Implementation of Adder Circuit Using Quantum-Dot Cellular Automata-Based Logic Gates

  • Priyanka Kumari
  • Abhay Sharma
  • Arpita Singh
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 624)


Quantum-dot Cellular automata (QCA) is nanotechnology that can be acquired to replace transistor-based design. The approach of transistor is based on charge transport; the primitive element in QCA is a cell; the communication between cells is solely Columbic hence there is no physical transport of charge. The major feature includes higher packaging density and lower power consumption. QCA cell-based structures can implement the logic gates, wires, memory units, combinational and sequential logic circuits. Digital logic design employing QCA cell is the main focus of this paper. In this paper, structure for Exclusive OR operation is proposed with primary goal of application in adder circuit to reduce the area. QCA designer is the EDA tool used for implementation and functional verification of the proposed structures.


Quantum-dot cellular automata (QCA) EXOR gate Half adder Full adder 


  1. 1.
    Kim, K., Wu, K., Karri, R.: The robust QCA adder designs using composable QCA building blocks. IEEE transactions on computer-aided design of integrated circuits and systems, 26(1), 176–183 (2007).Google Scholar
  2. 2.
    Pudi, V., Sridharan, K.: Efficient design of a hybrid adder in quantum-dot cellular automata. IEEE transactions on very large scale integration (VLSI) systems, 19(9), 1535–1548 (2011).Google Scholar
  3. 3.
    Lent, C.S., Tougaws, P.D., Porod, W., Bernestine, G.H.: Quantum cellular automata. Nanotecnology, Vol. 4, pp. 49–57 (1993).Google Scholar
  4. 4.
    Snider, G.L., Orlov, A.O., Amlani, I., Bernstein, G.H., Lent, C.S., Merz, J.L., Porod, W.: Quantum-dot cellular automata: Line and majority logic gate. Japanese Journal of Applied Physics, 38(12S), 7227 (1999).Google Scholar
  5. 5.
    Radhika, P., Tiwari, N., Pant, Y.: Design of adder and multiplier using quantum dot cellular automata based on nanotechnology. In Presented at the National Conference on Emerging Technologies (2011).Google Scholar
  6. 6.
    Cho, H., Swartzlander, Earl E.: Adder designs and analyses for quantum-dot cellular automata. IEEE Transactions on Nanotechnology, 6(3), 374–383(2007).Google Scholar
  7. 7.
    Wang, W., Walus, K., Jullien, G.A. (2003, August). Quantum-dot cellular automata adders. In Nanotechnology, 2003. IEEE-NANO 2003. 2003 Third IEEE Conference on Vol. 1, pp. 461–464 (2003).Google Scholar
  8. 8.
    Azghadi, M.R., Kavehie, O., Navi, K.: A novel design for quantum-dot cellular automata cells and full adders. Journal of Applied Sciences, Vol. 7, No. 22, pp. 3460–3468 (2007).Google Scholar
  9. 9.
    Lent, C.S., Tougaw, P.D., Porod, W.: Quantum cellular automata: the physics of computing with arrays of quantum dot molecules. In Physics and Computation, 1994. PhysComp’94, Proceedings, Workshop on IEEE, pp. 5–13 (2014).Google Scholar
  10. 10.
    Srivastava, S., Bhanja, S.: Hierarchical probabilistic macromodeling for QCA circuits. IEEE Transactions on Computers, 56(2), (2007).Google Scholar
  11. 11.
    Walus, K., Jullien, G.A.: Design tools for an emerging SoC technology: Quantum-dot cellular automata. Proceedings of the IEEE, 94(6), 1225–1244 (2006).Google Scholar
  12. 12.
    Blair, E.P., Yost, E., Lent, C.S. (2010). Power dissipation in clocking wires for clocked molecular quantum-dot cellular automata. Journal of computational electronics, 9(1), 49–55 (2010).Google Scholar
  13. 13.
    Graunke, C.R., Wheeler, D.I., Tougaw, D., Will, J.D. (2005). Implementation of a crossbar network using quantum-dot cellular automata. IEEE Transactions on Nanotechnology, 4(4), 435–440 (2005).Google Scholar
  14. 14.
    Walus, K., Dysart, T. J., Jullien, G. A., Budiman, R. A.: QCA Designer: A rapid design and simulation tool for quantum-dot cellular automata. IEEE transactions on nanotechnology, 3(1), 26–31(2004).Google Scholar
  15. 15.
    Perri, S., Corsonello, P.: New methodology for the design of efficient binary addition circuits in QCA. IEEE Transactions on Nanotechnology, 11(6), 1192–1200 (2012).Google Scholar
  16. 16.
    Walus, K., Dysart, T.J., Jullien, G.A., Budiman, R.A.: QCADesigner: A rapid design and simulation tool for quantum-dot cellular automata. IEEE transactions on nanotechnology, 3(1), 26–31(2004).Google Scholar
  17. 17.
    Galatsis, K., Khitun, A., Ostroumov, R., Wang, K.L., Dichtel, W.R., Plummer, E., Kim, K.W.: Alternate state variables for emerging nanoelectronic devices. IEEE transactions on Nanotechnology, 8(1), 66–75 (2009).Google Scholar
  18. 18.
    Sridharan, K., Pudi, V.: Design of arithmetic circuits in quantum dot cellular automata nanotechnology. Spinger Vol. 599 (2015).Google Scholar
  19. 19.
    Reddy, D.T., Reddy, S.P., Reddy, K.S.K., Reddy, S.N., Khasid, S.K.: Area-Delay Efficient Binary Adders in QCA. Editorial Committees, 52.Google Scholar
  20. 20.
    BASU, S.: Realization of Xor and Xnor gates using qca basic gates (2014). Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Electronics and Communication EngineeringGraphic Era UniversityDehradunIndia
  2. 2.Department of Electronics and Communication EngineeringGraphic Era Hill UniversityDehradunIndia

Personalised recommendations