1997)

    Google Scholar 

  • Green, S.I.: Wing Tip Vortices//Green, pp. 427–470. Kluwer, S. I. Fluid Vortices. Amsterdam (1995)

    Google Scholar 

  • Hestenes, D.: Spacetime physics with geometric algebra. Am. J. Phys. 71(7), 691–714 (2003)

    Article  Google Scholar 

  • Landau, L.D., Lifshits, E.M.: Fluid Mechanics, 2nd edn., vol. 6. Translated by Sykes, J. B., Reid, W. H. Pergamon, New York (1987)

    Google Scholar 

  • Lasenby, A., Doran, C., Gull, S.: Gravity, gauge theories and geometric algebra. Philosophical Trans. R. Soc. London A 356, 487–582 (2004)

    Article  Google Scholar 

  • Lesieur, M.: Turbulence in Fluids. Kluwer Academic Publishers, Dordrecht (1997)

    Book  Google Scholar 

  • Nitsche, M.: Vortex dynamics. In: Francoise, J.P., Naber, G.L., Tsou, S. T., et al. (eds.) Encyclopedia of Mathematical Physics, 5th edn, pp. 388–399. Springer, Heidelberg (2006)

    Google Scholar 

  • Papantonopoulos, E.: Physics of Black Holes: A Guided Tour. Springer, Berlin (2009)

    Book  Google Scholar 

  • Penrose, R.: The Road to Reality: A Complete Guide to the Laws of the Universe. Jonathan Cape, London (2004)

    Google Scholar 

  • Pullin, D.I., Saffman, P.G.: Vortex dynamics in turbulence. Annu. Rev. Fluid Mech. 30, 31–51 (1998)

    Article  Google Scholar 

  • Rosa, R.M.S.: Turbulence theories. In: Francoise, J.P., Naber, G.J., Tsou, S.T., et al. Encyclopedia of Mathematical Physics, 5th edn, pp. 295–303. Springer, Heidelberg (2006)

    Google Scholar 

  • Saffman, P.G.: Vortex Dynamics. Cambridge University Press, Cambridge (1992)

    Google Scholar 

  • Speziale, C.G.: Turbulence modeling for time-dependent RANS and VLES: a review. AIAA J. 36(2), 173–184 (1998)

    Article  Google Scholar 

  • Ye, F.Y.: A Clifford-Finslerian physical unification and fractal dynamics. Chaos, Solitons Fractals 41(5), 2301–2305 (2009)

    Article  Google Scholar 

  • Ye, F.Y.: The linked-measure and linked-field for linking micro-particles to macro-cosmos and dispelling dark matter and dark energy. Phys. J. 1(2), 89–96 (2015)

    Google Scholar 

Download references

Acknowledgements

This chapter is a revision of the original version published at Physical Journal, 2015, 1(3): 209–215

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fred Y. Ye .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd. and Science Press

About this chapter

Cite this chapter

Ye, F.Y. (2017). The Physical Linked-Measure Works as Vortex with Linking to Turbulence. In: Scientific Metrics: Towards Analytical and Quantitative Sciences. Understanding Complex Systems. Springer, Singapore. https://doi.org/10.1007/978-981-10-5936-0_2

Download citation

Publish with us

Policies and ethics