Skip to main content

Time-Resolved Laser Spectroscopy in Molecular Devices for Solar Energy Conversion

  • Chapter
  • First Online:
Molecular Devices for Solar Energy Conversion and Storage

Abstract

A complete characterization of solar energy conversion devices and the processes underlying their function is a challenge, and require a multitude of different experimental methods. This chapter discusses investigations of molecular solar cells and solar fuels devices by time-resolved laser spectroscopic methods. These methods have established important concepts we now use for understanding the function of devices for solar energy conversion into primary products. We give examples of scientific insight provided by ultrafast methods using detection in the regions from X-ray to THz radiation, and particularly highlight the case where the use of different methods has provided complementary information. Charge collection and solar fuel catalysis on the other hand occur on longer time scales, which opens for the use of time-resolved magnetic resonance and microwave conductivity methods. We also point out that, with suitable precautions, time-resolved laser spectroscopy is able to give information relevant for in operando device conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CIDNP:

Chemically induced dynamic nuclear polarization

EPR:

Electron paramagnetic resonance

FTIR:

Fourier-transform infrared

NMR:

Nuclear magnetic resonance

SFG:

Sum-frequency generation

TRIR:

Time-resolved infrared

TRLS:

Time-resolved laser spectroscopy (general for all laser-based time-resolved spectroscopies)

TRMC:

Time-resolved microwave conductivity

TRTS:

Time-resolved THz spectroscopy

XAS:

X-ray absorption spectroscopy (XAFS and XANES are subdivisions of XAS)

XAFS:

X-ray absorption fine structure

XANES:

X-ray absorption near-edge structure

XDS:

X-ray diffuse scattering

XES:

X-ray emission spectroscopy

XPS:

X-ray photoelectron spectroscopy

References

  1. Pullerits T, Sundstrom V (1996) Photosynthetic light-harvesting pigment-protein complexes: toward understanding how and why. Acc Chem Res 29(8):381–389. doi:10.1021/ar950110o

    Article  Google Scholar 

  2. Scholes GD, Fleming GR, Olaya-Castro A, van Grondelle R (2011) Lessons from nature about solar light harvesting. Nat Chem 3(10):763–774. doi:10.1038/nchem.1145

    Article  Google Scholar 

  3. Holzapfel W, Finkele U, Kaiser W, Oesterhelt D, Scheer H, Stilz HU, Zinth W (1990) Initial electron-transfer in the reaction center from rhodobacter-sphaeroides. Proc Natl Acad Sci USA 87(13):5168–5172. doi:10.1073/pnas.87.13.5168

    Article  Google Scholar 

  4. Heller BA, Holten D, Kirmaier C (1995) Control of electron-transfer between the L-side and M-side of photosynthetic reaction centers. Science 269(5226):940–945. doi:10.1126/science.7638616

    Article  Google Scholar 

  5. Berera R, van Grondelle R, Kennis JTM (2009) Ultrafast transient absorption spectroscopy: principles and application to photosynthetic systems. Photosynth Res 101(2–3):105–118. doi:10.1007/s11120-009-9454-y

    Article  Google Scholar 

  6. Wasielewski MR (1992) Photoinduced electron transfer in supramolecular systems for artificial photosynthesis. Chem Rev (Washington, DC, US) 92(3):435–461. doi:10.1021/cr00011a005

  7. Gust D, Moore TA, Moore AL (2001) Mimicking photosynthetic solar energy transduction. Acc Chem Res 34(1):40–48. doi:10.1021/ar9801301

    Article  Google Scholar 

  8. Sun LC, Hammarstrom L, Akermark B, Styring S (2001) Towards artificial photosynthesis: ruthenium-manganese chemistry for energy production. Chem Soc Rev 30(1):36–49. doi:10.1039/a801490f

    Article  Google Scholar 

  9. Hendry E, Koeberg M, Schins JM, Nienhuys HK, Sundström V, Siebbeles LDA, Bonn M (2005) Interchain effects in the ultrafast photophysics of a semiconducting polymer: THz time-domain spectroscopy of thin films and isolated chains in solution. Phys Rev B 71(12):125201

    Article  Google Scholar 

  10. Pal SK, Kesti T, Maiti M, Zhang F, Inganäs O, Hellström S, Andersson MR, Oswald F, Langa F, Österman T, Pascher T, Yartsev A, Sundström V (2010) Geminate charge recombination in polymer/fullerene bulk heterojunction films and implications for solar cell function. J Am Chem Soc 132(35):12440–12451. doi:10.1021/ja104786x

    Article  Google Scholar 

  11. De S, Pascher T, Maiti M, Jespersen KG, Kesti T, Zhang FL, Inganas O, Yartsev A, Sundstrom V (2007) Geminate charge recombination in alternating polyfluorene Copolymer/Fullerene blends. J Am Chem Soc 129(27):8466–8472. doi:10.1021/ja068909q

    Article  Google Scholar 

  12. Haque SA, Tachibana Y, Willis RL, Moser JE, Gratzel M, Klug DR, Durrant JR (2000) Parameters influencing charge recombination kinetics in dye-sensitized nanocrystalline titanium dioxide films. J Phys Chem B 104(3):538–547. doi:10.1021/jp991085x

    Article  Google Scholar 

  13. Hammarstrom L (2015) Accumulative charge separation for solar fuels production: coupling light-induced single electron transfer to multielectron catalysis. Acc Chem Res 48(3):840–850. doi:10.1021/ar500386x

    Article  Google Scholar 

  14. Bressler C, Chergui M (2010) Molecular structural dynamics probed by ultrafast X-ray absorption spectroscopy. Annu Rev Phys Chem 61:263–282

    Article  Google Scholar 

  15. van Bokhoven JA, Lamberti C (2016) X-ray absorption and X-ray emission spectroscopy: theory and applications. Wiley, Chichester, West Sussex

    Google Scholar 

  16. Calvin S (2013) XAFS for everyone. CRC Press, Boca Raton

    Google Scholar 

  17. Lemke HT, Bressler C, Chen LX, Fritz DM, Gaffney KJ, Galler A, Gawelda W, Haldrup K, Hartsock RW, Ihee H, Kim J, Kim KH, Lee JH, Nielsen MM, Stickrath AB, Zhang W, Zhu D, Cammarata M (2013) Femtosecond X-ray absorption spectroscopy at a hard X-ray free electron laser: application to spin crossover dynamics. J Phys Chem A 117(4):735–740

    Article  Google Scholar 

  18. Gawelda W, Szlachetko J, Milne CJ (2016) X-ray spectroscopy at free electron lasers. In: X-ray absorption and X-ray emission spectroscopy, vol 1. Wiley-Blackwell, pp 637–669

    Google Scholar 

  19. Milne CJ, Penfold TJ, Chergui M (2014) Recent experimental and theoretical developments in time-resolved X-ray spectroscopies. Coord Chem Rev 277–278:44–68

    Article  Google Scholar 

  20. Chergui M (2015) Ultrafast photophysics of transition metal complexes. Acc Chem Res 48(3):801–808

    Article  Google Scholar 

  21. Vankó G, Bordage A, Glatzel P, Gallo E, Rovezzi M, Gawelda W, Galler A, Bressler C, Doumy G, March AM, Kanter EP, Young L, Southworth SH, Canton SE, Uhlig J, Smolentsev G, Sundström V, Haldrup K, van Driel TB, Nielsen MM, Kjaer KS, Lemke HT (2013) Spin-state studies with XES and RIXS: from static to ultrafast. J Electron Spectrosc Relat Phenom 188:166–171

    Article  Google Scholar 

  22. Haldrup K, Vankö G, Gawelda W, Galler A, Doumy G, March AM, Kanter EP, Bordage A, Dohn A, van Driel TB, Kjaer KS, Lemke HT, Canton SE, Uhlig J, Sundström V, Young L, Southworth SH, Nielsen MM, Bressler C (2012) Guest-host interactions investigated by time-resolved X-ray spectroscopies and scattering at MHz rates: solvation dynamics and photoinduced spin transition in aqueous Fe(bipy)3(2+). J Phys Chem A 116(40):9878–9887

    Article  Google Scholar 

  23. Uhlig J, Doriese WB, Fowler JW, Swetz DS, Jaye C, Fischer DAA, Reintsema CD, Bennett DA, Vale LR, Mandal U, O’Neil GC, Miaja-Avila L, Joe YI, El Nahhas A, Fullagar W, Parnefjord Gustafsson F, Sundström V, Kurunthu D, Hilton GC, Schmidt DR, Ullom JN (2015) High-resolution X-ray emission spectroscopy with transition-edge sensors: present performance and future potential. J Synchrotron Radiat 22(3):766–775

    Article  Google Scholar 

  24. Ament LJP, van Veenendaal M, Devereaux TP, Hill JP, van den Brink J (2011) Resonant inelastic X-ray scattering studies of elementary excitations. Rev Mod Phys 83(2):705–767

    Article  Google Scholar 

  25. Bergmann U, Glatzel P (2009) X-ray emission spectroscopy. Photosynth Res 102(2–3):255–266

    Article  Google Scholar 

  26. Rovezzi M, Glatzel P (2014) Hard X-ray emission spectroscopy: a powerful tool for the characterization of magnetic semiconductors. Semicond Sci Technol 29(2):023002

    Article  Google Scholar 

  27. Lee JH, Wulff M, Bratos S, Petersen J, Guerin L, Leicknam J-C, Cammarata M, Kong Kim Q, Møller KB, Ihee H (2013) Filming the birth of molecules and accompanying solvent rearrangement. J Am Chem Soc 135(8):3255–3261

    Google Scholar 

  28. Haldrup K, Gawelda W, Abela R, Alonso-Mori R, Bergmann U, Bordage A, Cammarata M, Canton SE, Dohn AO, van Driel TB, Fritz DM, Galler A, Glatzel P, Harlang T, Kjaer KS, Lemke HT, Moeller KB, Németh Z, Pápai M, Sas N, Uhlig J, Zhu D, Vankó G, Sundström V, Nielsen MM, Bressler C (2016) Observing solvation dynamics with simultaneous femtosecond X-ray emission spectroscopy and X-ray scattering. J Phys Chem B 120(6):1158–1168

    Article  Google Scholar 

  29. Alonso-Mori R, Kern J, Sokaras D, Weng TC, Nordlund D, Tran R, Montanez P, Delor J, Yachandra VK, Yano J, Bergmann U (2012) A multi-crystal wavelength dispersive X-ray spectrometer. Rev Sci Instrum 83(7). doi:10.1063/1.4737630

  30. Lee N, Petrenko T, Bergmann U, Neese F, DeBeer S (2010) Probing valence orbital composition with iron K beta X-ray emission spectroscopy. J Am Chem Soc 132(28):9715–9727

    Article  Google Scholar 

  31. Zhang W, Alonso-Mori R, Bergmann U, Bressler C, Chollet M, Galler A, Gawelda W, Hadt RG, Hartsock RW, Kroll T, Kjaer KS, Kubicek K, Lemke HT, Liang HW, Meyer DA, Nielsen MM, Purser C, Robinson JS, Solomon EI, Sun Z, Sokaras D, van Driel TB, Vanko G, Weng TC, Zhu D, Gaffney KJ (2014) Tracking excited-state charge and spin dynamics in iron coordination complexes. Nature 509(7500):345–348. doi:10.1038/nature13252

    Article  Google Scholar 

  32. Kjaer KS, van Driel TB, Kehres J, Haldrup K, Khakhulin D, Bechgaard K, Cammarata M, Wulff M, Soerensen TJ, Nielsen MM (2013) Introducing a standard method for experimental determination of the solvent response in laser pump, X-ray probe time-resolved wide-angle X-ray scattering experiments on systems in solution. Phys Chem Chem Phys 15(36):15003–15016

    Article  Google Scholar 

  33. Bauer M (2014) HERFD-XAS and valence-to-core-XES: new tools to push the limits in research with hard X-rays? Phys Chem Chem Phys 16(27):13827–13837

    Article  Google Scholar 

  34. Glatzel P, Weng T-C, Kvashnina K, Swarbrick J, Sikora M, Gallo E, Smolentsev N, Mori RA (2013) Reflections on hard X-ray photon-in/photon-out spectroscopy for electronic structure studies. J Electron Spectrosc Relat Phenom 188:17–25

    Article  Google Scholar 

  35. Glatzel P, Bergmann U (2005) High resolution 1s core hole X-ray spectroscopy in 3d transition metal complexes electronic and structural information. Coord Chem Rev 249(1–2):65–95

    Article  Google Scholar 

  36. Ardo S, Meyer GJ (2009) Photodriven heterogeneous charge transfer with transition-metal compounds anchored to TiO2 semiconductor surfaces. Chem Soc Rev 38(1):115–164. doi:10.1039/b804321n

    Article  Google Scholar 

  37. Benko G, Kallioinen J, Korppi-Tommola JE, Yartsev AP, Sundstrom V (2002) Photoinduced ultrafast dye-to-semiconductor electron injection from nonthermalized and thermalized donor states. J Am Chem Soc 124(3):489–493

    Article  Google Scholar 

  38. Benko G, Kallioinen J, Myllyperkio P, Trif F, Korppi-Tommola JEI, Yartsev AP, Sundstrom V (2004) Interligand electron transfer determines triplet excited state electron injection in RuN3-sensitized TiO2 films. J Phys Chem B 108(9):2862–2867. doi:10.1021/jp036778z

    Article  Google Scholar 

  39. Benko G, Myllyperkio P, Pan J, Yartsev AP, Sundstrom V (2003) Photoinduced electron injection from Ru(dcbpy)2(NCS)2 to SnO2 and TiO2 nanocrystalline films. J Am Chem Soc 125(5):1118–1119. doi:10.1021/ja029025j

    Article  Google Scholar 

  40. Furube A, Katoh R, Yoshihara T, Hara K, Murata S, Arakawa H, Tachiya M (2004) Ultrafast direct and indirect electron-injection processes in a photoexcited dye-sensitized nanocrystalline zinc oxide film: the importance of exciplex intermediates at the surface. J Phys Chem B 108(33):12583–12592. doi:10.1021/jp0487713

    Article  Google Scholar 

  41. Katoh R, Furube A, Barzykin AV, Arakawa H, Tachiya M (2004) Kinetics and mechanism of electron injection and charge recombination in dye-sensitized nanocrystalline semiconductors. Coord Chem Rev 248(13–14):1195–1213. doi:10.1016/j.ccr.2004.03.017

    Article  Google Scholar 

  42. Katoh R, Furube A, Fuke N, Fukui A, Koide N (2012) Ultrafast relaxation as a possible limiting factor of electron injection efficiency in black dye sensitized nanocrystalline TiO2 films. J Phys Chem C 116(42):22301–22306. doi:10.1021/jp302768q

    Article  Google Scholar 

  43. Katoh R, Yaguchi K, Furube A (2011) Effect of dye concentration on electron injection efficiency in nanocrystalline TiO2 films sensitized with N719 dye. Chem Phys Lett 511(4–6):336–339. doi:10.1016/j.cplett.2011.06.046

    Article  Google Scholar 

  44. Wenger B, Gratzel M, Moser JE (2005) Rationale for kinetic heterogeneity of ultrafast light-induced electron transfer from Ru(II) complex sensitizers to nanocrystalline TiO2. J Am Chem Soc 127(35):12150–12151. doi:10.1021/ja042141x

    Article  Google Scholar 

  45. Thorsmolle VK, Wenger B, Teuscher J, Bauer C, Moser JE (2007) Dynamics of photoinduced interfacial electron transfer and charge transport in dye-sensitized mesoscopic semiconductors. Chimia 61(10):631–634. doi:10.2533/chimia.2007.631

    Article  Google Scholar 

  46. Kallioinen J, Benko G, Sundstrom V, Korppi-Tommola JEI, Yartsev AP (2002) Electron transfer from the singlet and triplet excited states of Ru(dcbpy)(2)(NCS)(2) into nanocrystalline TiO2 thin films. J Phys Chem B 106(17):4396–4404. doi:10.1021/jp0143443

    Article  Google Scholar 

  47. Damrauer NH, Cerullo G, Yeh A, Boussie TR, Shank CV, McCusker JK (1997) Femtosecond dynamics of excited-state evolution in Ru(bpy)(3) (2+). Science 275(5296):54–57. doi:10.1126/science.275.5296.54

    Article  Google Scholar 

  48. Cannizzo A, van Mourik F, Gawelda W, Zgrablic G, Bressler C, Chergui M (2006) Broadband femtosecond fluorescence spectroscopy of Ru(bpy)(3) (2+). Angew Chem-Int Ed 45(19):3174–3176. doi:10.1002/anie.200600125

    Article  Google Scholar 

  49. Kallioinen J, Benko G, Myllyperkio P, Khriachtchev L, Skarman B, Wallenberg R, Tuomikoski M, Korppi-Tommola J, Sundstrom V, Yartsev AP (2004) Photoinduced ultrafast dynamics of Ru(dcbpy)(2)(NCS)(2)-sensitized nanocrystalline TiO2 films: the influence of sample preparation and experimental conditions. J Phys Chem B 108(20):6365–6373. doi:10.1021/jp037265v

    Article  Google Scholar 

  50. Myllyperkio P, Benko G, Korppi-Tommola J, Yartsev AP, Sundstrom V (2008) A study of electron transfer in Ru(dcbpy)2(NCS)2 sensitized nanocrystalline TiO2 and SnO2 films induced by red-wing excitation. Phys Chem Chem Phys 10(7):996–1002. doi:10.1039/b713515g

    Article  Google Scholar 

  51. Katoh R, Furube A, Kasuya M, Fuke N, Koide N, Han L (2007) Photoinduced electron injection in black dye sensitized nanocrystalline TiO2 films. J Mater Chem 17(30):3190–3196. doi:10.1039/b702805a

    Article  Google Scholar 

  52. Imahori H, Kang S, Hayashi H, Haruta M, Kurata H, Isoda S, Canton SE, Infahsaeng Y, Kathiravan A, Pascher T, Chabera P, Yartsev AP, Sundstrom V (2011) Photoinduced charge carrier dynamics of Zn-porphyrin-TiO2 electrodes: the key role of charge recombination for solar cell performance. J Phys Chem A 115(16):3679–3690. doi:10.1021/jp103747t

    Article  Google Scholar 

  53. Ye S, Kathiravan A, Hayashi H, Tong YJ, Infahsaeng Y, Chabera P, Pascher T, Yartsev AP, Isoda S, Imahori H, Sundstrom V (2013) Role of adsorption structures of Zn-Porphyrin on TiO2 in dye-sensitized solar cells studied by sum frequency generation vibrational spectroscopy and ultrafast spectroscopy. J Phys Chem C 117(12):6066–6080. doi:10.1021/jp400336r

    Article  Google Scholar 

  54. Imahori H, Umeyama T, Ito S (2009) Large pi-aromatic molecules as potential sensitizers for highly efficient dye-sensitized solar cells. Acc Chem Res 42(11):1809–1818. doi:10.1021/ar900034t

    Article  Google Scholar 

  55. Zhao JH, Yang XC, Cheng M, Li SF, Sun LC (2013) new organic dyes with a phenanthrenequinone derivative as the pi-conjugated bridge for dye-sensitized solar cells. J Phys Chem C 117(25):12936–12941. doi:10.1021/jp400011w

    Article  Google Scholar 

  56. Zhao JH, Yang XC, Cheng M, Li SF, Wang XN, Sun LC (2013) Highly efficient iso-quinoline cationic organic dyes without vinyl groups for dye-sensitized solar cells. J Mater Chem A 1(7):2441–2446. doi:10.1039/c2ta00905f

    Article  Google Scholar 

  57. Hao Y, Yang XC, Cong JY, Hagfeldt A, Sun LC (2012) Engineering of highly efficient tetrahydroquinoline sensitizers for dye-sensitized solar cells. Tetrahedron 68(2):552–558. doi:10.1016/j.tet.2011.11.004

    Article  Google Scholar 

  58. Asbury JB, Wang YQ, Lian TQ (1999) Multiple-exponential electron injection in Ru(dcbpy)(2)(SCN)(2) sensitized ZnO nanocrystalline thin films. J Phys Chem B 103(32):6643–6647. doi:10.1021/jp991625q

    Article  Google Scholar 

  59. Anderson NA, Lian TQ (2005) Ultrafast electron transfer at the molecule-semiconductor nanoparticle interface. Annu Rev Phys Chem 56:491–519. doi:10.1146/annurev.physchem.55.091602.094347

  60. Zhang L, Favereau L, Farré Y, Mijangos E, Pellegrin Y, Blart E, Odobel* F, Hammarström L (2016) Ultra-fast and slow charge recombination dynamics of Diketopyrrolopyrrole-NiO dye sensitized solar cells. Phys Chem Chem Phys 18:18515–18527

    Google Scholar 

  61. Odobel F, Pellegrin Y, Gibson EA, Hagfeldt A, Smeigh AL, Hammarstrom L (2012) Recent advances and future directions to optimize the performances of p-type dye-sensitized solar cells. Coord Chem Rev 256(21–22):2414–2423. doi:10.1016/j.ccr.2012.04.017

    Article  Google Scholar 

  62. Juozapavicius M, Kaucikas M, Dimitrov SD, Barnes PRF, van Thor JJ, O’Regan BC (2013) Evidence for “Slow” electron injection in commercially relevant dye-sensitized solar cells by vis-NIR and IR pump-probe spectroscopy. J Phys Chem C 117(48):25317–25324. doi:10.1021/jp408989q

    Article  Google Scholar 

  63. Antila LJ, Myllyperkio P, Mustalahti S, Lehtivuori H, Korppi-Tommola J (2014) Injection and ultrafast regeneration in dye-sensitized solar cells. J Phys Chem C 118(15):7772–7780. doi:10.1021/jp4124277

    Article  Google Scholar 

  64. Furube A, Katoh R, Hara K (2014) Electron injection dynamics in dye-sensitized semiconductor nanocrystalline films. Surf Sci Rep 69(4):389–441. doi:10.1016/j.surfrep.2014.09.003

    Article  Google Scholar 

  65. Brauer JC, Marchioro A, Paraecattil AA, Oskouei AA, Moser JE (2015) Dynamics of interfacial charge transfer states and carriers separation in dye-sensitized solar cells: a time-resolved terahertz spectroscopy study. J Phys Chem C 119(47):26266–26274. doi:10.1021/acs.jpcc.5b06911

    Article  Google Scholar 

  66. Nemec H, Rochford J, Taratula O, Galoppini E, Kuzel P, Polivka T, Yartsev A, Sundstrom V (2010) Influence of the electron-cation interaction on electron mobility in dye-sensitized ZnO and TiO2 nanocrystals: a study using ultrafast terahertz spectroscopy. Phys Rev Lett 104(19):ARTN 197401. doi:10.1103/PhysRevLett.104.197401

  67. Haque SA, Handa S, Peter K, Palomares E, Thelakkat M, Durrant JR (2005) Supermolecular control of charge transfer in dye-sensitized nanocrystalline TiO2 films: towards a quantitative structure-function relationship. Angew Chem Int Ed Engl 44(35):5740–5744. doi:10.1002/anie.200500363

    Article  Google Scholar 

  68. Moser JE, Gratzel M (1993) Observation of temperature independent heterogeneous electron-transfer reactions in the inverted Marcus region. Chem Phys 176(2–3):493–500. doi:10.1016/0301-0104(93)80257-A

  69. Oregan B, Moser J, Anderson M, Gratzel M (1990) Vectorial electron injection into transparent semiconductor membranes and electric-field effects on the dynamics of light-induced charge separation. J Phys Chem 94(24):8720–8726. doi:10.1021/j100387a017

  70. Fitzmaurice DJ, Frei H (1991) Transient near-infrared spectroscopy of visible-light sensitized oxidation of I- at Colloidal TiO2. Langmuir 7(6):1129–1137. doi:10.1021/la00054a019

  71. Marcus RA (1956) On the theory of oxidation-reduction reactions involving electron transfer. J Chem Phys 24(5):966–978. doi:10.1063/1.1742723

  72. Marcus RA (1964) Chemical + Electrochemical electron-transfer theory. Annu Rev Phys Chem 15:155-&. doi:10.1146/annurev.pc.15.100164.001103

  73. Marcus RA, Sutin N (1985) Electron transfers in chemistry and biology. Biochim Biophys Acta 811(3):265–322. doi:10.1016/0304-4173(85)90014-X

  74. Gerischer H (1969) Charge transfer processes at semiconductor-electrolyte interfaces in connection with problems of catalysis. Surf Sci 18(1):97–+. doi:10.1016/0039-6028(69)90269-6

  75. Gerischer H (1972) Electrochemical techniques for study of photosensitization. Photochem Photobiol 16(4):243–+

    Google Scholar 

  76. Kakiage K, Aoyama Y, Yano T, Oya K, Fujisawab J, Hanaya M (2015) Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes. Chem Commun (Cambridge, UK) 51(88):15894–15897. doi:10.1039/c5cc06759f

  77. Mathew S, Yella A, Gao P, Humphry-Baker R, Curchod BFE, Ashari-Astani N, Tavernelli I, Rothlisberger U, Nazeeruddin MK, Gratzel M (2014) Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nat Chem 6(3):242–247. doi:10.1038/nchem.1861

    Article  Google Scholar 

  78. Gratzel M (2009) Recent advances in sensitized mesoscopic solar cells. Acc Chem Res 42(11):1788–1798. doi:10.1021/ar900141y

    Article  Google Scholar 

  79. Lobello MG, Wu KL, Reddy MA, Marotta G, Gratzel M, Nazeeruddin MK, Chi Y, Chandrasekharam M, Vitillaro G, De Angelis F (2014) Engineering of Ru(II) dyes for interfacial and light-harvesting optimization. Dalton Trans 43(7):2726–2732. doi:10.1039/c3dt53272k

    Article  Google Scholar 

  80. Monat JE, McCusker JK (2000) Femtosecond excited-state dynamics of an iron(II) polypyridyl solar cell sensitizer model. J Am Chem Soc 122(17):4092–4097. doi:10.1021/ja992436o

    Article  Google Scholar 

  81. Meyer TJ (1986) Photochemistry of metal coordination-complexes—metal to ligand charge-transfer excited-states. Pure Appl Chem 58(9):1193–1206. doi:10.1351/pac198658091193

  82. Ferrere S, Gregg BA (1998) Photosensitization of TiO2 by Fe-II(2,2′-bipyridine-4,4′-dicarboxylic acid)(2)(CN)(2): band selective electron injection from ultra-short-lived excited states. J Am Chem Soc 120(4):843–844. doi:10.1021/ja973504e

  83. Cho H, Strader ML, Hong K, Jamula L, Gullikson EM, Kim TK, de Groot FM, McCusker JK, Schoenlein RW, Husea N (2012) Ligand-field symmetry effects in Fe(II) polypyridyl compounds probed by transient X-ray absorption spectroscopy. Faraday Discuss 157:463–474; discussion 475–500

    Google Scholar 

  84. Sousa C, de Graaf C, Rudavskyi A, Broer R, Tatchen J, Etinski M, Marian CM (2013) Ultrafast deactivation mechanism of the excited singlet in the light-induced spin crossover of [Fe(2,2′-bipyridine)(3)](2+). Chem-A Eur J 19(51):17541–17551. doi:10.1002/chem.201302992

  85. Zhang W, Alonso-Mori R, Bergmann U, Bressler C, Chollet M, Galler A, Gawelda W, Hadt RG, Hartsock RW, Kroll T, Kjae r, Kasper S., Kubicek K, Lemke HT, Liang HW, Meyer DA, Nielsen MM, Purser C, Robinson JS, Solomon EI, Sun Z, Sokaras D, van Driel TB, Vankó G, Weng T-C, Zhu D, Gaffney KJ (2014) Tracking excited-state charge and spin dynamics in iron coordination complexes. Nature 509(7500):345–348

    Google Scholar 

  86. Gawelda W, Cannizzo A, Pham VT, van Mourik F, Bressler C, Chergui M (2007) Ultrafast nonadiabatic dynamics of Fe-II(bpy)(3) (2+) in solution. J Am Chem Soc 129(26):8199–8206. doi:10.1021/ja070454x

  87. Liu Y, Harlang T, Canton SE, Chabera P, Suarez-Alcantara K, Fleckhaus A, Vithanage DA, Goransson E, Corani A, Lomoth R, Sundstrom V, Warnmark K (2013) Towards longer-lived metal-to-ligand charge transfer states of iron(II) complexes: an N-heterocyclic carbene approach. Chem Commun (Camb) 49(57):6412–6414. doi:10.1039/c3cc43833c

  88. Fredin LA, Warnmark K, Sundstrom V, Persson P (2016) Molecular and interfacial calculations of Iron(II) light harvesters. ChemSusChem 9(7):667–675. doi:10.1002/cssc.201600062

  89. Fredin LA, Papai M, Rozsalyi E, Vanko G, Warnmark K, Sundstrom V, Persson P (2014) Exceptional excited-state lifetime of an Iron(II)-N-Heterocyclic carbene complex explained. J Phys Chem Lett 5(12):2066–2071. doi:10.1021/jz500829w

  90. Bowman DN, Blew JH, Tsuchiya T, Jakubikova E (2013) Elucidating band-selective sensitization in Iron(II) polypyridine-TiO2 assemblies. Inorg Chem 52(15):8621–8628. doi:10.1021/ic4007839

  91. Jakubikova E, Bowman DN (2015) Fe(II)-Polypyridines as chromophores in dye-sensitized solar cells: a computational perspective. Acc Chem Res 48(5):1441–1449. doi:10.1021/ar500428t

  92. Harlang TC, Liu Y, Gordivska O, Fredin LA, Ponseca CS Jr, Huang P, Chabera P, Kjaer KS, Mateos H, Uhlig J, Lomoth R, Wallenberg R, Styring S, Persson P, Sundstrom V, Warnmark K (2015) Iron sensitizer converts light to electrons with 92% yield. Nat Chem 7(11):883–889. doi:10.1038/nchem.2365

    Article  Google Scholar 

  93. Mukherjee S, Bowman DN, Jakubikova E (2015) Cyclometalated Fe(II) complexes as sensitizers in dye-sensitized solar cells. Inorg Chem 54(2):560–569. doi:10.1021/ic502438g

    Article  Google Scholar 

  94. Kojima A, Teshima K, Shirai Y, Miyasaka T (2009) Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc 131(17):6050–6051. doi:10.1021/ja809598r

    Article  Google Scholar 

  95. Tan Z-K, Moghaddam RS, Lai ML, Docampo P, Higler R, Deschler F, Price M, Sadhanala A, Pazos LM, Credgington D, Hanusch F, Bein T, Snaith HJ, Friend RH (2014) Bright light-emitting diodes based on organometal halide perovskite. Nat Nano 9(9):687–692. doi:10.1038/nnano.2014.149

    Article  Google Scholar 

  96. Zhu H, Fu Y, Meng F, Wu X, Gong Z, Ding Q, Gustafsson MV, Trinh MT, Jin S, Zhu XY (2015) Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nat Mater 14(6):636–642. doi:10.1038/nmat4271

    Article  Google Scholar 

  97. Luo J, Im J-H, Mayer MT, Schreier M, Nazeeruddin MK, Park N-G, Tilley SD, Fan HJ, Grätzel M (2014) Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts. Science 345(6204):1593–1596

    Article  Google Scholar 

  98. Ponseca CS, Savenije TJ, Abdellah M, Zheng K, Yartsev A, Pascher T, Harlang T, Chabera P, Pullerits T, Stepanov A, Wolf J-P, Sundström V (2014) Organometal halide perovskite solar cell materials rationalized: ultrafast charge generation, high and microsecond-long balanced mobilities, and slow recombination. J Am Chem Soc 136(14):5189–5192. doi:10.1021/ja412583t

    Article  Google Scholar 

  99. Savenije TJ, Ponseca CS, Kunneman L, Abdellah M, Zheng K, Tian Y, Zhu Q, Canton SE, Scheblykin IG, Pullerits T, Yartsev A, Sundström V (2014) Thermally activated exciton dissociation and recombination control the carrier dynamics in organometal halide perovskite. J Phys Chem Lett 5(13):2189–2194. doi:10.1021/jz500858a

    Article  Google Scholar 

  100. Miyata A, Mitioglu A, Plochocka P, Portugall O, Wang JT-W, Stranks SD, Snaith HJ, Nicholas RJ (2015) Direct measurement of the exciton binding energy and effective masses for charge carriers in organic-inorganic tri-halide perovskites. Nat Phys 11(7):582–587. doi:10.1038/nphys3357

    Article  Google Scholar 

  101. Lin Q, Armin A, Nagiri RCR, Burn PL, Meredith P (2015) Electro-optics of perovskite solar cells. Nat Photon 9(2):106–112. doi:10.1038/nphoton.2014.284

    Article  Google Scholar 

  102. Sum TC, Mathews N (2014) Advancements in perovskite solar cells: photophysics behind the photovoltaics. Energy Environ Sci 7(8):2518–2534. doi:10.1039/C4EE00673A

    Article  Google Scholar 

  103. Sheng C, Zhang C, Zhai Y, Mielczarek K, Wang W, Ma W, Zakhidov A, Vardeny ZV (2015) Exciton versus free carrier photogeneration in organometal trihalide perovskites probed by broadband ultrafast polarization memory dynamics. Phys Rev Lett 114(11):116601

    Article  Google Scholar 

  104. Sun S, Salim T, Mathews N, Duchamp M, Boothroyd C, Xing G, Sum TC, Lam YM (2014) The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells. Energy Environ Sci 7(1):399–407. doi:10.1039/C3EE43161D

    Article  Google Scholar 

  105. Etgar L, Gao P, Xue Z, Peng Q, Chandiran AK, Liu B, Nazeeruddin MK, Grätzel M (2012) Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. J Am Chem Soc 134(42):17396–17399. doi:10.1021/ja307789s

    Article  Google Scholar 

  106. Hendry E, Koeberg M, O’Regan B, Bonn M (2006) Local field effects on electron transport in nanostructured TiO2 revealed by terahertz spectroscopy. Nano Lett 6(4):755–759. doi:10.1021/nl0600225

    Article  Google Scholar 

  107. Ponseca CS, Němec H, Vukmirović N, Fusco S, Wang E, Andersson MR, Chabera P, Yartsev A, Sundström V (2012) Electron and hole contributions to the terahertz photoconductivity of a conjugated polymer: fullerene blend identified. J Phys Chem Lett 3(17):2442–2446. doi:10.1021/jz301013u

    Article  Google Scholar 

  108. Blom PWM, Mihailetchi VD, Koster LJA, Markov DE (2007) Device physics of polymer: fullerene bulk heterojunction solar cells. Adv Mater (Weinheim, Ger) 19(12):1551–1566. doi:10.1002/adma.200601093

  109. Wang Q, Shao YC, Xie HP, Lyu L, Liu XL, Gao YL, Huang JS (2014) Qualifying composition dependent p and n self-doping in CH3NH3PbI3. Appl Phys Lett 105(16). doi:10.1063/1.4899051

  110. Tian Y, Scheblykin IG (2015) Artifacts in absorption measurements of organometal halide perovskite materials: what are the real spectra? J Phys Chem Lett 6(17):3466–3470. doi:10.1021/acs.jpclett.5b01406

    Article  Google Scholar 

  111. Nguyen WH, Bailie CD, Unger EL, McGehee MD (2014) Enhancing the hole-conductivity of Spiro-OMeTAD without oxygen or lithium salts by using Spiro(TFSI)2 in perovskite and dye-sensitized solar cells. J Am Chem Soc 136(31):10996–11001. doi:10.1021/ja504539w

    Article  Google Scholar 

  112. Abrusci A, Stranks SD, Docampo P, Yip H-L, Jen AKY, Snaith HJ (2013) High-performance perovskite-polymer hybrid solar cells via electronic coupling with fullerene monolayers. Nano Lett 13(7):3124–3128. doi:10.1021/nl401044q

    Article  Google Scholar 

  113. Ponseca CS, Hutter EM, Piatkowski P, Cohen B, Pascher T, Douhal A, Yartsev A, Sundström V, Savenije TJ (2015) Mechanism of charge transfer and recombination dynamics in organo metal halide perovskites and organic electrodes, PCBM, and Spiro-OMeTAD: role of dark carriers. J Am Chem Soc 137(51):16043–16048. doi:10.1021/jacs.5b08770

    Article  Google Scholar 

  114. Ai X, Beard MC, Knutsen KP, Shaheen SE, Rumbles G, Ellingson RJ (2006) Photoinduced charge carrier generation in a Poly(3-hexylthiophene) and methanofullerene bulk heterojunction investigated by time-resolved terahertz spectroscopy. J Phys Chem B 110(50):25462–25471. doi:10.1021/jp065212i

    Article  Google Scholar 

  115. Cunningham PD, Hayden LM (2008) Carrier dynamics resulting from above and below gap excitation of P3HT and P3HT/PCBM investigated by optical-pump terahertz-probe spectroscopy. J Phys Chem C 112(21):7928–7935. doi:10.1021/jp711827g

    Article  Google Scholar 

  116. Esenturk O, Melinger JS, Heilweil EJ (2008) Terahertz mobility measurements on poly-3-hexylthiophene films: device comparison, molecular weight, and film processing effects. J Appl Phys 103(2). doi:10.1063/1.2828028

  117. Němec H, Nienhuys H-K, Zhang F, Inganäs O, Yartsev A, Sundström V (2008) Charge carrier dynamics in alternating polyfluorene copolymer: fullerene blends probed by terahertz spectroscopy. J Phys Chem C 112(16):6558–6563. doi:10.1021/jp710184r

    Article  Google Scholar 

  118. Němec H, Nienhuys H-K, Perzon E, Zhang F, Inganäs O, Kužel P, Sundström V (2009) Ultrafast conductivity in a low-band-gap polyphenylene and fullerene blend studied by terahertz spectroscopy. Phys Rev B 79(24):245326

    Article  Google Scholar 

  119. Ponseca CS, Yartsev A, Wang E, Andersson MR, Vithanage D, Sundström V (2012) Ultrafast terahertz photoconductivity of bulk heterojunction materials reveals high carrier mobility up to nanosecond time scale. J Am Chem Soc 134(29):11836–11839. doi:10.1021/ja301757y

    Article  Google Scholar 

  120. Vithanage DA, Devizis A, Abramavicius V, Infahsaeng Y, Abramavicius D, MacKenzie RCI, Keivanidis PE, Yartsev A, Hertel D, Nelson J, Sundstrom V, Gulbinas V (2013) Visualizing charge separation in bulk heterojunction organic solar cells. Nat Commun 4. doi:10.1038/ncomms3334

  121. Bakulin AA, Rao A, Pavelyev VG, van Loosdrecht PHM, Pshenichnikov MS, Niedzialek D, Cornil J, Beljonne D, Friend RH (2012) The role of driving energy and delocalized states for charge separation in organic semiconductors. Science 335(6074):1340–1344. doi:10.1126/science.1217745

    Article  Google Scholar 

  122. Gelinas S, Rao A, Kumar A, Smith SL, Chin AW, Clark J, van der Poll TS, Bazan GC, Friend RH (2014) Ultrafast long-range charge separation in organic semiconductor photovoltaic diodes. Science 343(6170):512–516. doi:10.1126/science.1246249

    Article  Google Scholar 

  123. Closs GL, Miller JR (1988) Intramolecular long-distance electron-transfer in organic molecules. Science 240(4851):440–447. doi:10.1126/science.240.4851.440

    Article  Google Scholar 

  124. McCusker JK (2003) Femtosecond absorption spectroscopy of transition metal charge-transfer complexes. Acc Chem Res 36(12):876–887. doi:10.1021/ar030111d

    Article  Google Scholar 

  125. Thompson DW, Ito A, Meyer TJ (2013) Ru(bpy)(3)(2+)* and other remarkable metal-to-ligand charge transfer (MLCT) excited states. Pure Appl Chem 85(7):1257–1305. doi:10.1351/pac-con-13-03-04

    Article  Google Scholar 

  126. Bressler C, Chergui M (2004) Ultrafast X-ray absorption spectroscopy. Chem Rev (Washington, DC, US) 104(4):1781–1812

    Google Scholar 

  127. Canton SE, Zhang X, Liu Y, Zhang J, Papai M, Corani A, Smeigh AL, Smolentsev G, Attenkofer K, Jennings G, Kurtz CA, Li F, Harlang T, Vithanage D, Chabera P, Bordage A, Sun L, Ott S, Wärnmark K, Sundström V (2015) Watching the dynamics of electrons and atoms at work in solar energy conversion. Faraday Discuss 185:51–68

    Article  Google Scholar 

  128. Chen LX (2005) Probing transient molecular structures in photochemical processes using laser-initiated time-resolved X-ray absorption spectroscopy. Annu Rev Phys Chem 56:221–254

    Article  Google Scholar 

  129. Chen LX, Jäger WJ, Jennings G, Gosztola DJ, Munkholm A, Hessler JP (2001) Capturing a photoexcited molecular structure through time-domain x-ray absorption fine structure. Science (New York, NY) 292(5515):262–264

    Google Scholar 

  130. Zhang X, Canton SE, Smolentsev G, Wallentin C-J, Liu Y, Kong Q, Attenkofer K, Stickrath AB, Mara MW, Chen LX, Wärnmark K, Sundström V (2014) Highly accurate excited-state structure of [Os(bpy)2dcbpy]2+ determined by X-ray transient absorption spectroscopy. J Am Chem Soc 136(24):8804–8809

    Article  Google Scholar 

  131. Abrahamsson MLA, Baudin HB, Tran A, Philouze C, Berg KE, Raymond-Johansson MK, Sun L, Aakermark B, Styring S, Hammarstroem L (2002) Ruthenium-manganese complexes for artificial photosynthesis: factors controlling intramolecular electron transfer and excited-state quenching reactions. Inorg Chem 41(6):1534–1544

    Article  Google Scholar 

  132. Borgstroem M, Shaikh N, Johansson O, Anderlund MF, Styring S, Aakermark B, Magnuson A, Hammarstroem L (2005) Light induced manganese oxidation and long-lived charge separation in a Mn2II, II-RuII(bpy)3-acceptor triad. J Am Chem Soc 127(49):17504–17515

    Article  Google Scholar 

  133. Magnuson A, Anderlund M, Johansson O, Lindblad P, Lomoth R, Polivka T, Ott S, Stensjo K, Styring S, Sundstrom V, Hammarstrom L (2009) Biomimetic and microbial approaches to solar fuel generation. Acc Chem Res 42(12):1899–1909. doi:10.1021/ar900127h

    Article  Google Scholar 

  134. Tschierlei S, Presselt M, Kuhnt C, Yartsev A, Pascher T, Sundström V, Karnahl M, Schwalbe M, Schäfer B, Rau S, Schmitt M, Dietzek B, Popp J (2009) Photophysics of an intramolecular hydrogen-evolving Ru-Pd photocatalyst. Chemistry (Weinheim an der Bergstrasse, Germany) 15(31):7678–7688

    Google Scholar 

  135. Canton SE, Zhang X, Zhang J, van Driel TB, Kjaer KS, Haldrup K, Chabera P, Harlang T, Suarez-Alcantara K, Liu Y, Pérez J, Bordage A, Papai M, Vankó G, Jennings G, Kurtz CA, Rovezzi M, Glatzel P, Smolentsev G, Uhlig J, Dohn AO, Christensen M, Galler A, Gawelda W, Bressler C, Lemke HT, Moeller KB, Nielsen MM, Lomoth R, Wärnmark K, Sundström V (2013) Toward highlighting the ultrafast electron transfer dynamics at the optically dark sites of photocatalysts. J Phys Chem Lett 4(11):1972–1976

    Article  Google Scholar 

  136. Vankö G, Neisius T, Molnar G, Renz F, Karpati S, Shukla A, de Groot FMF (2006) Probing the 3d spin momentum with X-ray emission spectroscopy: the case of molecular-spin transitions. J Phys Chem B 110(24):11647–11653

    Article  Google Scholar 

  137. Vankö G, Glatzel P, Pham V-T, Abela R, Grolimund D, Borca CN, Johnson SL, Milne CJ, Bressler C (2010) Picosecond time-resolved X-ray emission spectroscopy: ultrafast spin-state determination in an iron complex. Angew Chem Int Ed 49(34):5910–5912

    Article  Google Scholar 

  138. Canton SE, Kjaer KS, Vankö G, van Driel TB, S-i Adachi, Bordage A, Bressler C, Chabera P, Christensen M, Dohn AO, Galler A, Gawelda W, Gosztola D, Haldrup K, Harlang T, Liu Y, Moeller KB, Németh Z, Nozawa S, Papai M, Sato T, Sato T, Suarez-Alcantara K, Togashi T, Tono K, Uhlig J, Da Vithanage, Wärnmark K, Yabashi M, Zhang J, Sundström V, Nielsen MM (2015) Visualizing the non-equilibrium dynamics of photoinduced intramolecular electron transfer with femtosecond X-ray pulses. Nat Commun 6:6359

    Article  Google Scholar 

  139. Vagnini MT, Mara MW, Harpham MR, Huang J, Shelby ML, Chen LX, Wasielewski MR (2013) Interrogating the photogenerated Ir(IV) state of a water oxidation catalyst using ultrafast optical and X-ray absorption spectroscopy. Chem Sci 4(10):3863–3873. doi:10.1039/c3sc51511g

    Article  Google Scholar 

  140. Na Y, Pan J, Wang M, Sun L (2007) Intermolecular electron transfer from photogenerated Ru(bpy)3+ to [2Fe2S] model complexes of the iron-only hydrogenase active site. Inorg Chem 46(10):3813–3815

    Article  Google Scholar 

  141. Na Y, Wang M, Pan J, Zhang P, Åkermark B, Sun L (2008) Visible light-driven electron transfer and hydrogen generation catalyzed by bioinspired [2Fe2S] complexes. Inorg Chem 47(7):2805–2810. doi:10.1021/ic702010w

    Article  Google Scholar 

  142. Samuel APS, Co DT, Stern CL, Wasielewski MR (2010) Ultrafast photodriven intramolecular electron transfer from a zinc porphyrin to a readily reduced diiron hydrogenase model complex. J Am Chem Soc 132(26):8813–8815. doi:10.1021/ja100016v

    Article  Google Scholar 

  143. Mirmohades M, Pullen S, Stein M, Maji S, Ott S, Hammarström L, Lomoth R (2014) Direct observation of key catalytic intermediates in a photoinduced proton reduction cycle with a diiron carbonyl complex. J Am Chem Soc 136(50):17366–17369. doi:10.1021/ja5085817

    Article  Google Scholar 

  144. Windle CD, George MW, Perutz RN, Summers PA, Sun XZ, Whitwood AC (2015) Comparison of rhenium-porphyrin dyads for CO2 photoreduction: photocatalytic studies and charge separation dynamics studied by time-resolved IR spectroscopy. Chem Sci 6(12):6847–6864. doi:10.1039/C5SC02099A

    Article  Google Scholar 

  145. Torres O, Procacci B, Halse ME, Adams RW, Blazina D, Duckett SB, Eguillor B, Green RA, Perutz RN, Williamson DC (2014) Photochemical pump and NMR probe: chemically created NMR coherence on a microsecond time scale. J Am Chem Soc 136(28):10124–10131. doi:10.1021/ja504732u

    Article  Google Scholar 

  146. Karlsson S, Boixel J, Pellegrin Y, Blart E, Becker HC, Odobel F, Hammarstrom L (2010) Accumulative charge separation inspired by photosynthesis. J Am Chem Soc 132(51):17977–17979. doi:10.1021/ja104809x

    Article  Google Scholar 

  147. Song WJ, Ito A, Binstead RA, Hanson K, Luo HL, Brennaman MK, Concepcion JJ, Meyer TJ (2013) Accumulation of multiple oxidative equivalents at a single site by cross-surface electron transfer on TiO2. J Am Chem Soc 135(31):11587–11594. doi:10.1021/ja4032538

    Article  Google Scholar 

  148. Ashford DL, Gish MK, Vannucci AK, Brennaman MK, Templeton JL, Papanikolas JM, Meyer TJ (2015) Molecular chromophore-catalyst assemblies for solar fuel applications. Chem Rev (Washington, DC, US) 115(23):13006–13049. doi:10.1021/acs.chemrev.5b00229

  149. Tian HN (2015) Molecular catalyst immobilized photocathodes for water/proton and carbon dioxide reduction. Chemsuschem 8(22):3746–3759. doi:10.1002/cssc.201500983

    Article  Google Scholar 

  150. Lakadamyali F, Reynal A, Kato M, Durrant JR, Reisner E (2012) Electron transfer in dye-sensitised semiconductors modified with molecular cobalt catalysts: photoreduction of aqueous protons. Chem—A Eur J 18(48):15464–15475. doi:10.1002/chem.201202149

    Article  Google Scholar 

  151. Reynal A, Lakadamyali F, Gross MA, Reisner E, Durrant JR (2013) Parameters affecting electron transfer dynamics from semiconductors to molecular catalysts for the photochemical reduction of protons. Energy Environ Sci 6(11):3291–3300. doi:10.1039/c3ee40961a

    Article  Google Scholar 

  152. Brown AM, Antila LJ, Mirmohades M, Pullen S, Ott S, Hammarström L (2016) Ultrafast electron transfer between dye and catalyst on a mesoporous NiO surface. J Am Chem Soc. doi:10.1021/jacs.6b03889

    Google Scholar 

  153. Poddutoori PK, Thomsen JM, Milot RL, Sheehan SW, Negre CFA, Garapati VKR, Schmuttenmaer CA, Batista VS, Brudvig GW, van der Est A (2015) Interfacial electron transfer in photoanodes based on phosphorus(V) porphyrin sensitizers co-deposited on SnO2 with the Ir(III)Cp* water oxidation precatalyst. J Mater Chem A 3(7):3868–3879. doi:10.1039/c4ta07018f

    Article  Google Scholar 

  154. Youngblood WJ, Lee SHA, Kobayashi Y, Hernandez-Pagan EA, Hoertz PG, Moore TA, Moore AL, Gust D, Mallouk TE (2009) Photoassisted overall water splitting in a visible light-absorbing dye-sensitized photoelectrochemical cell. J Am Chem Soc 131(3):926–+. doi:10.1021/ja809108y

  155. Zhao YX, Swierk JR, Megiatto JD, Sherman B, Youngblood WJ, Qin DD, Lentz DM, Moore AL, Moore TA, Gust D, Mallouk TE (2012) Improving the efficiency of water splitting in dye-sensitized solar cells by using a biomimetic electron transfer mediator. Proc Natl Acad Sci USA 109(39):15612–15616. doi:10.1073/pnas.1118339109

    Article  Google Scholar 

Download references

Acknowledgements

The authors want to thank all our coworkers and long-term collaboration partners. We also gratefully acknowledge financial support from The Swedish Research Council, The Knut and Alice Wallenberg Foundation and The Swedish Energy Agency.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Leif Hammarström or Villy Sundström .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Hammarström, L., Lomoth, R., Ponseca, C.S., Chábera, P., Uhlig, J., Sundström, V. (2018). Time-Resolved Laser Spectroscopy in Molecular Devices for Solar Energy Conversion. In: Tian, H., Boschloo, G., Hagfeldt, A. (eds) Molecular Devices for Solar Energy Conversion and Storage. Green Chemistry and Sustainable Technology. Springer, Singapore. https://doi.org/10.1007/978-981-10-5924-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-5924-7_11

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-5923-0

  • Online ISBN: 978-981-10-5924-7

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics