Skip to main content

Stability of Molecular Devices: Halide Perovskite Solar Cells

  • Chapter
  • First Online:

Part of the book series: Green Chemistry and Sustainable Technology ((GCST))

Abstract

Novel hybrid organic-inorganic perovskite solar cells (PSCs) have radically transformed the photovoltaic and energy-conversion arena. Their remarkable and unprecedented improvement of power conversion efficiencies, currently at 22%, has occurred within only the past few years, and has benefitted from prior developments in other new photovoltaic technologies, e.g. dye sensitized solar cells (DSSCs) and organic solar cells (OPVs). This technology has all the ingredients needed to rapidly achieve maturity: (a) inexpensive, light-harvesting perovskite-type minerals, (b) the straightforward design and composition of derivatives and homologous substances, and (c) facile solution-based processing methods. Another advantage of PSCs is their ability to be integrated in tandem architectures with silicon-based solar cells. As a result, mechanically flexible and semi-transparent light-harvesting arrays possessing polychromic sensitivity can be attainable. The long-term stability of halide PSCs is an important and urgent challenge to be overcome before their commercial potential can be realized. A greater understanding of their intrinsic and extrinsic degradation mechanisms has led to an increase in PSC stability relative to initially low values. This review documents the most promising and recent of those results, and sets the stage for future improvements in PSC device efficiency, stability and lifetime.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. https://ec.europa.eu/energy/en/topics/energy-strategy/2050-energy-strategyEES

  2. Jacoby M (2016) The future of low-cost solar cells. C&EN 94(18):30–35

    Google Scholar 

  3. Kojima A, Teshima K, Shirai Y, Miyasaka T (2009) Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc 131(17):6050–6051. doi:10.1021/ja809598r

    Article  Google Scholar 

  4. NREL C. http://www.nrelgov/ncpv/images/efficiency_chartjpg. Accessed 13 June 2016

  5. Wells HLZ (1893) Anorg Chem 3:195–210

    Article  Google Scholar 

  6. Moller CK (1957) A phase transition in caesium plumbochloride. Nature 180(4593):981–982

    Article  Google Scholar 

  7. Weber D (1978) CH3NH3PbX3, ein Pb(II)-System mit kubischer Perowskitstruktur/CH3NH3PbX3, a Pb(II)-system with cubic perovskite structure. Zeitschrift für Naturforschung B 33. doi:10.1515/znb-1978-1214

  8. Reller A, Williams T (1989) Perovskites-chemical chameleons, vol 12. Chemical Society, London, ROYAUME-UNI

    Google Scholar 

  9. Manser JS, Saidaminov MI, Christians JA, Bakr OM, Kamat PV (2016) Making and breaking of lead halide perovskites. Acc Chem Res 49(2):330–338. doi:10.1021/acs.accounts.5b00455

    Article  Google Scholar 

  10. Stoumpos CC, Malliakas CD, Kanatzidis MG (2013) MAPbI3 structural changes at 55 °C. Inorg Chem 52:9019–9038

    Article  Google Scholar 

  11. Conings B, Drijkoningen J, Gauquelin N, Babayigit A, D’Haen J, D’Olieslaeger L, Ethirajan A, Verbeeck J, Manca J, Mosconi E, Angelis FD, Boyen HG (2015) MAPbI3 moisture and temp issues. Adv Energy Mater 5. doi:10.1002/aenm.201500477

  12. Misra RK, Aharon S, Li B, Mogilyansky D, Visoly-Fisher I, Etgar L, Katz EA (2015) MAPbI3 moisture and temp issues. J Phys Chem Lett 6:326–330

    Article  Google Scholar 

  13. Hok ET, Slotcavage DJ, Dohner ER, Bowring AR, Karunadasa HI, McGehee MD (2015) MAPbI3 influence of light and halide segregation. Chem Sci 6:613–617

    Article  Google Scholar 

  14. Moller CK (1958) CsPbI3 band gap and annealing at 300 °C. Nature 182:1436

    Article  Google Scholar 

  15. Zhao Y, Liang C, Zhang H, Li D, Tian D, Li G, Jing X, Zhang W, Xiao W, Liu Q, Zhanga F, He Z (2015) Anomalously large interface charge in polarityswitchable photovoltaic devices: an indication of mobile ions in organic–inorganic halide perovskites. Energy Environ Sci 8:1256–1260

    Article  Google Scholar 

  16. Eames C, Frost JM, Barnes PRF, O’Regan BC, Walsh A, Islam MS (2015) Ionic transport in hybrid lead iodide perovskite solar cells. Nat Commun 6:7497

    Article  Google Scholar 

  17. Yuan Y, Huang J (2016) Ion migration in organometal trihalide perovskite and its impact on photovoltaic efficiency and stability. Acc Chem Res 49:286–293

    Article  Google Scholar 

  18. Yang T-Y, Gregori G, Pellet N, Gratzel M, Maier J (2015) The significance of ion conduction in a hybrid organic-inorganic lead-iodide-based perovskite photosensitizer. Angew Chem Int Ed 54:7905–7910

    Article  Google Scholar 

  19. Back H, Kim G, Kim J, Kong J, Kim TK, Kang H, Kim H, Lee J, Lee S, Lee K (2016) Achieving long-term stable perovskite solar cells via ion neutralization. Energy Environ Sci 9(4):1258–1263. doi:10.1039/c6ee00612d

    Article  Google Scholar 

  20. Saliba M, Matsui T, Seo J-Y, Domanski K, Correa-Baena J-P, Nazeeruddin MK, Zakeeruddin SM, Tress W, Abate A, Hagfeldtd A, Gratzel M (2016) Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ Sci 9:1989–1997

    Article  Google Scholar 

  21. Baena JPC, Steier L, Tress W, Saliba M, Neutzner S, Matsui T, Giordano F, Jacobsson TJ, Kandada ARS, Zakeeruddin SM, Petrozza A, Abate A, Nazeeruddin MK, Gratzel M, Hagfeldt A (2015) Highly efficient planar perovskite solar cells through band alignment engineering. Energy Environ Sci 8:2928–2934

    Article  Google Scholar 

  22. Jeon NJ, Noh JH, Yang WS, Kim YC, Ryu S, Seo J, Seok SI (2015) Compositional engineering of perovskite materials for high performance solar cells. Nature 517:476–480

    Article  Google Scholar 

  23. Saliba M, Orlandi S, Matsui T, Aghazada S, Cavazzini M, Correa-Baena J-P, Gao P, Scopelliti R, Mosconi E, Dahmen K-H, Angelis FD, Abate A, Hagfeldt A, Pozzi G, Graetzel M, Nazeeruddin MK (2016) PSC with Novel HTl 20.2% Ref 50. Nat Energy 1:15017

    Google Scholar 

  24. Bi D, Tress W, Dar MI, Gao P, Luo J, Renevier C, Schenk K, Abate A, Giordano F, Baena JPC, Decoppet JD, Zakeeruddin SM, Nazeeruddin MK, Gratzel M, Hagfeldt A (2016) Efficienct luminescent solar cells based on tailored mixed cation perovskites. Sci Adv 2(1):e150117170

    Article  Google Scholar 

  25. Li Z, Yang M, Park J-S, Wei S-H, Berry JJ, Zhu K (2016) Structural stability of Cs/FA perovskites. Chem Mater 28:284–292

    Article  Google Scholar 

  26. Li B, Li Y, Zheng C, Gao D, Huang W (2016) Advancements in the stability of perovskite solar cells: degradation mechanisms and improvement approaches. RSC Adv 6(44):38079–38091. doi:10.1039/c5ra27424a

    Article  Google Scholar 

  27. Niu G, Guo X, Wang L (2015) Review of recent progress in chemical stability of perovskite solar cells. J Mater Chem A 3(17):8970–8980. doi:10.1039/c4ta04994b

    Article  Google Scholar 

  28. Yan W, Ye S, Li Y, Sun W, Rao H, Liu Z, Bian Z, Huang C (2016) Hole-transporting materials in inverted planar perovskite solar cells. Adv Energy Mater 1–18. doi:10.1002/aenm.201600474

  29. Meng L, You J, Guo T-F, Yang Y (2016) Recent advances in the inverted planar structure of perovskite solar cells. Acc Chem Res 49(1):155–165. doi:10.1021/acs.accounts.5b00404

    Article  Google Scholar 

  30. Ye M, Hong X, Zhang F, Liu X (2016) Recent advancements in perovskite solar cells: flexibility, stability and large scale. J Mater Chem A 4(18):6755–6771. doi:10.1039/c5ta09661h

    Article  Google Scholar 

  31. Wang D, Wright M, Elumalai NK, Uddin A (2016) Stability of perovskite solar cells. Sol Energy Mater Sol Cells 147:255–275. doi:10.1016/j.solmat.2015.12.025

    Article  Google Scholar 

  32. Shahbazi M, Wang H (2016) Progress in research on the stability of organometal perovskite solar cells. Sol Energy 123:74–87. doi:10.1016/j.solener.2015.11.008

    Article  Google Scholar 

  33. Mali SS, Hong CK (2016) P-i-n/n-i-p type planar hybrid structure of highly efficient perovskite solar cells towards improved air stability: synthetic strategies and the role of p-type hole transport layer (HTL) and n-type electron transport layer (ETL) metal oxides. Nanoscale 8(20):10528–10540. doi:10.1039/c6nr02276f

    Article  Google Scholar 

  34. Berhe TA, Su WN, Chen CH, Pan CJ, Cheng JH, Chen HM, Tsai MC, Chen LY, Dubale AA, Hwang BJ (2016) Organometal halide perovskite solar cells: degradation and stability. Energy Environ Sci 9(2):323–356. doi:10.1039/c5ee02733k

    Article  Google Scholar 

  35. Rong Y, Liu L, Mei A, Li X, Han H (2015) Beyond efficiency: the challenge of stability in mesoscopic perovskite solar cells. Adv Energy Mater 5(20). doi:10.1002/aenm.201501066

  36. Guo X, Niu G, Wang L (2015) Chemical stability issue and its research process of perovskite solar cells with high efficiency. Acta Chim Sinica 73(3):211–218. doi:10.6023/a14100687

    Article  Google Scholar 

  37. Dennler G (2007) The value of values. Mater Today 10(11):56. doi:10.1016/S1369-7021(07)70290-0

    Article  Google Scholar 

  38. Ito S, Matsui H, K-i Okada, S-i Kusano, Kitamura T, Wada Y, Yanagida S (2004) Calibration of solar simulator for evaluation of dye-sensitized solar cells. Sol Energy Mater Sol Cells 82(3):421–429. doi:10.1016/j.solmat.2004.01.030

    Article  Google Scholar 

  39. Ito S, Nazeeruddin MK, Liska P, Comte P, Charvet R, Péchy P, Jirousek M, Kay A, Zakeeruddin SM, Grätzel M (2006) Photovoltaic characterization of dye-sensitized solar cells: effect of device masking on conversion efficiency. Prog Photovolt Res Appl 14(7):589–601. doi:10.1002/pip.683

    Article  Google Scholar 

  40. Kroon JM, Wienk MM, Verhees WJH, Hummelen JC (2002) Accurate efficiency determination and stability studies of conjugated polymer/fullerene solar cells. Thin Solid Films 403–404:223–228. doi:10.1016/S0040-6090(01)01589-9

    Article  Google Scholar 

  41. Shrotriya V, Li G, Yao Y, Moriarty T, Emery K, Yang Y (2006) Accurate measurement and characterization of organic solar cells. Adv Funct Mater 16(15):2016–2023

    Article  Google Scholar 

  42. Snaith HJ (2012) The perils of solar cell efficiency measurements. Nat Photonics 6(6):337–340

    Article  Google Scholar 

  43. Hodes G (2012) Photoelectrochemical cell measurements: getting the basics right. J Phys Chem Lett 3(9):1208–1213. doi:10.1021/jz300220b

    Article  Google Scholar 

  44. Dennler G, Scharber MC, Brabec CJ (2009) Polymer-fullerene bulk-heterojunction solar cells. Adv Mater 21(13):1323–1338. doi:10.1002/adma.200801283

    Article  Google Scholar 

  45. Snaith HJ (2012) How should you measure your excitonic solar cells? Energy Environ Sci 5(4):6513–6520

    Article  MathSciNet  Google Scholar 

  46. Greenham NC, Peng X, Alivisatos AP (1996) Charge separation and transport in conjugated-polymer/semiconductor-nanocrystal composites studied by photoluminescence quenching and photoconductivity. Phys Rev B 54(24):17628–17637

    Article  Google Scholar 

  47. Gratzel M (2001) Photoelectrochemical cells. Nature 414(6861):338–344

    Article  Google Scholar 

  48. Corazza M, Krebs FC, Gevorgyan SA (2014) Predicting, categorizing and intercomparing the lifetime of OPVs for different ageing tests. Sol Energy Mater Sol Cells 130:99–106. doi:10.1016/j.solmat.2014.06.031

    Article  Google Scholar 

  49. Corazza M, Krebs FC, Gevorgyan SA (2015) Lifetime of organic photovoltaics: linking outdoor and indoor tests. Sol Energy Mater Sol Cells 143:467–472. doi:10.1016/j.solmat.2015.07.037

    Article  Google Scholar 

  50. Timmreck R, Meyer T, Gilot J, Seifert H, Mueller T, Furlan A, Wienk MM, Wynands D, Hohl-Ebinger J, Warta W, Janssen RAJ, Riede M, Leo K (2015) Characterization of tandem organic solar cells. Nat Photonics 9(8):478–479. doi:10.1038/nphoton.2015.124 http://www.nature.com/nphoton/journal/v9/n8/abs/nphoton.2015.124.html#supplementary-information

  51. Bahro D, Koppitz M, Colsmann A (2016) Tandem organic solar cells revisited. Nat Photonics 10(6):354–355. doi:10.1038/nphoton.2016.96

    Article  Google Scholar 

  52. Timmreck R, Meyer T, Gilot J, Seifert H, Mueller T, Furlan A, Wienk MM, Wynands D, Hohl-Ebinger J, Warta W, Janssen RAJ, Riede M, Leo K (2016) Reply to ‘Tandem organic solar cells revisited’. Nat Photon 10(6):355–355. doi:10.1038/nphoton.2016.99

  53. Roesch R, Faber T, von Hauff E, Brown TM, Lira-Cantu M, Hoppe H (2015) Procedures and practices for evaluating thin-film solar cell stability. Adv Energy Mater 5(20):n/a–n/a. doi:10.1002/aenm.201501407

  54. von Hauff E, Lira-Cantu M, Brown TM, Hoppe H (2015) Emerging thin-film photovoltaics: stabilize or perish. Adv Energy Mater 5(20):n/a–n/a. doi:10.1002/aenm.201501924

  55. Christians JA, Manser JS, Kamat PV (2015) Best practices in perovskite solar cell efficiency measurements. Avoiding the error of making bad cells look good. J Phys Chem Lett 6(5):852–857. doi:10.1021/acs.jpclett.5b00289

    Article  Google Scholar 

  56. Zimmermann E, Wong KK, Müller M, Hu H, Ehrenreich P, Kohlstädt M, Würfel U, Mastroianni S, Mathiazhagan G, Hinsch A, Gujar TP, Thelakkat M, Pfadler T, Schmidt-Mende L (2016) Characterization of perovskite solar cells: towards a reliable measurement protocol. APL Mater 4(9):091901. doi:10.1063/1.4960759

    Article  Google Scholar 

  57. Smestad GP, Krebs FC, Lampert CM, Granqvist CG, Chopra KL, Mathew X, Takakura H (2008) Reporting solar cell efficiencies in solar energy materials and solar cells. Sol Energy Mater Sol Cells 92(4):371–373

    Article  Google Scholar 

  58. Zimmermann E, Ehrenreich P, Pfadler T, Dorman JA, Weickert J, Schmidt-Mende L (2014) Erroneous efficiency reports harm organic solar cell research. Nat Photonics 8(9):669–672. doi:10.1038/nphoton.2014.210

    Article  Google Scholar 

  59. Yang X, Yanagida M, Han L (2013) Reliable evaluation of dye-sensitized solar cells. Energy Environ Sci 6(1):54–66. doi:10.1039/C2EE22998F

    Article  Google Scholar 

  60. Beard MC, Luther JM, Nozik AJ (2014) The promise and challenge of nanostructured solar cells. Nat Nano 9(12):951–954. doi:10.1038/nnano.2014.292

    Article  Google Scholar 

  61. Gratzel M (2014) The light and shade of perovskite solar cells. Nat Mater 13(9):838–842. doi:10.1038/nmat4065

    Article  Google Scholar 

  62. Perovskite fever (2014) Nat Mater 13(9):837–837. doi:10.1038/nmat4079

  63. Solar cell woes (2014) Nat Photonics 8(9):665–665. doi:10.1038/nphoton.2014.212

  64. Hishikawa Y, Shimura H, Ueda T, Sasaki A, Ishii Y (2016) Precise performance characterization of perovskite solar cells. Curr Appl Phys 16(8):898–904. doi:10.1016/j.cap.2016.05.002

    Article  Google Scholar 

  65. Krebs FC, Gevorgyan SA, Gholamkhass B, Holdcroft S, Schlenker C, Thompson ME, Thompson BC, Olson D, Ginley DS, Shaheen SE, Alshareef HN, Murphy JW, Youngblood WJ, Heston NC, Reynolds JR, Jia S, Laird D, Tuladhar SM, Dane JGA, Atienzar P, Nelson J, Kroon JM, Wienk MM, Janssen RAJ, Tvingstedt K, Zhang F, Andersson M, Inganäs O, Lira-Cantu M, de Bettignies R, Guillerez S, Aernouts T, Cheyns D, Lutsen L, Zimmermann B, Würfel U, Niggemann M, Schleiermacher HF, Liska P, Grätzel M, Lianos P, Katz EA, Lohwasser W, Jannon B (2009) A round robin study of flexible large-area roll-to-roll processed polymer solar cell modules. Sol Energy Mater Sol Cells 93(11):1968–1977. doi:10.1016/j.solmat.2009.07.015

    Article  Google Scholar 

  66. Madsen MV, Gevorgyan SA, Pacios R, Ajuria J, Etxebarria I, Kettle J, Bristow ND, Neophytou M, Choulis SA, Stolz Roman L, Yohannes T, Cester A, Cheng P, Zhan X, Wu J, Xie Z, Tu WC, He JH, Fell CJ, Anderson K, Hermenau M, Bartesaghi D, Jan Anton Koster L, Machui F, González-Valls I, Lira-Cantu M, Khlyabich PP, Thompson BC, Gupta R, Shanmugam K, Kulkarni GU, Galagan Y, Urbina A, Abad J, Roesch R, Hoppe H, Morvillo P, Bobeico E, Panaitescu E, Menon L, Luo Q, Wu Z, Ma C, Hambarian A, Melikyan V, Hambsch M, Burn PL, Meredith P, Rath T, Dunst S, Trimmel G, Bardizza G, Müllejans H, Goryachev AE, Misra RK, Katz EA, Takagi K, Magaino S, Saito H, Aoki D, Sommeling PM, Kroon JM, Vangerven T, Manca J, Kesters J, Maes W, Bobkova OD, Trukhanov VA, Paraschuk DY, Castro FA, Blakesley J, Tuladhar SM, Alexander Röhr J, Nelson J, Xia J, Parlak EA, Tumay TA, Egelhaaf HJ, Tanenbaum DM, Mae Ferguson G, Carpenter R, Chen H, Zimmermann B, Hirsch L, Wantz G, Sun Z, Singh P, Bapat C, Offermans T, Krebs FC (2014) Worldwide outdoor round robin study of organic photovoltaic devices and modules. Sol Energy Mater Sol Cells 130:281–290. doi:10.1016/j.solmat.2014.07.021

    Article  Google Scholar 

  67. Rösch R, Tanenbaum DM, Jørgensen M, Seeland M, Bärenklau M, Hermenau M, Voroshazi E, Lloyd MT, Galagan Y, Zimmermann B, Würfel U, Hösel M, Dam HF, Gevorgyan SA, Kudret S, Maes W, Lutsen L, Vanderzande D, Andriessen R, Teran-Escobar G, Lira-Cantu M, Rivaton A, Uzunoǧlu GY, Germack D, Andreasen B, Madsen MV, Norrman K, Hoppe H, Krebs FC (2012) Investigation of the degradation mechanisms of a variety of organic photovoltaic devices by combination of imaging techniques—the ISOS-3 inter-laboratory collaboration. Energy Environ Sci 5(4):6521–6540. doi:10.1039/c2ee03508a

    Article  Google Scholar 

  68. Tanenbaum DM, Hermenau M, Voroshazi E, Lloyd MT, Galagan Y, Zimmermann B, Hösel M, Dam HF, Jørgensen M, Gevorgyan SA, Kudret S, Maes W, Lutsen L, Vanderzande D, Würfel U, Andriessen R, Rösch R, Hoppe H, Teran-Escobar G, Lira-Cantu M, Rivaton A, Uzunolu GY, Germack D, Andreasen B, Madsen MV, Norrman K, Krebs FC (2012) The ISOS-3 inter-laboratory collaboration focused on the stability of a variety of organic photovoltaic devices. RSC Adv 2(3):882–893. doi:10.1039/c1ra00686j

    Article  Google Scholar 

  69. Teran-Escobar G, Tanenbaum DM, Voroshazi E, Hermenau M, Norrman K, Lloyd MT, Galagan Y, Zimmermann B, Hösel M, Dam HF, Jorgensen M, Gevorgyan S, Kudret S, Maes W, Lutsen L, Vanderzande D, Würfel U, Andriessen R, Rösch R, Hoppe H, Rivaton A, Uzunoglu GY, Germack D, Andreasen B, Madsen MV, Bundgaard E, Krebs FC, Lira-Cantu M (2012) On the stability of a variety of organic photovoltaic devices by IPCE and in situ IPCE analyses—the ISOS-3 inter-laboratory collaboration. Phys Chem Chem Phys 14(33):11824–11845. doi:10.1039/c2cp40821j

    Article  Google Scholar 

  70. Andreasen B, Tanenbaum DM, Hermenau M, Voroshazi E, Lloyd MT, Galagan Y, Zimmernann B, Kudret S, Maes W, Lutsen L, Vanderzande D, Würfel U, Andriessen R, Rösch R, Hoppe H, Teran-Escobar G, Lira-Cantu M, Rivaton A, Uzunoglu GY, Germack DS, Hösel M, Dam HF, Jorgensen M, Gevorgyan SA, Madsen MV, Bundgaard E, Krebs FC, Norrman K (2012) TOF-SIMS investigation of degradation pathways occurring in a variety of organic photovoltaic devices—the ISOS-3 inter-laboratory collaboration. Phys Chem Chem Phys 14(33):11780–11799. doi:10.1039/c2cp41787a

    Article  Google Scholar 

  71. Unger EL, Hoke ET, Bailie CD, Nguyen WH, Bowring AR, Heumuller T, Christoforo MG, McGehee MD (2014) Hysteresis and transient behavior in current-voltage measurements of hybrid-perovskite absorber solar cells. Energy Environ Sci 7(11):3690–3698. doi:10.1039/C4EE02465F

    Article  Google Scholar 

  72. Tress W, Marinova N, Moehl T, Zakeeruddin SM, Nazeeruddin MK, Gratzel M (2015) Understanding the rate-dependent J-V hysteresis, slow time component, and aging in CH3NH3PbI3 perovskite solar cells: the role of a compensated electric field. Energy Environ Sci 8(3):995–1004. doi:10.1039/C4EE03664F

    Article  Google Scholar 

  73. Jeon NJ, Noh JH, Kim YC, Yang WS, Ryu S, Seok SI (2014) Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nat Mater 13(9):897–903. doi:10.1038/nmat4014. http://www.nature.com/nmat/journal/v13/n9/abs/nmat4014.html#supplementary-information

  74. Heo JH, Han HJ, Kim D, Ahn TK, Im SH (2015) Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency. Energy Environ Sci 8(5):1602–1608. doi:10.1039/C5EE00120J

    Article  Google Scholar 

  75. Yin X, Que M, Xing Y, Que W (2015) High efficiency hysteresis-less inverted planar heterojunction perovskite solar cells with a solution-derived NiOx hole contact layer. J Mater Chem A 3(48):24495–24503. doi:10.1039/c5ta08193a

    Article  Google Scholar 

  76. Wang H, Zeng X, Zhang W, Chen W (2014) The roles of different NiO compact blocking layers in P-type sensitized solar cells. In: Progress in electromagnetics research symposium, 2014, pp 1178–1181

    Google Scholar 

  77. Wang H, Zeng X, Huang Z, Zhang W, Qiao X, Hu B, Zou X, Wang M, Cheng YB, Chen W (2014) Boosting the photocurrent density of p-type solar cells based on organometal halide perovskite-sensitized mesoporous NiO photocathodes. ACS Appl Mater Interfaces 6(15):12609–12617. doi:10.1021/am5025963

    Article  Google Scholar 

  78. Trifiletti V, Roiati V, Colella S, Giannuzzi R, De Marco L, Rizzo A, Manca M, Listorti A, Gigli G (2015) NiO/MAPbI3-xClx/PCBM: a model case for an improved understanding of inverted mesoscopic solar cells. ACS Appl Mater Interfaces 7(7):4283–4289. doi:10.1021/am508678p

    Article  Google Scholar 

  79. Liu Z, Zhang M, Xu X, Bu L, Zhang W, Li W, Zhao Z, Wang M, Cheng YB, He H (2015) P-Type mesoscopic NiO as an active interfacial layer for carbon counter electrode based perovskite solar cells. Dalton Trans 44(9):3967–3973. doi:10.1039/c4dt02904f

    Article  Google Scholar 

  80. Xu X, Liu Z, Zuo Z, Zhang M, Zhao Z, Shen Y, Zhou H, Chen Q, Yang Y, Wang M (2015) Hole selective NiO contact for efficient perovskite solar cells with carbon electrode. Nano Lett 15(4):2402–2408. doi:10.1021/nl504701y

    Article  Google Scholar 

  81. Bai Y, Chen H, Xiao S, Xue Q, Zhang T, Zhu Z, Li Q, Hu C, Yang Y, Hu Z, Huang F, Wong KS, Yip HL, Yang S (2016) Effects of a molecular monolayer modification of NiO nanocrystal layer surfaces on perovskite crystallization and interface contact toward faster hole extraction and higher photovoltaic performance. Adv Func Mater 26(17):2950–2958. doi:10.1002/adfm.201505215

    Article  Google Scholar 

  82. Park JH, Seo J, Park S, Shin SS, Kim YC, Jeon NJ, Shin H-W, Ahn TK, Noh JH, Yoon SC, Hwang CS, Seok SI (2015) Efficient CH3NH3PbI3 perovskite solar cells employing nanostructured p-Type NiO electrode formed by a pulsed laser deposition. Adv Mater 27(27):4013–4019. doi:10.1002/adma.201500523

    Article  Google Scholar 

  83. Zhu Z, Bai Y, Zhang T, Liu Z, Long X, Wei Z, Wang Z, Zhang L, Wang J, Yan F, Yang S (2014) High-performance hole-extraction layer of sol–gel-processed NiO nanocrystals for inverted planar perovskite solar cells. Angew Chem Int Ed 53(46):12571–12575. doi:10.1002/anie.201405176

    Google Scholar 

  84. Rao H, Ye S, Sun W, Yan W, Li Y, Peng H, Liu Z, Bian Z, Li Y, Huang C (2016) A 19.0% efficiency achieved in CuOx-based inverted CH3NH3PbI3-xClx solar cells by an effective Cl doping method. Nano Energy 27:51–59. doi:10.1016/j.nanoen.2016.06.044

    Article  Google Scholar 

  85. Sun W, Li Y, Ye S, Rao H, Yan W, Peng H, Liu Z, Wang S, Chen Z, Xiao L, Bian Z, Huang C (2016) High-performance inverted planar heterojunction perovskite solar cells based on a solution-processed CuOx hole transport layer. Nanoscale 8(20):10806–10813. doi:10.1039/c6nr01927g

    Article  Google Scholar 

  86. Zuo C, Ding L (2015) Solution-processed Cu2O and CuO as hole transport materials for efficient perovskite solar cells. Small 11(41):5528–5532. doi:10.1002/smll.201501330

    Article  Google Scholar 

  87. Zhao Y, Nardes AM, Zhu K (2014) Effective hole extraction using MoOx-Al contact in perovskite CH3NH3PbI3 solar cells. Appl Phys Lett 104(21):213906. doi:10.1063/1.4880899

  88. Hou F, Su Z, Jin F, Yan X, Wang L, Zhao H, Zhu J, Chu B, Li W (2015) Efficient and stable planar heterojunction perovskite solar cells with an MoO3/PEDOT:PSS hole transporting layer. Nanoscale 7(21):9427–9432. doi:10.1039/c5nr01864a

    Article  Google Scholar 

  89. Kim B-S, Kim T-M, Choi M-S, Shim H-S, Kim J-J (2015) Fully vacuum-processed perovskite solar cells with high open circuit voltage using MoO3/NPB as hole extraction layers. Org Electron 17:102–106. doi:10.1016/j.orgel.2014.12.002

    Article  Google Scholar 

  90. Liu P, Liu X, Lyu L, Xie H, Zhang H, Niu D, Huang H, Bi C, Xiao Z, Huang J, Gao Y (2015) Interfacial electronic structure at the CH3NH3PbI3/MoOx interface. Appl Phys Lett 106(19)193903. doi:10.1063/1.4921339

  91. Sanehira EM, Villers BJTd, Schulz P, Reese MO, Ferrere S, Zhu K, Lin LY, Berry JJ, Luther JM (2016) Influence of electrode interfaces on the stability of perovskite solar cells: reduced degradation using MoOx/Al for hole collection. ACS Energy Lett 1:38–45

    Article  Google Scholar 

  92. Logan S, Donaghey JE, Zhang W, McCulloch I, Campbell AJ (2015) Compatibility of amorphous triarylamine copolymers with solution-processed hole injecting metal oxide bottom contacts. J Mater Chem C 3(17):4530–4536. doi:10.1039/c4tc02593h

    Article  Google Scholar 

  93. Xiao M, Gao M, Huang F, Pascoe AR, Qin T, Cheng Y-B, Bach U, Spiccia L (2016) Efficient perovskite solar cells employing inorganic interlayers. ChemNanoMat 2(3):182–188. doi:10.1002/cnma.201500223

    Article  Google Scholar 

  94. Guo CX, Sun K, Ouyang J, Lu X (2015) Layered V2O5/PEDOT nanowires and ultrathin nanobelts fabricated with a silk reelinglike process. Chem Mater 27(16):5813–5819. doi:10.1021/acs.chemmater.5b02512

    Article  Google Scholar 

  95. Sun H, Hou X, Wei Q, Liu H, Yang K, Wang W, An Q, Rong Y (2016) Low-temperature solution-processed p-type vanadium oxide for perovskite solar cells. Chem Commun (Cambridge, England) 52(52):8099–8102. doi:10.1039/c6cc03740b

  96. Lou Y-H, Li M, Wang Z-K (2016) Seed-mediated superior organometal halide films by GeO2 nano-particles for high performance perovskite solar cells. Appl Phys Lett 108(5):053301. doi:10.1063/1.4941416

    Article  Google Scholar 

  97. Hossain MI, Alharbi FH, Tabet N (2015) Copper oxide as inorganic hole transport material for lead halide perovskite based solar cells. Sol Energy 120:370–380. doi:10.1016/j.solener.2015.07.040

    Article  Google Scholar 

  98. Kim JH, Liang P-W, Williams ST, Cho N, Chueh C-C, Glaz MS, Ginger DS, Jen AKY (2015) High-performance and environmentally stable planar heterojunction perovskite solar cells based on a solution-processed copper-doped nickel oxide hole-transporting layer. Adv Mater 27(4):695–701. doi:10.1002/adma.201404189

    Article  Google Scholar 

  99. Kim J, Lee HR, Kim HP, Lin T, Kanwat A, Yusoff ARb Mohd, Jang J (2016) Effects of UV-ozone irradiation on copper doped nickel acetate and its applicability to perovskite solar cells. Nanoscale 8(17):9284–9292. doi:10.1039/c6nr01308b

    Article  Google Scholar 

  100. Qin P-L, Lei H-W, Zheng X-L, Liu Q, Tao H, Yang G, Ke W-J, Xiong L-B, Qin M-C, Zhao X-Z, Fang G-J (2016) Copper-doped chromium oxide hole-transporting layer for perovskite solar cells: interface engineering and performance improvement. Adv Mater Interfaces n/a–n/a. doi:10.1002/admi.201500799

  101. Burschka J, Pellet N, Moon SJ, Humphry-Baker R, Gao P, Nazeeruddin MK, Grätzel M (2013) Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499(7458):316–319. doi:10.1038/nature12340

    Article  Google Scholar 

  102. Shao S, Abdu-Aguye M, Qiu L, Lai L-H, Liu J, Adjokatse S, Jahani F, Kamminga ME, ten Brink GH, Palstra TTM, Kooi BJ, Hummelen JC, Antonietta Loi M (2016) Elimination of the light soaking effect and performance enhancement in perovskite solar cells using a fullerene derivative. Energy Environ Sci 9(7):2444–2452. doi:10.1039/C6EE01337F

    Article  Google Scholar 

  103. Nie W, Blancon J-C, Neukirch AJ, Appavoo K, Tsai H, Chhowalla M, Alam MA, Sfeir MY, Katan C, Even J, Tretiak S, Crochet JJ, Gupta G, Mohite AD (2016) Light-activated photocurrent degradation and self-healing in perovskite solar cells. Nat Commun 7. doi:10.1038/ncomms11574

  104. Ripolles TS, Baranwal AK, Nishinaka K, Ogomi Y, Garcia-Belmonte G, Hayase S (2016) Mechanisms of charge accumulation in the dark operation of perovskite solar cells. Phys Chem Chem Phys 18(22):14970–14975. doi:10.1039/c6cp01427e

    Article  Google Scholar 

  105. Zarazua I, Bisquert J, Garcia-Belmonte G (2016) Light-induced space-charge accumulation zone as photovoltaic mechanism in perovskite solar cells. J Phys Chem Lett 7(3):525–528. doi:10.1021/acs.jpclett.5b02810

    Article  Google Scholar 

  106. Almora O, Zarazua I, Mas-Marza E, Mora-Sero I, Bisquert J, Garcia-Belmonte G (2015) Capacitive dark currents, hysteresis, and electrode polarization in lead halide perovskite solar cells. J Phys Chem Lett 6(9):1645–1652. doi:10.1021/acs.jpclett.5b00480

    Article  Google Scholar 

  107. Kim H-S, Mora-Sero I, Gonzalez-Pedro V, Fabregat-Santiago F, Juarez-Perez EJ, Park N-G, Bisquert J (2013) Mechanism of carrier accumulation in perovskite thin-absorber solar cells. Nat Commun 4. doi:10.1038/ncomms3242

  108. Reese MO, Gevorgyan SA, Jørgensen M, Bundgaard E, Kurtz SR, Ginley DS, Olson DC, Lloyd MT, Morvillo P, Katz EA, Elschner A, Haillant O, Currier TR, Shrotriya V, Hermenau M, Riede M, Kirov KR, Trimmel G, Rath T, Inganäs O, Zhang F, Andersson M, Tvingstedt K, Lira-Cantu M, Laird D, McGuiness C, Gowrisanker S, Pannone M, Xiao M, Hauch J, Steim R, Delongchamp DM, Rösch R, Hoppe H, Espinosa N, Urbina A, Yaman-Uzunoglu G, Bonekamp JB, Van Breemen AJJM, Girotto C, Voroshazi E, Krebs FC (2011) Consensus stability testing protocols for organic photovoltaic materials and devices. Sol Energy Mater Sol Cells 95(5):1253–1267. doi:10.1016/j.solmat.2011.01.036

    Article  Google Scholar 

  109. Matteocci F, Cinà L, Lamanna E, Cacovich S, Divitini G, Midgley PA, Ducati C, Di Carlo A (2016) Encapsulation for long-term stability enhancement of perovskite solar cells. Nano Energy 30:162–172. doi:10.1016/j.nanoen.2016.09.041

    Article  Google Scholar 

  110. Bi D, Boschloo G, Schwarzmuller S, Yang L, Johansson EMJ, Hagfeldt A (2013) Efficient and stable CH3NH3PbI3-sensitized ZnO nanorod array solid-state solar cells. Nanoscale 5(23):11686–11691. doi:10.1039/c3nr01542d

    Article  Google Scholar 

  111. Fakharuddin A, Di Giacomo F, Palma AL, Matteocci F, Ahmed I, Razza S, D’Epifanio A, Licoccia S, Ismail J, Di Carlo A, Brown TM, Jose R (2015) Vertical TiO2 nanorods as a medium for stable and high-efficiency perovskite solar modules. ACS Nano 9(8):8420–8429. doi:10.1021/acsnano.5b03265

    Article  Google Scholar 

  112. Mahmood K, Swain BS, Kirmani AR, Amassian A (2015) Highly efficient perovskite solar cells based on a nanostructured WO3-TiO2 core-shell electron transporting material. Journal of Materials Chemistry A 3(17):9051–9057. doi:10.1039/c4ta04883k

    Article  Google Scholar 

  113. Huang S, Li Z, Kong L, Zhu N, Shan A, Li L (2016) Enhancing the stability of CH3NH3PbBr3 quantum dots by embedding in silica spheres derived from tetramethyl orthosilicate in “Waterless” toluene. J Am Chem Soc 138(18):5749–5752. doi:10.1021/jacs.5b13101

    Article  Google Scholar 

  114. Cao K, Zuo Z, Cui J, Shen Y, Moehl T, Zakeeruddin SM, Grätzel M, Wang M (2015) Efficient screen printed perovskite solar cells based on mesoscopic TiO2/Al2O3/NiO/carbon architecture. Nano Energy 17:171–179. doi:10.1016/j.nanoen.2015.08.009

    Article  Google Scholar 

  115. Corani A, Li MH, Shen PS, Chen P, Guo TF, El Nahhas A, Zheng K, Yartsev A, Sundström V, Ponseca CS (2016) Ultrafast dynamics of hole injection and recombination in organometal halide perovskite using nickel oxide as p-type contact electrode. J Phys Chem Letters 7(7):1096–1101. doi:10.1021/acs.jpclett.6b00238

    Article  Google Scholar 

  116. Dubey A, Kantack N, Adhikari N, Reza KM, Venkatesan S, Kumar M, Khatiwada D, Darling S, Qiao Q (2016) Room temperature, air crystallized perovskite film for high performance solar cells. J Mater Chem A 4(26):10231–10240. doi:10.1039/C6TA02918C

    Article  Google Scholar 

  117. Li H, Cao K, Cui J, Liu S, Qiao X, Shen Y, Wang M (2016) 14.7% efficient mesoscopic perovskite solar cells using single walled carbon nanotubes/carbon composite counter electrodes. Nanoscale 8(12):6379–6385. doi:10.1039/c5nr07347b

  118. Dong X, Fang X, Lv M, Lin B, Zhang S, Ding J, Yuan N (2015) Improvement of the humidity stability of organic-inorganic perovskite solar cells using ultrathin Al2O3 layers prepared by atomic layer deposition. J Mater Chem A 3(10):5360–5367. doi:10.1039/c4ta06128d

    Article  Google Scholar 

  119. Mei A, Li X, Liu L, Ku Z, Liu T, Rong Y, Xu M, Hu M, Chen J, Yang Y, Grätzel M, Han H (2014) A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability. Science 345(6194):295–298. doi:10.1126/science.1254763

    Article  Google Scholar 

  120. Cheng N, Liu P, Bai S, Yu Z, Liu W, Guo SS, Zhao XZ (2016) Application of mesoporous SiO2 layer as an insulating layer in high performance hole transport material free CH3NH3PbI3 perovskite solar cells. J Power Sources 321:71–75. doi:10.1016/j.jpowsour.2016.04.124

    Article  Google Scholar 

  121. Liu T, Hu Q, Wu J, Chen K, Zhao L, Liu F, Wang C, Lu H, Jia S, Russell T, Zhu R, Gong Q (2016) Mesoporous PbI2 scaffold for high-performance planar heterojunction perovskite solar cells. Adv Energy Mater 6(3):n/a–n/a. doi:10.1002/aenm.201501890

  122. Li X, Tschumi M, Han H, Babkair SS, Alzubaydi RA, Ansari AA, Habib SS, Nazeeruddin MK, Zakeeruddin SM, Grätzel M (2015) Outdoor performance and stability under elevated temperatures and long-term light soaking of triple-layer mesoporous perovskite photovoltaics. Energy Technol 3(6):551–555. doi:10.1002/ente.201500045

    Article  Google Scholar 

  123. Chen J, Rong Y, Mei A, Xiong Y, Liu T, Sheng Y, Jiang P, Hong L, Guan Y, Zhu X, Hou X, Duan M, Zhao J, Li X, Han H (2016) Hole-conductor-free fully printable mesoscopic solar cell with mixed-anion perovskite CH3NH3PbI(3−x)(BF4)x. Adv Energy Mater 6(5):n/a–n/a. doi:10.1002/aenm.201502009

  124. Liu T, Liu L, Hu M, Yang Y, Zhang L, Mei A, Han H (2015) Critical parameters in TiO2/ZrO2/Carbon-based mesoscopic perovskite solar cell. J Power Sources 293:533–538. doi:10.1016/j.jpowsour.2015.05.106

    Article  Google Scholar 

  125. Huang L, Xu J, Sun X, Du Y, Cai H, Ni J, Li J, Hu Z, Zhang J (2016) Toward revealing the critical role of perovskite coverage in highly efficient electron-transport layer-free perovskite solar cells: an energy band and equivalent circuit model perspective. ACS Appl Mater Interfaces 8(15):9811–9820. doi:10.1021/acsami.6b00544

    Article  Google Scholar 

  126. Li M-H, Yum J-H, Moon S-J, Chen P (2016) Inorganic p-type semiconductors: their applications and progress in dye-sensitized solar cells and perovskite solar cells. Energies 9(5):331

    Article  Google Scholar 

  127. Kim H, Lim KG, Lee TW (2016) Planar heterojunction organometal halide perovskite solar cells: roles of interfacial layers. Energy Environ Sci 9(1):12–30. doi:10.1039/c5ee02194d

    Article  Google Scholar 

  128. Tiep NH, Ku Z, Fan HJ (2016) Recent advances in improving the stability of perovskite solar cells. Adv Energy Mater 6(3):n/a–n/a. doi:10.1002/aenm.201501420

  129. Lira-Cantu M, Krebs FC (2006) Hybrid solar cells based on MEH-PPV and thin film semiconductor oxides (TiO2, Nb2O5, ZnO, CeO2 and CeO2–TiO2): performance improvement during long-time irradiation. Sol Energy Mater Sol Cells 90(14):2076–2086. doi:10.1016/j.solmat.2006.02.007

    Article  Google Scholar 

  130. Lira-Cantu M, Norrman K, Andreasen JW, Krebs FC (2006) Oxygen release and exchange in niobium oxide MEHPPV hybrid solar cells. Chem Mater 18(24):5684–5690. doi:10.1021/cm061429d

    Article  Google Scholar 

  131. Norrman K, Alstrup J, Jørgensen M, Lira-Cantu M, Larsen NB, Krebs FC (2006) Three-dimensional chemical and physical analysis of the degradation mechanisms in organic photovoltaics. In: Proceedings of SPIE—the international society for optical engineering, 2006. doi:10.1117/12.680403

  132. Etgar L, Gao P, Xue Z, Peng Q, Chandiran AK, Liu B, Nazeeruddin MK, Grätzel M (2012) Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. J Am Chem Soc 134(42):17396–17399. doi:10.1021/ja307789s

    Article  Google Scholar 

  133. Reyna Y, Salado M, Kazim S, Pérez-Tomas A, Ahmad S, Lira-Cantu M (2016) Performance and stability of mixed FAPbI3(0.85)MAPbBr3(0.15) halide perovskite solar cells under outdoor conditions and the effect of low light irradiation. Nano Energy 30:570–579. doi:10.1016/j.nanoen.2016.10.053

    Article  Google Scholar 

  134. Raifuku I, Ishikawa Y, Ito S, Uraoka Y (2016) Characteristics of perovskite solar cells under low-illuminance conditions. J Phys Chem C 120(34):18986–18990. doi:10.1021/acs.jpcc.6b05298

    Article  Google Scholar 

  135. Bryant D, Aristidou N, Pont S, Sanchez-Molina I, Chotchunangatchaval T, Wheeler S, Durrant JR, Haque SA (2016) Light and oxygen induced degradation limits the operational stability of methylammonium lead triiodide perovskite solar cells. Energy Environ Sci 9(5):1655–1660. doi:10.1039/c6ee00409a

    Article  Google Scholar 

  136. Palazon F, Akkerman QA, Prato M, Manna L (2016) X-ray lithography on perovskite nanocrystals films: from patterning with anion-exchange reactions to enhanced stability in air and water. ACS Nano 10(1):1224–1230. doi:10.1021/acsnano.5b06536

    Article  Google Scholar 

  137. Koocher NZ, Saldana-Greco D, Wang F, Liu S, Rappe AM (2015) Polarization dependence of water adsorption to CH3NH3PbI3(001) surfaces. J Phys Chem Lett 6(21):4371–4378. doi:10.1021/acs.jpclett.5b01797

    Article  Google Scholar 

  138. Liu G, Wong WSY, Nasiri N, Tricoli A (2016) Ultraporous superhydrophobic gas-permeable nano-layers by scalable solvent-free one-step self-assembly. Nanoscale 8(11):6085–6093. doi:10.1039/C5NR09000H

    Article  Google Scholar 

  139. Chen H, Hou Y, Halbig CE, Chen S, Zhang H, Li N, Guo F, Tang X, Gasparini N, Levchuk I, Kahmann S, Ramirez Quiroz CO, Osvet A, Eigler S, Brabec CJ (2016) Extending the environmental lifetime of unpackaged perovskite solar cells through interfacial design. J Mater Chem A. doi:10.1039/C6TA03755K

    Google Scholar 

  140. Leijtens T, Giovenzana T, Habisreutinger SN, Tinkham JS, Noel NK, Kamino BA, Sadoughi G, Sellinger A, Snaith HJ (2016) Hydrophobic organic hole transporters for improved moisture resistance in metal halide perovskite solar cells. ACS Appl Mater Interfaces 8(9):5981–5989. doi:10.1021/acsami.5b10093

    Article  Google Scholar 

  141. Adhikari N, Dubey A, Gaml EA, Vaagensmith B, Reza KM, Mabrouk SAA, Gu S, Zai J, Qian X, Qiao Q (2016) Crystallization of a perovskite film for higher performance solar cells by controlling water concentration in methyl ammonium iodide precursor solution. Nanoscale 8(5):2693–2703. doi:10.1039/C5NR06687E

    Article  Google Scholar 

  142. Zhou W, Zhao Y, Shi C, Huang H, Wei J, Fu R, Liu K, Yu D, Zhao Q (2016) Reversible healing effect of water molecules on fully crystallized metal-halide perovskite film. J Phys Chem C 120(9):4759–4765. doi:10.1021/acs.jpcc.5b11465

    Article  Google Scholar 

  143. Eperon GE, Habisreutinger SN, Leijtens T, Bruijnaers BJ, van Franeker JJ, deQuilettes DW, Pathak S, Sutton RJ, Grancini G, Ginger DS, Janssen RAJ, Petrozza A, Snaith HJ (2015) The importance of moisture in hybrid lead halide perovskite thin film fabrication. ACS Nano 9(9):9380–9393. doi:10.1021/acsnano.5b03626

    Article  Google Scholar 

  144. You J, Yang Y, Hong Z, Song T-B, Meng L, Liu Y, Jiang C, Zhou H, Chang W-H, Li G, Yang Y (2014) Moisture assisted perovskite film growth for high performance solar cells. Appl Phys Lett 105(18):183902. doi:10.1063/1.4901510

    Article  Google Scholar 

  145. Philippe B, Park B-W, Lindblad R, Oscarsson J, Ahmadi S, Johansson EMJ, Rensmo H (2015) Chemical and electronic structure characterization of lead halide perovskites and stability behavior under different exposures—a photoelectron spectroscopy investigation. Chem Mater 27(5):1720–1731. doi:10.1021/acs.chemmater.5b00348

    Article  Google Scholar 

  146. Lee J-W, Kim D-H, Kim H-S, Seo S-W, Cho SM, Park N-G (2015) Formamidinium and cesium hybridization for photo- and moisture-stable perovskite solar cell. Adv Energy Mater 5(20):n/a–n/a. doi:10.1002/aenm.201501310

  147. Kulbak M, Cahen D, Hodes G (2015) How important is the organic part of lead halide perovskite photovoltaic cells? Efficient CsPbBr3 cells. J Phys Chem Lett 6(13):2452–2456. doi:10.1021/acs.jpclett.5b00968

    Article  Google Scholar 

  148. Yang J, Siempelkamp BD, Mosconi E, De Angelis F, Kelly TL (2015) Origin of the thermal instability in CH3NH3PbI3 thin films deposited on ZnO. Chem Mater 27(12):4229–4236. doi:10.1021/acs.chemmater.5b01598

    Article  Google Scholar 

  149. Dualeh A, Gao P, Seok SI, Nazeeruddin MK, Grätzel M (2014) Thermal behavior of methylammonium lead-trihalide perovskite photovoltaic light harvesters. Chem Mater 26(21):6160–6164. doi:10.1021/cm502468k

    Article  Google Scholar 

  150. Borchert J, Boht H, Franzel W, Csuk R, Scheer R, Pistor P (2015) Structural investigation of co-evaporated methyl ammonium lead halide perovskite films during growth and thermal decomposition using different PbX2 (X = I, Cl) precursors. J Mater Chem A 3(39):19842–19849. doi:10.1039/C5TA04944J

    Article  Google Scholar 

  151. Ito S, Tanaka S, Manabe K, Nishino H (2014) Effects of surface blocking layer of Sb2S3 on nanocrystalline TiO2 for CH3NH3PbI3 perovskite solar cells. J Phys Chem C 118(30):16995–17000. doi:10.1021/jp500449z

    Article  Google Scholar 

  152. Zhao X, Shen H, Zhang Y, Li X, Zhao X, Tai M, Li J, Li J, Lin H (2016) Aluminum-doped zinc oxide as highly stable electron collection layer for perovskite solar cells. ACS Appl Mater Interfaces 8(12):7826–7833. doi:10.1021/acsami.6b00520

    Article  Google Scholar 

  153. Back H, Kim J, Kim G, Kyun Kim T, Kang H, Kong J, Ho Lee S, Lee K (2016) Interfacial modification of hole transport layers for efficient large-area perovskite solar cells achieved via blade-coating. Sol Energy Mater Sol Cells 144:309–315. doi:10.1016/j.solmat.2015.09.018

    Article  Google Scholar 

  154. Chang C-Y, Chang Y-C, Huang W-K, Lee K-T, Cho A-C, Hsu C-C (2015) Enhanced performance and stability of semitransparent perovskite solar cells using solution-processed thiol-functionalized cationic surfactant as cathode buffer layer. Chem Mater 27(20):7119–7127. doi:10.1021/acs.chemmater.5b03137

    Article  Google Scholar 

  155. Chang C-Y, Chang Y-C, Huang W-K, Liao W-C, Wang H, Yeh C, Tsai B-C, Huang Y-C, Tsao C-S (2016) Achieving high efficiency and improved stability in large-area ITO-free perovskite solar cells with thiol-functionalized self-assembled monolayers. J Mater Chem A 4(20):7903–7913. doi:10.1039/c6ta02581a

    Article  Google Scholar 

  156. Yao K, Wang X, Y-x Xu, Li F, Zhou L (2016) Multilayered perovskite materials based on polymeric-ammonium cations for stable large-area solar cell. Chem Mater 28(9):3131–3138. doi:10.1021/acs.chemmater.6b00711

    Article  Google Scholar 

  157. Leijtens T, Eperon GE, Pathak S, Abate A, Lee MM, Snaith HJ (2013) Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells. Nat Commun 4:2885. doi:10.1038/ncomms3885

    Article  Google Scholar 

  158. Bi D, Gao P, Scopelliti R, Oveisi E, Luo J, Grätzel M, Hagfeldt A, Nazeeruddin MK (2016) High-performance perovskite solar cells with enhanced environmental stability based on amphiphile-modified CH3NH3PbI3. Adv Mater 28(15):2910–2915. doi:10.1002/adma.201505255

    Article  Google Scholar 

  159. Li X, Ibrahim Dar M, Yi C, Luo J, Tschumi M, Zakeeruddin SM, Nazeeruddin MK, Han H, Grätzel M (2015) Improved performance and stability of perovskite solar cells by crystal crosslinking with alkylphosphonic acid ω-ammonium chlorides. Nat Chem 7(9):703–711. doi:10.1038/nchem.2324

    Article  Google Scholar 

  160. Wang H-H, Chen Q, Zhou H, Song L, Louis ZS, Marco ND, Fang Y, Sun P, Song T-B, Chen H, Yang Y (2015) Improving the TiO2 electron transport layer in perovskite solar cells using acetylacetonate-based additives. J Mater Chem A 3(17):9108–9115. doi:10.1039/C4TA06394E

    Article  Google Scholar 

  161. Luo P, Xia W, Zhou S, Sun L, Cheng J, Xu C, Lu Y (2016) Solvent engineering for ambient-air-processed, phase-stable CsPbI3 in perovskite solar cells. J Phys Chem Lett 3603–3608. doi:10.1021/acs.jpclett.6b01576

  162. Zuo C, Bolink HJ, Han H, Huang J, Cahen D, Ding L (2016) Advances in perovskite solar cells. Adv Sci 3(7):n/a–n/a. doi:10.1002/advs.201500324

  163. Kim BJ, Kim DH, Lee Y-Y, Shin H-W, Han GS, Hong JS, Mahmood K, Ahn TK, Joo Y-C, Hong KS, Park N-G, Lee S, Jung HS (2015) Highly efficient and bending durable perovskite solar cells: toward a wearable power source. Energy Environ Sci 8(3):916–921. doi:10.1039/C4EE02441A

    Article  Google Scholar 

  164. Snaith HJ, Abate A, Ball JM, Eperon GE, Leijtens T, Noel NK, Stranks SD, Wang JT-W, Wojciechowski K, Zhang W (2014) Anomalous hysteresis in perovskite solar cells. J Phys Chem Lett 5(9):1511–1515. doi:10.1021/jz500113x

    Article  Google Scholar 

  165. Noel NK, Abate A, Stranks SD, Parrott ES, Burlakov VM, Goriely A, Snaith HJ (2014) Enhanced photoluminescence and solar cell performance via lewis base passivation of organic-inorganic lead halide perovskites. ACS Nano 8(10):9815–9821. doi:10.1021/nn5036476

    Article  Google Scholar 

  166. Yi C, Luo J, Meloni S, Boziki A, Ashari-Astani N, Gratzel C, Zakeeruddin SM, Rothlisberger U, Gratzel M (2016) Entropic stabilization of mixed A-cation ABX3 metal halide perovskites for high performance perovskite solar cells. Energy Environ Sci 9:656–662

    Article  Google Scholar 

  167. Chen W, Wu Y, Yue Y, Liu J, Zhang W, Yang X, Chen H, Bi E, Ashraful I, Grätzel M, Han L (2015) Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers. Science 350(6263):944–948. doi:10.1126/science.aad1015

    Article  Google Scholar 

  168. Yu X, Marks TJ, Facchetti A (2016) Metal oxides for optoelectronic applications. Nat Mater 15(4):383–396. doi:10.1038/nmat4599

    Article  Google Scholar 

  169. Zhou H, Shi Y, Wang K, Dong Q, Bai X, Xing Y, Du Y, Ma T (2015) Low-temperature processed and carbon-based ZnO/CH3NH3PbI3/C planar heterojunction perovskite solar cells. J Phys Chem C 119(9):4600–4605. doi:10.1021/jp512101d

    Article  Google Scholar 

  170. Xu X, Zhang H, Shi J, Dong J, Luo Y, Li D, Meng Q (2015) Highly efficient planar perovskite solar cells with a TiO2/ZnO electron transport bilayer. J Mater Chem A 3(38):19288–19293. doi:10.1039/C5TA04239A

    Article  Google Scholar 

  171. Shalan AE, Elseman AM, Rasly M, Moharam MM, Lira-Cantu M, Rashad MM (2015) Concordantly fabricated heterojunction ZnO-TiO2 nanocomposite electrodes via a co-precipitation method for efficient stable quasi-solid-state dye-sensitized solar cells. RSC Adv 5(125):103095–103104. doi:10.1039/c5ra21822e

    Article  Google Scholar 

  172. Qiu W, Buffière M, Brammertz G, Paetzold UW, Froyen L, Heremans P, Cheyns D (2015) High efficiency perovskite solar cells using a PCBM/ZnO double electron transport layer and a short air-aging step. Org Electron 26:30–35. doi:10.1016/j.orgel.2015.06.046

    Article  Google Scholar 

  173. Kim J, Kim G, Kim TK, Kwon S, Back H, Lee J, Lee SH, Kang H, Lee K (2014) Efficient planar-heterojunction perovskite solar cells achieved via interfacial modification of a sol-gel ZnO electron collection layer. J Mater Chem A 2(41):17291–17296. doi:10.1039/C4TA03954H

    Article  Google Scholar 

  174. Dong X, Hu H, Lin B, Ding J, Yuan N (2014) The effect of ALD-Zno layers on the formation of CH3NH3PbI3 with different perovskite precursors and sintering temperatures. Chem Commun 50(92):14405–14408. doi:10.1039/C4CC04685D

    Article  Google Scholar 

  175. Kumar MH, Yantara N, Dharani S, Graetzel M, Mhaisalkar S, Boix PP, Mathews N (2013) Flexible, low-temperature, solution processed ZnO-based perovskite solid state solar cells. Chem Commun 49(94):11089–11091. doi:10.1039/C3CC46534A

    Article  Google Scholar 

  176. Li Z (2015) Stable perovskite solar cells based on WO3 nanocrystals as hole transport layer. Chem Lett 44(8):1140–1141. doi:10.1246/cl.150445

    Article  Google Scholar 

  177. Zhang J, Shi C, Chen J, Wang Y, Li M (2016) Preparation of ultra-thin and high-quality WO3 compact layers and comparison of WO3 and TiO2 compact layer thickness in planar perovskite solar cells. J Solid State Chem 238:223–228. doi:10.1016/j.jssc.2016.03.033

    Article  Google Scholar 

  178. Zhang J, Shi C, Chen J, Ying C, Wu N, Wang M (2016) Pyrolysis preparation of WO3 thin films using ammonium metatungstate DMF/water solution for efficient compact layers in planar perovskite solar cells. J Semiconductors 37(3):Unsp 033002. doi:10.1088/1674-4926/37/3/033002

  179. Song J, Zheng E, Bian J, Wang X-F, Tian W, Sanehira Y, Miyasaka T (2015) Low-temperature SnO2-based electron selective contact for efficient and stable perovskite solar cells. J Mater Chem A 3(20):10837–10844. doi:10.1039/c5ta01207d

    Article  Google Scholar 

  180. Sung H, Ahn N, Jang MS, Lee J-K, Yoon H, Park N-G, Choi M (2016) Solar cells: transparent conductive oxide-free graphene-based perovskite solar cells with over 17% efficiency (Adv Energy Mater 3/2016). Adv Energy Mater 6(3):1501873. doi:10.1002/aenm.201670014

  181. Acik M, Darling SB (2016) Graphene in perovskite solar cells: device design, characterization and implementation. J Mater Chem A 4(17):6185–6235. doi:10.1039/c5ta09911k

    Article  Google Scholar 

  182. Wang C, Tang Y, Hu Y, Huang L, Fu J, Jin J, Shi W, Wang L, Yang W (2015) Graphene/SrTiO3 nanocomposites used as an effective electron-transporting layer for high-performance perovskite solar cells. RSC Adv 5(64):52041–52047. doi:10.1039/C5RA09001F

    Article  Google Scholar 

  183. Cao J, Liu Y-M, Jing X, Yin J, Li J, Xu B, Tan Y-Z, Zheng N (2015) Well-defined thiolated nanographene as hole-transporting material for efficient and stable perovskite solar cells. J Am Chem Soc 137(34):10914–10917. doi:10.1021/jacs.5b06493

    Article  Google Scholar 

  184. Wu Z, Bai S, Xiang J, Yuan Z, Yang Y, Cui W, Gao X, Liu Z, Jin Y, Sun B (2014) Efficient planar heterojunction perovskite solar cells employing graphene oxide as hole conductor. Nanoscale 6(18):10505–10510. doi:10.1039/C4NR03181D

    Article  Google Scholar 

  185. Bera A, Wu K, Sheikh A, Alarousu E, Mohammed OF, Wu T (2014) Perovskite oxide SrTiO3 as an efficient electron transporter for hybrid perovskite solar cells. J Phys Chem C 118(49):28494–28501. doi:10.1021/jp509753p

    Article  Google Scholar 

  186. Hu Y, Wang C, Tang Y, Huang L, Fu J, Shi W, Wang L, Yang W (2016) Three-dimensional self-branching anatase TiO2 nanorods with the improved carrier collection for SrTiO3-based perovskite solar cells. J Alloy Compd 679:32–38. doi:10.1016/j.jallcom.2016.04.049

    Article  Google Scholar 

  187. You J, Meng L, Song T-B, Guo T-F, Yang Y, Chang W-H, Hong Z, Chen H, Zhou H, Chen Q, Liu Y, De Marco N (2016) Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. Nat Nano 11(1):75–81. doi:10.1038/nnano.2015.230. http://www.nature.com/nnano/journal/v11/n1/abs/nnano.2015.230.html#supplementary-information

  188. Jung JW, Chueh C-C, Jen AKY (2015) A low-temperature, solution-processable, Cu-doped nickel oxide hole-transporting layer via the combustion method for high-performance thin-film perovskite solar cells. Adv Mater 27(47):7874–7880. doi:10.1002/adma.201503298

    Article  Google Scholar 

  189. Zhao Y, Zhu K (2016) Organic-inorganic hybrid lead halide perovskites for optoelectronic and electronic applications. Chem Soc Rev 45(3):655–689. doi:10.1039/c4cs00458b

    Article  Google Scholar 

  190. Wang W, Yuan J, Shi G, Zhu X, Shi S, Liu Z, Han L, Wang H-Q, Ma W (2015) Inverted planar heterojunction perovskite solar cells employing polymer as the electron conductor. ACS Appl Mater Interfaces 7(7):3994–3999. doi:10.1021/am506785k

    Article  Google Scholar 

  191. Abdollahi Nejand B, Ahmadi V, Shahverdi HR (2015) New physical deposition approach for low cost inorganic hole transport layer in normal architecture of durable perovskite solar cells. ACS Appl Mater Interfaces 7(39):21807–21818. doi:10.1021/acsami.5b05477

    Article  Google Scholar 

  192. Liu C, Wang K, Du P, Meng T, Yu X, Cheng SZD, Gong X (2015) High performance planar heterojunction perovskite solar cells with fullerene derivatives as the electron transport layer. ACS Appl Mater Interfaces 7(2):1153–1159. doi:10.1021/am506869k

    Article  Google Scholar 

  193. You J, Hong Z, Yang Y, Chen Q, Cai M, Song T-B, Chen C-C, Lu S, Liu Y, Zhou H, Yang Y (2014) Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility. ACS Nano 8(2):1674–1680. doi:10.1021/nn406020d

    Article  Google Scholar 

  194. Yu Z, Chen B, Liu P, Wang C, Bu C, Cheng N, Bai S, Yan Y, Zhao X (2016) Stable organic–inorganic perovskite solar cells without hole-conductor layer achieved via cell structure design and contact engineering. Adv Funct Mater n/a–n/a. doi:10.1002/adfm.201504564

  195. Ma Q, Huang S, Wen X, Green MA, Ho-Baillie AWY (2016) Hole transport layer free inorganic CsPbIBr2 perovskite solar cell by dual source thermal evaporation. Adv Energy Mater 6(7). doi:10.1002/aenm.201502202

  196. Huang L, Hu Z, Xu J, Sun X, Du Y, Ni J, Cai H, Li J, Zhang J (2016) Efficient planar perovskite solar cells without a high temperature processed titanium dioxide electron transport layer. Sol Energy Mater Sol Cells 149:1–8. doi:10.1016/j.solmat.2015.12.033

    Article  Google Scholar 

  197. Liu T, Zuo L, Ye T, Wu J, Xue G, Fu W, Chen H (2015) Low temperature processed ITO-free perovskite solar cells without a hole transport layer. RSC Adv. 5(115):94752–94758. doi:10.1039/c5ra20125j

    Article  Google Scholar 

  198. Zhang Y, Hu X, Chen L, Huang Z, Fu Q, Liu Y, Zhang L, Chen Y (2016) Flexible, hole transporting layer-free and stable CH3NH3PbI3/PC61BM planar heterojunction perovskite solar cells. Org Electron 30:281–288. doi:10.1016/j.orgel.2016.01.002

    Article  Google Scholar 

  199. Tsai K-W, Chueh C-C, Williams ST, Wen T-C, Jen AKY (2015) High-performance hole-transporting layer-free conventional perovskite/fullerene heterojunction thin-film solar cells. J Mater Chem A 3(17):9128–9132. doi:10.1039/c5ta01343g

    Article  Google Scholar 

  200. Zhu Q, Bao X, Yu J, Zhu D, Qiu M, Yang R, Dong L (2016) Compact layer free perovskite solar cells with a high-mobility hole-transporting layer. ACS Appl Mater Interfaces 8(4):2652–2657. doi:10.1021/acsami.5b10555

    Article  Google Scholar 

  201. Liu Z, Shi T, Tang Z, Sun B, Liao G (2016) Using a low-temperature carbon electrode for preparing hole-conductor-free perovskite heterojunction solar cells under high relative humidity. Nanoscale 8(13):7017–7023. doi:10.1039/c5nr07091k

    Article  Google Scholar 

  202. Jung M-C, Raga SR, Ono LK, Qi Y (2015) Substantial improvement of perovskite solar cells stability by pinhole-free hole transport layer with doping engineering. Sci Rep 5:9863. doi:10.1038/srep09863. http://www.nature.com/articles/srep09863#supplementary-information

  203. Habisreutinger SN, Leijtens T, Eperon GE, Stranks SD, Nicholas RJ, Snaith HJ (2014) Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells. Nano Lett 14(10):5561–5568. doi:10.1021/nl501982b

    Article  Google Scholar 

  204. Li H, Fu K, Hagfeldt A, Grätzel M, Mhaisalkar SG, Grimsdale AC (2014) A simple 3,4-ethylenedioxythiophene based hole-transporting material for perovskite solar cells. Angew Chem Int Ed 53(16):4085–4088. doi:10.1002/anie.201310877

    Article  Google Scholar 

  205. Xiao J, Han L, Zhu L, Lv S, Shi J, Wei H, Xu Y, Dong J, Xu X, Xiao Y, Li D, Wang S, Luo Y, Li X, Meng Q (2014) A thin pristine non-triarylamine hole-transporting material layer for efficient CH3NH3PbI3 perovskite solar cells. RSC Adv 4(62):32918–32923. doi:10.1039/c4ra05199h

    Article  Google Scholar 

  206. Zhou H, Shi Y, Dong Q, Zhang H, Xing Y, Wang K, Du Y, Ma T (2014) Hole-conductor-free, metal-electrode-free TiO2/CH3NH3PbI3 heterojunction solar cells based on a low-temperature carbon electrode. J Phys Chem Lett 5(18):3241–3246. doi:10.1021/jz5017069

    Article  Google Scholar 

  207. Kulbak M, Gupta S, Kedem N, Levine I, Bendikov T, Hodes G, Cahen D (2016) Cesium enhances long-term stability of lead bromide perovskite-based solar cells. J Phys Chem Lett 7(1):167–172. doi:10.1021/acs.jpclett.5b02597

    Article  Google Scholar 

  208. Liu J, Wu Y, Qin C, Yang X, Yasuda T, Islam A, Zhang K, Peng W, Chen W, Han L (2014) A dopant-free hole-transporting material for efficient and stable perovskite solar cells. Energy Environ Sci 7(9):2963–2967. doi:10.1039/c4ee01589d

    Article  Google Scholar 

  209. Kim H-S, Lee C-R, Im J-H, Lee K-B, Moehl T, Marchioro A, Moon S-J, Humphry-Baker R, Yum J-H, Moser JE, Grätzel M, Park N-G (2012) Lead Iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci Rep 2:591. doi:10.1038/srep00591. http://www.nature.com/articles/srep00591#supplementary-information

  210. Noh JH, Im SH, Heo JH, Mandal TN, Seok SI (2013) Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. Nano Lett 13(4):1764–1769. doi:10.1021/nl400349b

    Article  Google Scholar 

  211. Zhang F, Yang X, Wang H, Cheng M, Zhao J, Sun L (2014) Structure engineering of hole-conductor free perovskite-based solar cells with low-temperature-processed commercial carbon paste as cathode. ACS Appl Mater Interfaces 6(18):16140–16146. doi:10.1021/am504175x

    Article  Google Scholar 

  212. Cai B, Xing Y, Yang Z, Zhang W-H, Qiu J (2013) High performance hybrid solar cells sensitized by organolead halide perovskites. Energy Environ Sci 6(5):1480–1485. doi:10.1039/c3ee40343b

    Article  Google Scholar 

  213. Kwon YS, Lim J, Yun H-J, Kim Y-H, Park T (2014) A diketopyrrolopyrrole-containing hole transporting conjugated polymer for use in efficient stable organic-inorganic hybrid solar cells based on a perovskite. Energy Environ Sci 7(4):1454–1460. doi:10.1039/c3ee44174a

    Article  Google Scholar 

  214. Koo B, Jung H, Park M, Kim J-Y, Son HJ, Cho J, Ko MJ (2016) Pyrite-based Bi-functional layer for long-term stability and high-performance of organo-lead halide perovskite solar cells. Adv Funct Mater n/a–n/a. doi:10.1002/adfm.201601119

  215. Liu Y, Ji S, Li S, He W, Wang K, Hu H, Ye C (2015) Study on hole-transport-material-free planar TiO2/CH3NH3PbI3 heterojunction solar cells: the simplest configuration of a working perovskite solar cell. J Mater Chem A 3(28):14902–14909. doi:10.1039/c5ta03693c

    Article  Google Scholar 

  216. Chen W, Wu Y, Liu J, Qin C, Yang X, Islam A, Cheng Y-B, Han L (2015) Hybrid interfacial layer leads to solid performance improvement of inverted perovskite solar cells. Energy Environ Sci 8(2):629–640

    Article  Google Scholar 

  217. Law C, Miseikis L, Dimitrov S, Shakya-Tuladhar P, Li X, Barnes PRF, Durrant J, O’Regan BC (2014) Performance and stability of lead perovskite/TiO2, Polymer/PCBM, and dye sensitized solar cells at light intensities up to 70 suns. Adv Mater 26(36):6268–6273. doi:10.1002/adma.201402612

    Article  Google Scholar 

  218. Eperon GE, Stranks SD, Menelaou C, Johnston MB, Herz LM, Snaith HJ (2014) Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ Sci 7(3):982–988. doi:10.1039/C3EE43822H

    Article  Google Scholar 

  219. Bush KA, Bailie CD, Chen Y, Bowring AR, Wang W, Ma W, Leijtens T, Moghadam F, McGehee MD (2016) Thermal and environmental stability of semi-transparent perovskite solar cells for tandems enabled by a solution-processed nanoparticle buffer layer and sputtered ITO electrode. Adv Mater 28(20):3937–3943. doi:10.1002/adma.201505279

    Article  Google Scholar 

  220. Choi H, Park S, Paek S, Ekanayake P, Nazeeruddin MK, Ko J (2014) Efficient star-shaped hole transporting materials with diphenylethenyl side arms for an efficient perovskite solar cell. J Mater Chem A 2(45):19136–19140. doi:10.1039/c4ta04179h

    Article  Google Scholar 

  221. Wu C-G, Chiang C-H, Tseng Z-L, Nazeeruddin MK, Hagfeldt A, Gratzel M (2015) High efficiency stable inverted perovskite solar cells without current hysteresis. Energy Environ Sci 8(9):2725–2733. doi:10.1039/C5EE00645G

    Article  Google Scholar 

  222. Bi C, Wang Q, Shao Y, Yuan Y, Xiao Z, Huang J (2015) Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells. Nat Commun 6:7747. doi:10.1038/ncomms8747

    Article  Google Scholar 

  223. Zhou H, Chen Q, Li G, Luo S, T-b Song, Duan H-S, Hong Z, You J, Liu Y, Yang Y (2014) Interface engineering of highly efficient perovskite solar cells. Science 345(6196):542–546. doi:10.1126/science.1254050

    Article  Google Scholar 

  224. Ahn N, Son D-Y, Jang I-H, Kang SM, Choi M, Park N-G (2015) Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via lewis base adduct of Lead(II) iodide. J Am Chem Soc 137(27):8696–8699. doi:10.1021/jacs.5b04930

    Article  Google Scholar 

  225. Yang WS, Noh JH, Jeon NJ, Kim YC, Ryu S, Seo J, Seok SI (2015) High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 348(6240):1234–1237. doi:10.1126/science.aaa9272

    Article  Google Scholar 

  226. Li X, Bi D, Yi C, Décoppet J-D, Luo J, Zakeeruddin SM, Hagfeldt A, Grätzel M (2016) A vacuum flash–assisted solution process for high-efficiency large-area perovskite solar cells. Science 353(6294):58–62. doi:10.1126/science.aaf8060

    Article  Google Scholar 

  227. Correa-Baena J-P, Anaya M, Lozano G, Tress W, Domanski K, Saliba M, Matsui T, Jacobsson TJ, Calvo ME, Abate A, Grätzel M, Míguez H, Hagfeldt A (2016) Unbroken perovskite: interplay of morphology, electro-optical properties, and ionic movement. Adv Mater 28(25):5031–5037. doi:10.1002/adma.201600624

    Article  Google Scholar 

Download references

Acknowledgements

To the Spanish MINECO through the Severo Ochoa Centers of Excellence Program under Grant SEV-2013-0295 for the Postdoctoral contract to A.P. and postdoctoral contract to A.M; for the grant ENE2013-48816-C5-4-R, ENE2016-79282-C5-2-R and the Nanoselect Excelence Network MAT2015-68994-REDC. To the Agència de Gestiód’Ajuts Universitaris i de Recerca for the support to the consolidated Catalonia research group 2014SGR-1212 and the Xarxa de Referència en Materials Avançats per a l’Energia (Xarmae). To the COST Action StableNextSol project MP1307. To CONACYT (México) for the PhD scholarship awarded to Y.R. This work is being carried out under the materials science PhD degree for A:M of the Universitat Autonoma de Barcelona. To the CERCA Programme / Generalitat de Catalunya. To the Agencia Estatal de Investigación (AEI) and Fondo Europeo de Desarrollo Regional (FEDER) under contract ENE2015-74275-JIN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mónica Lira-Cantú .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Reyna, Y., Pérez-Tomás, A., Mingorance, A., Lira-Cantú, M. (2018). Stability of Molecular Devices: Halide Perovskite Solar Cells. In: Tian, H., Boschloo, G., Hagfeldt, A. (eds) Molecular Devices for Solar Energy Conversion and Storage. Green Chemistry and Sustainable Technology. Springer, Singapore. https://doi.org/10.1007/978-981-10-5924-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-5924-7_13

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-5923-0

  • Online ISBN: 978-981-10-5924-7

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics