Skip to main content

The Linked-Measure and Linked-Field for Linking Micro-Particles to Macro-Cosmos with Dispelling Dark Matter and Dark Energy

  • Chapter
  • First Online:
Scientific Metrics: Towards Analytical and Quantitative Sciences

Part of the book series: Understanding Complex Systems ((UCS))

  • 660 Accesses

Abstract

A mathematical multi-vector consists of a complex scalar, a complex vector and a bi-vector, which constructs a physical linked-measure, yielding a linked-field. When the linked-measure is applied as the world measure, its strong symmetric links generate electromagnetic field and its strong micro-inner links do strong field, while its weak micro-inner symmetric links synthesize electro-weak field. With adding outer space-time metric, the linked-field leads to gravitational field with a new understanding of dark matter and dark energy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Beringer, J., Navas, S., Particle Data Group.: Review of particle physics. Phys. Rev. D 86, 010001 (2012)

    Google Scholar 

  • Cyburt, R.H., Fields, B.D., Olive, K.A.: New BBN limits on physics beyond the standard model from \(^4\)He. Astropart. Phys. 23, 313–323 (2005)

    Article  Google Scholar 

  • Doran, C.J.L., Lasenby, A.N.: Geometric Algebra for Physicists. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

  • Drees, M., Gerbier, G.Dark matter, Olive, K. A., Richardson, P., Zenin, O. V., et al.: Review of particle physics. Chinese Phys. C 38, 353–360 (2014)

    Google Scholar 

  • Einstein, A.: The foundation of the general theory of relativity. Ann. Phys. 49, 769–822 (1916)

    Article  Google Scholar 

  • Fields, B.D., Sarkar, S.Big-bang Nucleosynthesis, Olive, K. A., Richardson, P., Zenin, O. V., et al.: Review of particle physics. Chin. Phys. C 38, 339–344 (2001)

    Google Scholar 

  • Hestenes, D.: Observables, operators and complex numbers in the Dirac theory. J. Math. Phys. 16, 573–583 (1975)

    Article  Google Scholar 

  • Hestenes, D.: Spacetime physics with geometric algebra. Am. J. Phys. 71(7), 691–714 (2003)

    Article  Google Scholar 

  • Hestenes, D., Sobczyck, G.: Geometric Algebra to Geometric Calculus. Reidel, Boston (1984)

    Book  Google Scholar 

  • Lasenby, A., Doran, C., Gull, S.: Gravity, gauge theories and geometric algebra (2004). arXiv:gr-qc/040503301

  • Matarrese, S., Colpi, M., Gorini, V.: Dark Matter and Dark Energy: a challenge for modern cosmology. Springer, Dordrecht (2011)

    Book  Google Scholar 

  • Mortonson, M.J., Weinberg, D.H., White, M. Dark energy, Olive, K.A., et al.: Review of particle physics. Chin. Phys. C 38, 361–368 (2014)

    Google Scholar 

  • Olive, K.A. et al. (Particle Data Group).: Review of particle physics. Chinese Physics C, 38: 09000 (2014)

    Google Scholar 

  • Planck, Collaboration: Planck 2013 results. I. Overview of products and scientific results. Astron. Astrophys. 571, A1 (2014a)

    Google Scholar 

  • Planck, Collaboration: Planck 2013 results. XVI. Cosmological parameters. Astronomy Astrophys. 571, A16 (2014b)

    Google Scholar 

  • Riess, A.G., Filippenko, A.V., Challis, P., et al.: Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 116, 1009–1038 (1998)

    Article  Google Scholar 

  • Sarkar, S.: Big bang nucleosynthesis and physics beyond the standard model. Rep. Prog. Phys. 59, 1493–1609 (1996)

    Article  Google Scholar 

  • The ATLAS Collaboration: Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC. Phys. Lett. B 716(1), 1–29 (2012)

    Article  Google Scholar 

  • The CMS Collaboration: Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. Phys. Lett. B 716(1), 30–61 (2012)

    Article  Google Scholar 

  • Weinberg, S.: Gravitation and Cosmology. Wiley, New York (1972)

    Google Scholar 

  • Ye, F.Y.: A Clifford-Finslerian physical unification and fractal dynamics. Chaos Solitons Fractals 41(5), 2301–2305 (2009)

    Article  Google Scholar 

  • Ye, F.Y.: Curvature mass inside hadrons: linking gravity to QCD. Natural Sci. 5(2), 182–186 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This chapter is a revision of the original version published at Physical Journal, 2015, 1(2): 89–96.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fred Y. Ye .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd. and Science Press

About this chapter

Cite this chapter

Ye, F.Y. (2017). The Linked-Measure and Linked-Field for Linking Micro-Particles to Macro-Cosmos with Dispelling Dark Matter and Dark Energy. In: Scientific Metrics: Towards Analytical and Quantitative Sciences. Understanding Complex Systems. Springer, Singapore. https://doi.org/10.1007/978-981-10-5936-0_1

Download citation

Publish with us

Policies and ethics