Skip to main content

Promising Retrofit Technologies for Multi-Column System

  • Chapter
  • First Online:
Advances in Distillation Retrofit
  • 711 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrawal R (1999) More operable fully thermally coupled distillation column configurations for multicomponent distillation. Chem Eng Res Des. 77:543–553

    Article  CAS  Google Scholar 

  • Agrawal R (2000) Multieffect distillation for thermally coupled configurations. AIChE J. 46:2211–2224

    Article  CAS  Google Scholar 

  • Agrawal R, Fidkowski Z (1998) More operable arrangements of fully thermally coupled distillation columns. AIChE J. 44:2565–2568

    Article  CAS  Google Scholar 

  • Agrawal R, Fidkowski Z (1999) New thermally coupled schemes for ternary distillation. AIChE J. 45:485–496

    Article  CAS  Google Scholar 

  • Alatiqi IM, Luyben WL (1985) Alternative distillation configurations for separating ternary mixtures with small concentration of intermediate in the feed. Ind Eng Chem Process Des Dev. 24:500–506

    Article  CAS  Google Scholar 

  • Amminudin KA, Smith R (2001) Design and optimization of fully thermally coupled distillation columns. Part 2: application of dividing wall columns in retrofit. Trans IChemE 79:716–724

    Article  CAS  Google Scholar 

  • Amminudin KA, Smith R, Thong DYC et al (2001) Design and optimization of fully thermally coupled distillation columns: Part 1: preliminary design and optimization methodology. Trans IChemE. 79:701–715

    Article  CAS  Google Scholar 

  • Aspen Technology (2009) Aspen HYSYS thermodynamics COM interface. Version V7.1

    Google Scholar 

  • Asprion N, Kaibel G (2010) Dividing wall columns: fundamentals and recent advances. Chem Eng Process. 49:139–146

    Article  CAS  Google Scholar 

  • Bildea CS, Dimian AC (1999) Interaction between design and control of a heat-integrated distillation system with prefractionator. Trans.IChemE 77 (Part A) 597–608

    Google Scholar 

  • Blancarte-Palacios JL, Bautista-Valadés MN, Hernández Castro S et al (2003) Energy-efficient designs of thermally coupled distillation sequences for four-component mixtures. Ind Eng Chem Res. 42:5157–5164

    Article  CAS  Google Scholar 

  • Box GEP, Behnken DW (1960) Some new three level designs for the study of quantitative variables. Technometrics 2:455–475

    Article  Google Scholar 

  • Box GEP, Wilson KB (1951) On the experimental attainment of optimum conditions. J R Stat Soc Ser B 13:1–45

    Google Scholar 

  • Caballero JA, Grossmann IE (2014) Optimal synthesis of thermally coupled distillation sequences using a novel MILP approach. Comput Chem Eng. 61:118–135

    Article  Google Scholar 

  • Carlberg NA, Westerberg AW (1989a) Temperature-heat diagrams for complex columns. 3. Underwood’s method for the petlyuk configuration. Ind Eng Chem Res 28:1386–1397

    Article  CAS  Google Scholar 

  • Carlberg NA, Westerberg AW (1989b) Temperature-heat diagrams for complex columns. 2. Underwood’s method for sidestrippers and enrichers. Ind Eng Chem Res 28:1379–1386

    Article  CAS  Google Scholar 

  • Cheng HC, Luyben WL (1985) Heat-integrated distillation columns for ternary separations. Ind Eng Chem Process Des Dev. 24:707–713

    Article  CAS  Google Scholar 

  • Christiansen C, Skogestad S, Lien K (1997) Complex distillation arrangements: extending the petlyuk ideas. Comput Chem Eng. 21:S237–S242

    Article  CAS  Google Scholar 

  • Dejanović I, MatijaÅ¡ević Lj, Olujić Ž (2010) Dividing wall column-a breakthrough towards sustainable distilling. Chem Eng Process. 49:559–580

    Article  Google Scholar 

  • Diggelen RCv, Kiss AA, Heemink AW (2010) Comparison of control strategies for dividing-wall columns. Ind Eng Chem Res. 49:288–307

    Article  Google Scholar 

  • Douglas JM (1988) Conceptual design of chemical processes. McGraw-Hill, New York, p 163–215

    Google Scholar 

  • Dunnebier G, Pantelides CC (1999) Optimal design of thermally coupled distillation columns. Ind Eng Chem Res. 38:162–176

    Article  Google Scholar 

  • Dwivedi D, Strandberg JP, Halvorsen IJ et al (2012) Active vapor split control for dividing-wall columns. Ind Eng Chem Res. 51:15176–15183

    Article  CAS  Google Scholar 

  • Emtir M, Rev E, Fonyo Z (2001) Rigorous simulation of energy integrated and thermally coupled distillation schemes for ternary mixture. Appl Therm Eng. 21:1299–1317

    Article  CAS  Google Scholar 

  • Engelien HK, Skogestad S (2005) Multi-effect distillation applied to an industrial case study. Chem Eng Process. 44:819–826

    Article  CAS  Google Scholar 

  • Errico M, Rong BG, Tola G et al (2008) Process intensification for the retrofit of a multicomponent distillation plant-an industrial case study. Ind Eng Chem Res. 47:1975–1980

    Article  CAS  Google Scholar 

  • Errico M, Tola G, Rong BG et al (2009) Energy saving and capital cost evaluation in distillation column sequences with a divided wall column. Chem Eng Res Des. 87:1649–1657

    Article  CAS  Google Scholar 

  • Fenske MR (1932) Fractionation of straight-run Pennsylvania gasoline. Ind Eng Chem. 24:482–485

    Article  CAS  Google Scholar 

  • Fidkowski Z, Krolikowski L (1986) Thermally coupled system of distillation columns: optimization procedure. AIChE J. 32:537–546

    Article  CAS  Google Scholar 

  • Gadalla MA, Olujic Z, Jansens PJ et al (2005) Reducing CO emissions and energy consumption of heat-integrated distillation systems. Environ Sci Technol. 39:6860–6870

    Article  CAS  Google Scholar 

  • Ghadrdan M, Halvorsen IJ, Skogestad S (2011) Optimal operation of Kaibel distillation columns. Chem Eng Res Des 89:1382–1391

    Article  CAS  Google Scholar 

  • Ghadrdan M, Halvorsen IJ, Skogestad S (2013) Manipulation of vapour split in Kaibel distillation arrangements. Chem Eng Process. 72:10–23

    Article  CAS  Google Scholar 

  • Glinos K, Nikolaides I, Malone F (1986) New complex column arrangements for ideal distillation. Ind Eng Chem Proc Des Dev. 25:694–699

    Article  CAS  Google Scholar 

  • Halvorsen IJ, Skogestad S (2003) Minimum energy consumption in multicomponent distillation. 2: three-product Petlyuk arrangements. Ind Eng Chem Res. 42:605–615

    Article  CAS  Google Scholar 

  • Hernández JGS, Hernández S, Jiménez A (2005) Analysis of dynamic properties of alternative sequences to the petlyuk column. Comput Chem Eng. 29:1389–1399

    Article  Google Scholar 

  • Hernández S, Jiménez A (1996) Design of optimal thermally-coupled distillation systems using a dynamic model. Trans Inst Chem Eng. 74:357–362

    Google Scholar 

  • Hernández S, Jiménez A (1999) Design of energy-efficient petlyuk systems. Comput Chem Eng. 23:1005–1010

    Article  Google Scholar 

  • Huaqiang G, Xiangwu C, Nan C et al (2014) Experimental study on vapour splitter in packed divided wall column. J Chem Technol Biotechnol. 91:449–455

    Article  Google Scholar 

  • Jiménez A, Ramírez N, Castro A et al (2003) Design and energy performance of alternative schemes to the Petlyuk distillation system. Chem Eng Res Des 81:518–524

    Article  Google Scholar 

  • Kang KJ, Harvianto GR, Lee MY (2017) Hydraulic driven active vapor distributor for enhancing operability of a dividing wall column. Ind Eng Chem Res. 56:6493–6498

    Article  CAS  Google Scholar 

  • King ST, Haas J (2013) Vapor and liquid flow control in a dividing wall fractional distillation column. U.S. Patent 8,562,792 B2, 22 October

    Google Scholar 

  • Kiss AA, Bildea CS (2011) A Control perspective on process intensification in dividing wall columns. Chem Eng Process. 50:281–292

    Article  CAS  Google Scholar 

  • Kiss AA, Ignat RM (2012) Innovative single step bioethanol dehydration in an extractive dividing-wall column. Sep Purif Technol. 98:290–7

    Article  CAS  Google Scholar 

  • Kiss AA, Suszwalak DJPC (2012) Innovative dimethyl ether synthesis in a reactive dividing-wall column. Comput Chem Eng. 38:74–81

    Article  CAS  Google Scholar 

  • Klemola KT, Ilme JK (1996) Distillation efficiencies of an industrial-scale i-butane/n-butane fractionator. Ind Eng Chem Res. 35:4579–4586

    Article  CAS  Google Scholar 

  • Kolbe B, Wenzel S (2004) Novel distillation concepts using one-shell columns. Chem Eng Process. 43:339–346

    Article  CAS  Google Scholar 

  • Lee B, Kim G (2012) Liquid splitter. Korean Patent Pending, 10-2012-0030223

    Google Scholar 

  • Lee B, Kim G, Lee M, et al (2010) Liquid splitter. Korean Patent Pending, 10-2010-0120467

    Google Scholar 

  • Lee MY, Minh LQ, Long NVD et al (2016) Retrofit of side stream columns to dividing wall columns, with a case study of industrial application. In: Rangaiah GP (eds) Chemical process retrofitting and revamping techniques and applications. Wiley, West Sussex, pp 251–283

    Google Scholar 

  • Lee SK, Shin JH, Lee JK (2011) Divided wall distillation column for producing high purity normal butanol, and normal butanol distillation method. U.S. Patent US2011/0303526, 15 December

    Google Scholar 

  • Liu ZY, Jobson M (2004a) Retrofit design for increasing the processing capacity of distillation columns 1. A hydraulic performance indicator. Chem Eng Res Des. 82:3–9

    Article  CAS  Google Scholar 

  • Liu ZY, Jobson M (2004b) Retrofit design for increasing the processing capacity of distillation columns. 2. Proposing and evaluating design options. Chem Eng Res Des. 82:10–17

    Article  CAS  Google Scholar 

  • Long NVD, Lee MY (2011) Improved energy efficiency in debottlenecking using a fully thermally coupled distillation column. Asia-Pac J Chem Eng. 6:338–348

    Article  Google Scholar 

  • Long NVD, Lee MY (2012a) Improvement of the deethanizing and depropanizing fractionation steps in NGL recovery process using dividing wall column. J Chem Eng Japan. 4:285–294

    Article  Google Scholar 

  • Long NVD, Lee MY (2012b) Dividing wall column structure design using response surface methodology. Com Chem Eng. 37:119–124

    Article  Google Scholar 

  • Long NVD, Lee MY (2012c) Improvement of natural gas liquid recovery energy efficiency through thermally coupled distillation arrangements. Asia-Pac J Chem Eng. 7:71–77

    Article  Google Scholar 

  • Long NVD, Lee MY (2013a) Optimal retrofit design of extractive distillation to energy efficient thermally coupled distillation scheme. AIChE J 59:1175–1182

    Article  Google Scholar 

  • Long NVD, Lee MY (2013b) Optimal retrofit of a side stream column to a dividing wall column for energy efficiency maximization. Chem Eng Res Des. 91:2291–2298

    Article  Google Scholar 

  • Long NVD, Lee MY (2013c) Design and optimization of heat integrated dividing wall columns for improved debutanizing and deisobutanizing fractionation of NGL. Korean J Chem. Eng. 30:286–294

    Article  Google Scholar 

  • Long NVD, Lee MY (2014) Review of retrofitting distillation columns using thermally coupled distillation sequences and dividing wall columns to improve energy efficiency. J Chem Eng Japan 47:87–108

    Article  Google Scholar 

  • Long NVD, Lee MY (2015) A hybrid technology combining heat pump and thermally coupled distillation sequence for retrofit and debottlenecking. Energy 81:103–110

    Article  CAS  Google Scholar 

  • Long NVD, Lee SH, Lee MY (2010) Design and optimization of a dividing wall column for debottlenecking of the acetic acid purification. Chem Eng Process. 49:825–835

    Article  Google Scholar 

  • Long NVD, Minh LQ, Pham TN et al (2016) Novel retrofit designs using a modified coordinate descent methodology for improving energy efficiency of natural gas liquid fractionation process. J Nat Gas Sci Eng. 33:458–468

    Article  Google Scholar 

  • Luyben WL (2004) Design and control of distillation columns with intermediate reboiler. Ind Eng Chem Res. 43:8244–8250

    Article  CAS  Google Scholar 

  • Malinen I, Tanskanen J (2009) Thermally coupled side-column configurations enabling distillation boundary crossing. 1. An overview and a solving procedure. Ind Eng Chem Res. 48:6387–6404

    Article  CAS  Google Scholar 

  • Manley DB (1997) Deethanizer/Depropanizer sequences with thermal and thermo-mechanical coupling and component distribution. U.S. Patent No. 5,673,571, 7 October

    Google Scholar 

  • Mannan S, Fakhru’l-Razi A, Alam MZ (2007) Optimization of process parameters for the bioconversion of activated sludge by penicillium corylophilum, using response surface methodology. J Environ Sci 19:23–28

    Article  CAS  Google Scholar 

  • Olujić Ž, Jödecke M, Shilkin A et al (2009) Equipment improvement trends in distillation. Chem Eng Process. 48:1089–1104

    Article  Google Scholar 

  • Poth N, Brusis D, Stichlmair J (2004) Minimaler energiebedarf von trennwandkolonnen. Chem Ing Tech. 76:1811–1814

    Article  CAS  Google Scholar 

  • Premkumar R, Rangaiah GP (2009) Retrofitting conventional column systems to dividing wall columns. Chem Eng Res Des. 87:47–60

    Article  CAS  Google Scholar 

  • Rangaiah GP, Ooi EL, Premkumar R (2009) A simplified procedure for quick design of dividing-wall columns for industrial applications. Chem Prod Process Model., 4 Article 7. doi:10.2202/1934-2659.1265

    Google Scholar 

  • Reid JA (2000) Distributed distillation with heat integration. Heating the process and fluid flow, PTQ AUTUMN 85–95

    Google Scholar 

  • Rong BG (2011) Synthesis of dividing-wall column (DWC) for multicomponent distillations – a systematic approach. Chem Eng Res Des. 89:1281–1294

    Article  CAS  Google Scholar 

  • Rong BG, Turunen I (2006) Process intensification for systematic synthesis of new distillation systems with less than N-1 columns. Comput Aided Chem Eng. 21:1009–1014

    Article  Google Scholar 

  • Schultz MA, Stewart DG, Harris JM et al (2002) Reduce costs with dividing-wall columns. Chem Eng Prog. 98:64–71

    CAS  Google Scholar 

  • Shin J, Lee S, Lee J et al (2011) Manage risks with dividing-wall column installations. Hydrocarbon Process. 90:59–62

    Google Scholar 

  • Shin J, Lee J, Lee S et al (2013) Enhance operation and reliability of dividing-wall columns. Hydrocarbon Process. 92:85–88

    CAS  Google Scholar 

  • Slade B, Stober B, Simpson D (2006) Dividing wall column revamp optimizes mixed xylenes production, IChemE, Symposium Series No. 152

    Google Scholar 

  • Smith R (2005) Chemical process design and integration. Wiley, West Sussex, p 212–232

    Google Scholar 

  • Triantafyllou C, Smith R (1992) The design and optimization of fully thermally coupled distillation. Trans Inst Chem Eng. 70:118–132

    CAS  Google Scholar 

  • Turton R, Bailie RC, Whiting WB, Shaeiwitz JA, Bhattacharyya D (2012) Analysis, synthesis and design of chemical processes, 4th edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Tututi-Avila S, Jimenez-Gutierrez A, Hahn J (2014) Control analysis of an extractive dividing-wall column used for ethanol dehydration. Chem Eng Process. 82:88–10

    Article  CAS  Google Scholar 

  • Underwood AJ (1948) Fractional distillation of multicomponent mixtures. Chem Eng Progress 44:603–614

    CAS  Google Scholar 

  • Vazquez-Castillo JA, Venegas-Sánchez JA, Segovia-Hernández JG et al (2009) Design and optimization, using genetic algorithms, of intensified distillation systems for a class of quaternary mixtures. Comput Chem Eng 33(11):1841–1850

    Article  CAS  Google Scholar 

  • Wankat PC (2012) Separation process engineering: includes mass transfer analysis, 3rd edn. Prentice-Hall, Upper Saddle River

    Google Scholar 

  • Wenzel S, Rohm H (2003) Design of complex distillation columns by overall-cost optimization. Chem Eng Technol. 27:484–490

    Article  Google Scholar 

  • Wright SJ (2015) Coordinate descent algorithms. Math Program. 151:3–34

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Moonyong Lee or Nguyen Van Duc Long .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Lee, M., Long, N.V.D. (2017). Promising Retrofit Technologies for Multi-Column System . In: Advances in Distillation Retrofit. Springer, Singapore. https://doi.org/10.1007/978-981-10-5901-8_4

Download citation

Publish with us

Policies and ethics