Skip to main content

X-Ray Photoelectron Spectroscopy for Understanding Molecular and Hybrid Solar Cells

  • Chapter
  • First Online:

Part of the book series: Green Chemistry and Sustainable Technology ((GCST))

Abstract

X-ray photoelectron spectroscopy is a powerful tool for the characterization of molecular and hybrid solar cells. This technique allows for atomic-level characterization of their components as well as for the determination of the electronic structure that governs the key conversion processes. In this chapter, we introduce the basic concepts of electronic structure in molecules and semiconducting materials followed by a description of the concepts of photoelectron spectroscopy and how they relate to electronic structure. Finally, we give examples of the application of photoelectron spectroscopy to different types of molecular and hybrid solar cell materials demonstrating the type of information that can be obtained, to gain fundamental understanding and to further develop such devices.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

XUV:

Extreme ultraviolet

VB:

Valence band

CB:

Conduction band

XPS:

X-ray photoelectron spectroscopy

PES:

Photoelectron spectroscopy

E:

Energy

Ψ(r, t):

Time-dependent wave function

Ψ(r):

Time-independent wave function

DFT:

Density functional theory

AO:

Atomic orbital

MO:

Molecular orbital

LCAO:

Linear combination of atomic orbitals

S:

Orbital overlap

HOMO:

Highest occupied molecular orbital

LUMO:

Lowest unoccupied molecular orbital

MLCT:

Metal-to-ligand charge transfer

bpy:

Bipyridine

EF :

Fermi level

EB :

Binding energy

EK :

Kinetic energy

KT:

Koopmans’ theorem

ε:

Orbital energy

HF:

Hartee–Fock

I:

Ionization energy

ϕs :

Work function of a solid

UPS:

Ultraviolet photoelectron spectroscopy

SOXPES:

Soft X-ray photoelectron spectroscopy

HAXPES:

Hard X-ray photoelectron spectroscopy

TMPc:

Transition metal phthalocyanine

ML:

Monolayer

IMFP:

Inelastic mean free path

ϕa :

Work function of the analyzer

Δ:

Change in sample work function

UHV:

Ultrahigh vacuum

OTiPc:

Titanyl phthalocyanine

HOPG:

Highly oriented pyrolytic graphite

SCL:

Space charge layer

HC:

Hole-conductor

F4-TCNQ:

Tetra-fluoro-tetracyano-quinodimethane

ITO:

Indium tin oxide

P3HT:

Poly-3-hexylthiophene

DSC:

Dye-sensitized solar cell

HTM:

Hole transporting material

TAA:

Trialylamine

CA:

Cyano

MA:

Methylammonium

FA:

Formamidinium

References

  1. Fadley CS (1978) Basic concepts of X-ray photoelectron spectroscopy. In: Brundle CR, Baker AD (eds) Electron spectroscopy: theory, techniques and applications. Academic Press, London, pp 1–156

    Google Scholar 

  2. Orchard AF (1977) Basic principles of photoelectron spectroscopy. In: Briggs D (ed) Handbook of X-ray ultraviolet photoelectron spectroscopy. Heyden, London, pp 1–14

    Google Scholar 

  3. Ratner BD, Castner DG (2009) Electron spectroscopy for chemical analysis. In: Vickerman JC, Gilmore IS (eds) Surface analysis—the principal techniques, 2nd edn. Wiley, Chichester, pp 47–112

    Google Scholar 

  4. Hüfner S (1995) Photoelectron spectroscopy: principles and applications. Springer, Berlin

    Book  Google Scholar 

  5. Heide P Van der (2011) X-ray photoelectron spectroscopy: an introduction to principles and practices, 1st edn. Wiley, pp 1–12. doi:10.1002/9781118162897.ch1

  6. Bidermane I, Lüder J, Totani R et al (2015) Characterization of gas phase iron phthalocyanine with X-ray photoelectron and absorption spectroscopies. Phys Status Solidi Basic Res 252:1259–1265. doi:10.1002/pssb.201451147

    Article  Google Scholar 

  7. Yu S, Ahmadi S, Sun C et al (2012) Inhomogeneous charge transfer within monolayer zinc phthalocyanine absorbed on TiO2(110). J Chem Phys 136:154703. doi:10.1063/1.3699072

    Article  Google Scholar 

  8. Ahmadi S, Shariati MN, Yu S, Göthelid M (2012) Molecular layers of ZnPc and FePc on Au(111) surface: charge transfer and chemical interaction. J Chem Phys 137:84705. doi:10.1063/1.4746119

    Article  Google Scholar 

  9. Tanuma S (2011) Calculations of electron inelastic mean free paths. IX. Data for 41 elemental solids over the 50 eV to 30 keV range. Surf Interface Anal 43:689–713. doi:10.1002/sia.3522

    Article  Google Scholar 

  10. Ishii H, Sugiyama K, Ito E, Seki K (1999) Energy level alignment and interfacial electronic structures at organic metal and organic organic interfaces. Adv Mater 11. doi:10.1002/(SICI)1521-4095(199906)11:8<605::AID-ADMA605>3.0.CO;2-Q

  11. Goiri E, Borghetti P, El-Sayed A et al (2016) Multi-component organic layers on metal substrates. Adv Mater 28:1340–1368. doi:10.1002/adma.201503570

    Article  Google Scholar 

  12. Kera S, Yabuuchi Y, Yamane H et al (2004) Impact of an interface dipole layer on molecular level alignment at an organic-conductor interface studied by ultraviolet photoemission spectroscopy. Phys Rev B 70:85304. doi:10.1103/PhysRevB.70.085304

    Article  Google Scholar 

  13. Fukagawa H, Yamane H, Kera S et al (2006) Experimental estimation of the electric dipole moment and polarizability of titanyl phthalocyanine using ultraviolet photoelectron spectroscopy. Phys Rev B 73:41302. doi:10.1103/PhysRevB.73.041302

    Article  Google Scholar 

  14. Yamane H, Honda H, Fukagawa H et al (2004) HOMO-band fine structure of OTi- and Pb-phthalocyanine ultrathin films: effects of the electric dipole layer. J Electron Spectro Relat Phenom 137:223–227. doi:10.1016/j.elspec.2004.02.054

    Article  Google Scholar 

  15. Gargiani P, Angelucci M, Mariani C, Betti MG (2010) Metal-phthalocyanine chains on the Au(110) surface: interaction states versus d -metal states occupancy. Phys Rev B 81:85412. doi:10.1103/PhysRevB.81.085412

    Article  Google Scholar 

  16. Schlaf R, Parkinson BA, Lee PA et al (1999) Absence of final-state screening shifts in photoemission spectroscopy frontier orbital alignment measurements at organic/semiconductor interfaces. Surf Sci. doi:10.1016/S0039-6028(98)00850-4

    Google Scholar 

  17. Johansson EMJ, Odelius M, Karlsson PG et al (2008) Interface electronic states and molecular structure of a triarylamine based hole conductor on rutile TiO2(110). J Chem Phys 128:184709. doi:10.1063/1.2913245

    Article  Google Scholar 

  18. Ishii H, Hayashi N, Ito E et al (2004) Kelvin probe study of band bending at organic semiconductor/metal interfaces: examination of Fermi level alignment. Phys status solidi 201:1075–1094. doi:10.1002/pssa.200404346

    Article  Google Scholar 

  19. Gao W, Kahn A (2002) Electronic structure and current injection in zinc phthalocyanine doped with tetrafluorotetracyanoquinodimethane: interface versus bulk effects. Org Electron 3:53–63. doi:10.1016/S1566-1199(02)00033-2

    Article  Google Scholar 

  20. Gao W, Kahn A, K IH and S, et al (2003) Electrical doping: the impact on interfaces of -conjugated molecular films. J Phys Condens Matter 15:S2757–S2770. doi:10.1088/0953-8984/15/38/014

  21. Olthof S, Tress W, Meerheim R et al (2009) Photoelectron spectroscopy study of systematically varied doping concentrations in an organic semiconductor layer using a molecular p-dopant. J Appl Phys 106:103711. doi:10.1063/1.3259436

    Article  Google Scholar 

  22. Johansson EMJ, Schölin R, Siegbahn H et al (2011) Energy level alignment in TiO2/dipole-molecule/P3HT interfaces. Chem Phys Lett 515:146–150. doi:10.1016/j.cplett.2011.09.014

    Article  Google Scholar 

  23. Cappel UB, Plogmaker S, Johansson EMJ et al (2011) Energy alignment and surface dipoles of rylene dyes adsorbed to TiO2 nanoparticles. Phys Chem Chem Phys 13:14767–14774. doi:10.1039/c1cp20911f

    Article  Google Scholar 

  24. Hwang J, Wan A, Kahn A (2009) Energetics of metal-organic interfaces: new experiments and assessment of the field. Mater Sci Eng R Rep. doi:10.1016/j.mser.2008.12.001

    Google Scholar 

  25. Davis RJ, Lloyd MT, Ferreira SR et al (2011) Determination of energy level alignment at interfaces of hybrid and organic solar cells under ambient environment. J Mater Chem 21:1721–1729. doi:10.1039/C0JM02349C

    Article  Google Scholar 

  26. Aarnio H, Sehati P, Braun S et al (2011) Spontaneous charge transfer and dipole formation at the interface between P3HT and PCBM. Adv Energy Mater 1:792–797. doi:10.1002/aenm.201100074

    Article  Google Scholar 

  27. Bao Q, Sandberg O, Dagnelund D et al (2014) Trap-assisted recombination via integer charge transfer states in organic bulk heterojunction photovoltaics. Adv Funct Mater 24:6309–6316. doi:10.1002/adfm.201401513

    Article  Google Scholar 

  28. Cappel UB, Plogmaker S, Terschlüsen JA et al (2016) Electronic structure dynamics in a low bandgap polymer studied by time-resolved photoelectron spectroscopy. Phys Chem Chem Phys 18:21921–21929. doi:10.1039/C6CP04136A

    Article  Google Scholar 

  29. Johansson EMJ, Lindblad R, Siegbahn H et al (2014) Atomic and electronic structures of interfaces in dye-sensitized, nanostructured solar cells. ChemPhysChem 15:1006–1017. doi:10.1002/cphc.201301074

    Article  Google Scholar 

  30. Patthey L, Rensmo H, Persson P et al (1999) Adsorption of bi-isonicotinic acid on rutile TiO2(110). J Chem Phys 110:5913–5918. doi:10.1063/1.478491

    Article  Google Scholar 

  31. Johansson EMJ, Hedlund M, Siegbahn H, Rensmo H (2005) Electronic and molecular surface structure of Ru(tcterpy)(NCS)3 and Ru(dcbpy)2(NCS)2 adsorbed from solution onto nanostructured TiO2: a photoelectron spectroscopy study. J Phys Chem B 109:22256–22263. doi:10.1021/jp0525282

    Article  Google Scholar 

  32. Karlsson PG, Bolik S, Richter JH et al (2004) Interfacial properties of the nanostructured dye-sensitized solid heterojunction TiO2/RuL2(NCS)2/Cul. J Chem Phys 120:11224–11232. doi:10.1063/1.1739399

    Article  Google Scholar 

  33. Hahlin M, Johansson EMJ, Schölin R et al (2011) Influence of water on the electronic and molecular surface structures of ru-dyes at nanostructured TiO2. J Phys Chem C 115:11996–12004. doi:10.1021/jp1076609

    Article  Google Scholar 

  34. Schoölin R, Quintana M, Johansson EMJ et al (2011) Preventing dye aggregation on ZnO by adding water in the dye-sensitization process. J Phys Chem C 115:19274–19279. doi:10.1021/jp206052t

    Article  Google Scholar 

  35. Schnadt J, Henningsson A, Andersson MP et al (2004) Adsorption and charge-transfer study of bi-isonicotinic acid on in situ-grown anatase. J Phys Chem B 2:3114–3122. doi:10.1021/jp0344491

    Article  Google Scholar 

  36. Mayor LC, Ben Taylor J, Magnano G et al (2008) Photoemission, resonant photoemission, and x-ray absorption of a Ru(II) complex adsorbed on rutile TiO2(110) prepared by in situ electrospray deposition. J Chem Phys 129:114701. doi: 10.1063/1.2975339

    Google Scholar 

  37. Eriksson SK, Hahlin M, Axnanda S et al (2016) In-situ probing of H2O effects on a ru-complex adsorbed on TiO2 using ambient pressure photoelectron spectroscopy. Top Catal 59:583–590. doi:10.1007/s11244-015-0533-3

    Article  Google Scholar 

  38. Johansson EMJ, Karlsson PG, Hedlund M et al (2007) Photovoltaic and interfacial properties of heterojunctions containing dye-sensitized dense TiO2 and tri-arylamine derivatives. Chem Mater 19:2071–2078. doi:10.1021/cm062498v

    Article  Google Scholar 

  39. Hahlin M, Johansson EMJ, Plogmaker S et al (2010) Electronic and molecular structures of organic dye/TiO2 interfaces for solar cell applications: a core level photoelectron spectroscopy study. Phys Chem Chem Phys 12:1507. doi:10.1039/B913548K

    Article  Google Scholar 

  40. Eriksson SK, Josefsson I, Ellis H et al (2016) Geometrical and energetical structural changes in organic dyes for dye-sensitized solar cells probed using photoelectron spectroscopy and DFT. Phys Chem Chem Phys Phys Chem Chem Phys 252:252–260. doi:10.1039/c5cp04589d

    Article  Google Scholar 

  41. Johansson EMJ, Odelius M, Plogmaker S et al (2010) Spin-orbit coupling and metala-ligand interactions in Fe(II), Ru(II), and Os(II) complexes. J Phys Chem C 114:10314–10322. doi:10.1021/jp103884c

    Article  Google Scholar 

  42. Johansson EMJ, Odelius M, Gorgoi M et al (2008) Valence electronic structure of ruthenium based complexes probed by photoelectron spectroscopy at high kinetic energy (HIKE) and modeled by DFT calculations. Chem Phys Lett 464:192–197. doi:10.1016/j.cplett.2008.09.016

    Article  Google Scholar 

  43. Johansson EMJ, Hedlund M, Odelius M et al (2007) Frontier electronic structures of Ru(tcterpy)(NCS)3 and Ru(dcbpy)2 (NCS)2: a photoelectron spectroscopy study. J Chem Phys 126:244303. doi:10.1063/1.2738066

    Article  Google Scholar 

  44. Schölin R, Karlsson MH, Eriksson SK et al (2012) Energy level shifts in spiro-OMeTAD molecular thin films when adding Li-TFSI. J Phys Chem C 116:26300–26305. doi:10.1021/jp306433g

    Article  Google Scholar 

  45. Eriksson SK, Josefsson I, Ottosson N et al (2014) Solvent dependence of the electronic structure of I- and I3 -. J Phys Chem B 118:3164–3174. doi:10.1021/jp500533n

    Article  Google Scholar 

  46. Lee MM, Teuscher J, Miyasaka T, et al (2012) Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science (80-) 338:643–7. doi:10.1126/science.1228604

  47. Kim H-S, Lee C-R, Im J-H, et al (2012) Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci Rep 2:591. doi:10.1038/srep00591

  48. Lindblad R, Bi D, Park B-W et al (2014) Electronic structure of TiO2/CH3NH3PbI3 Perovskite solar cell interfaces. J Phys Chem Lett 5:648–653. doi:10.1021/jz402749f

    Article  Google Scholar 

  49. Chen S, Goh TW, Sabba D et al (2014) Energy level alignment at the methylammonium lead iodide/copper phthalocyanine interface. APL Mater 2:81512. doi:10.1063/1.4889844

    Article  Google Scholar 

  50. Schulz P, Edri E, Kirmayer S et al (2014) Interface energetics in organo-metal halide perovskite-based photovoltaic cells. Energy Environ Sci 7:1377. doi:10.1039/c4ee00168k

    Article  Google Scholar 

  51. Liu P, Liu X, Lyu L et al (2015) Interfacial electronic structure at the CH3NH3PbI3/MoOx interface. Appl Phys Lett 106:193903. doi:10.1063/1.4921339

    Article  Google Scholar 

  52. Miller EM, Zhao Y, Mercado CC et al (2014) Substrate-controlled band positions in CH 3 NH 3 PbI 3 perovskite films. Phys Chem Chem Phys 16:22122–22130. doi:10.1039/C4CP03533J

    Article  Google Scholar 

  53. Leijtens T, Stranks SD, Eperon GE et al (2014) Electronic properties of meso-superstructured and planar organometal halide Perovskite films: charge trapping, photodoping, and carrier mobility. ACS Nano 8:7147–7155. doi:10.1021/nn502115k

    Article  Google Scholar 

  54. Jain SM, Philippe B, Johansson EMJ et al (2016) Vapor phase conversion of PbI2 to CH3NH3PbI3: spectroscopic evidence for formation of an intermediate phase. J Mater Chem A 4:2630–2642. doi:10.1039/C5TA08745G

    Article  Google Scholar 

  55. Jacobsson TJ, Correa-Baena J-P, Halvani Anaraki E et al (2016) Unreacted PbI2 as a double-edged sword for enhancing the performance of perovskite solar cells. J Am Chem Soc 138:10331–10343. doi:10.1021/jacs.6b06320

    Article  Google Scholar 

  56. Philippe B, Park BW, Lindblad R et al (2015) Chemical and electronic structure characterization of lead halide perovskites and stability behavior under different exposures-A photoelectron spectroscopy investigation. Chem Mater 27:1720–1731. doi:10.1021/acs.chemmater.5b00348

    Article  Google Scholar 

  57. Cahen D, Kahn A (2003) Electron energetics at surfaces and interfaces: concepts and experiments. Adv Mater 15:271–277. doi:10.1002/adma.200390065

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Håkan Rensmo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Cappel, U.B., Lanzilotto, V., Johansson, E.M.J., Edvinsson, T., Rensmo, H. (2018). X-Ray Photoelectron Spectroscopy for Understanding Molecular and Hybrid Solar Cells. In: Tian, H., Boschloo, G., Hagfeldt, A. (eds) Molecular Devices for Solar Energy Conversion and Storage. Green Chemistry and Sustainable Technology. Springer, Singapore. https://doi.org/10.1007/978-981-10-5924-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-5924-7_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-5923-0

  • Online ISBN: 978-981-10-5924-7

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics