Advertisement

A Purely Active Circuit Simulator for Realizing Electronically Tunable Floating Resistance

  • Mayank Srivastava
  • Ajay Roy
  • Dinesh Prasad
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 624)

Abstract

This research article proposes a novel floating resistor simulation circuit with electronic control facility. Proposed simulator employs two voltage differencing transconductance amplifiers (VDTAs) only. The circuit structure of presented simulator is very simple and enjoys the following beneficial properties: (i) employment of only two active elements (VDTAs), (ii) no requirement of any external resistance so a purely active implementation, (iii) electronic control of realized resistance, (iv) no need to meet any active/passive element matching condition, (v) excellent behavior under non-ideal conditions, (vi) low values of sensitivity indexes, and (vii) full utilization of used active elements. The influence of VDTA terminal parasitics on high-frequency behavior of proposed circuit is also investigated. The working of presented circuit has been confirmed by designing a low-pass filter. To validate the behavior of realized circuits, simulations in PSPICE have been performed.

Keywords

Active simulator Resistance simulation Floating resistance VDTA 

References

  1. 1.
    Minaei, S.; Yuce, E.; and Cicekoglu, O. (2006). A versatile active circuit for realizing floating inductance, capacitance, FDNR and admittance converter. Analog Integrated Circuits and Signal Processing, 47(2), 199–202.Google Scholar
  2. 2.
    Pal, K. (1971). New inductance and capacitor floatation schemes using current conveyors. Electronics Letters, 17(21), 807–808.Google Scholar
  3. 3.
    P. V. Ananda Mohan, (2008). Floating capacitance simulation using current conveyors,” Journal of Circuits Systems and Computers, 14(1), 123–128.Google Scholar
  4. 4.
    P. Mongkolwai, P.; Pukkalanun, T.; and Tangsrirat, W. (2012). Electronically tunable floating capacitance simulator with only VDTAs and a grounded capacitor. 4th International Science, Social Science, Engineering and Energy Conference-2012.Google Scholar
  5. 5.
    Lahiri, (2010) DO-CCII based generalised impedance convertor simulates floating inductance, capacitance multiplier and FDNR. Australian Journal of Electrical & Electronics Engineering, 7(1), 55–59.Google Scholar
  6. 6.
    Senani, R. (1994). Realization of liner voltage controlled resistance in floating form. Electronics letters, 30(23), 1909–1910.Google Scholar
  7. 7.
    Riewruja, V.; and Petchmaneelumka, W. (2008). Floating current controlled resistance converters using OTAs. International Journal of Electronics and Communications-AEU, 62 (10), 725–731.Google Scholar
  8. 8.
    Yuce, E. (2007). On the implementation of the floating simulators employing a single active device. International Journal of Electronics and Communications-AEU, 61(7), 453–458.Google Scholar
  9. 9.
    Yuce, E.; Cicekoglu, O.; and Minaei, S. (2006). CCII-Based Grounded to Floating Immittance Converter and a Floating Inductance Simulator. Analog Integrated Circuits and Signal Processing, 46 (3), 287–291.Google Scholar
  10. 10.
    S. Minaei, E. Yuce and O. Cicekoglu, “A versatile active circuit for realizing floating inductance, capacitance, FDNR and admittance converter,” Analog Integrated Circuits and Signal Processing, vol. 47, no. 2, pp. 199–202, 2006.Google Scholar
  11. 11.
    Saad, R. A.; and Soliman, A. M. (2010). On the systematic synthesis of CCII-based floating simulators. International Journal of Circuit Theory and Applications, 38 (9), 935–967.Google Scholar
  12. 12.
    Kumngern, M.; Torteanchai, U.; and Dejhan, K. (2011). Voltage controlled floating resistor using DDCC. Radioengineering, 20 (1), 327–333.Google Scholar
  13. 13.
    Yuce, E.; Minaei, S.; and Cicekoglu, O. (2006). Resistorless floating immitance function simulators employing current controlled conveyors and a grounded capacitor. Electrical Engineering, 88 (6), 519–525.Google Scholar
  14. 14.
    Sagbas, M.; Ayten, U. E.; Sedef, H.; and Koksal, M. (2009). Floating immittance function simulator and its applications. Circuits Systems and Signal Processing, 28 (1), 55–63.Google Scholar
  15. 15.
    Ayten, U. E.; Sagbas, M.; Herencsar, N.; and Koton, J. (2012). Novel Floating General Element Simulators Using CBTA. Radioengineering, 21 (1), 11–19.Google Scholar
  16. 16.
    Sagbas, M. (2011). Component reduced floating ±L, ±C and ±R simulators with grounded passive components. International Journal of Electronics and Communications-AEU, 65 (10), 794–798.Google Scholar
  17. 17.
    Li, Y. (2012). A series of new circuits based on CFTAs. International Journal of Electronics and Communications-AEU, 66 (7), 587–592.Google Scholar
  18. 18.
    Yuce, E. (2010). A novel floating simulation topology composed of only grounded passive components. International Journal of Electronics, 97 (3), 249–262.Google Scholar
  19. 19.
    Srivastava, M.; D. Prasad and Bhaskar, D. R. (2015). VDTA Based Electronically Tunable Purely Active Simulator Circuit for Realizing Floating Resistance. Journal of Engineering Science and Technology Review, 8 (3), 112–116.Google Scholar
  20. 20.
    Biolek, D.; Senani, R.; Biolkova, V.; and Kolka, Z. (2008). Active elements for analog signal processing; classification, review and new proposals. Radioengineering, 17 (4), 15–32.Google Scholar
  21. 21.
    Yesil, A.; Kacar, F.; and Kuntman, H. (2011) “New simple CMOS realization of voltage differencing transconductance amplifier and its RF filter application,” Radioengineering, 20 (3), 632–637.Google Scholar
  22. 22.
    Prasad, D.; Bhaskar, D. R.; and Srivastava, M. (2013) Universal Current-Mode Biquad Filter using a VDTA. Circuits and Systems, 4 (1), 32–36.Google Scholar
  23. 23.
    Prasad, D.; Bhaskar, D. R.; and Srivastava, M. (2013, “Universal voltage-mode biquad filter using voltage differencing transconductance amplifier. Indian Journal of Pure and Applied Physics, 51 (12), 864–868.Google Scholar
  24. 24.
    Prasad, D.; Srivastava, M.; and Bhaskar, D. R.; (2014). Transadmittance - type universal current-mode biquad filter using voltage differencing transconductance amplifiers. International Scholarly Research Notices, 4.Google Scholar
  25. 25.
    Prasad, D.; Srivastava, M.; and Bhaskar, D. R.; (2013). Electronically controllable fully uncoupled explicit current mode quadrature oscillator using VDTA and grounded capacitors. Circuits and Systems, 4 (2), 169–172.Google Scholar
  26. 26.
    Srivastava, M.; Prasad, D.; and Bhaskar, D. R. (2014). New Parallel R-L impedance using single VDTA & its high pass filter applications,” In Proc. of International Conference on Signal Processing and Integrated Networks-2014 (SPIN-2014), Noida (India), 535–537.Google Scholar
  27. 27.
    Srivastava, M.; Prasad, D.; and Bhaskar, D. R. (2014). Voltage mode quadrature oscillator employing single VDTA and grounded capacitors. Contemporary Engineering Sciences, 27 (7). 1501–1507.Google Scholar
  28. 28.
    Srivastava, M.; Prasad, D.; Chitranshi, G.; Sengar, P.; and Mamta (2015). Novel Electronically tunable current-mode integrator employing VDTA. IEEE-INDICON-2015, 1–4, New Delhi (India).Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Electronics and Communication EngineeringKIET Group of InstitutionsGhaziabadIndia
  2. 2.Department of Electronics and Communication EngineeringJamia Millia IslamiaNew DelhiIndia

Personalised recommendations