Preeclampsia pp 99-112 | Cite as

Placental Adenosine Signaling in the Pathophysiology of Preeclampsia

  • Takayuki IriyamaEmail author
  • Yang Xia
Part of the Comprehensive Gynecology and Obstetrics book series (CGO)


Impairment in placental development and function is known to be associated with the pathophysiology of preeclampsia. However, placenta-specific molecular basis leading to preeclampsia remains to be fully understood. Adenosine, an endogenous nucleotide, is a signaling molecule that is induced under various pathological conditions including hypoxia, energy depletion, and inflammation and contributes to various diseases. Recent report form Iriyama et al. revealed that a local increase of adenosine in the placenta is sufficient to trigger key features of preeclampsia by using mouse models, and adenosine was identified as one of pathogenic factors for preeclampsia. This chapter is to summarize current progress and the significance of adenosine signaling in different disease states and to detail the findings of enhanced placental adenosine signaling in the pathophysiology of preeclampsia.


Adenosine Placenta Mouse model 


  1. 1.
    Roberts JM, Cooper DW. Pathogenesis and genetics of pre-eclampsia. Lancet. 2001;357(9249):53–6. Epub 2001/02/24.CrossRefPubMedGoogle Scholar
  2. 2.
    Steegers EA, von Dadelszen P, Duvekot JJ, Pijnenborg R. Pre-eclampsia. Lancet. 2010;376(9741):631–44. Epub 2010/07/06.CrossRefPubMedGoogle Scholar
  3. 3.
    Young BC, Levine RJ, Karumanchi SA. Pathogenesis of preeclampsia. Annu Rev Pathol. 2010;5:173–92. Epub 2010/01/19.CrossRefPubMedGoogle Scholar
  4. 4.
    Ahmed A, Rahman M, Zhang X, Acevedo CH, Nijjar S, Rushton I, et al. Induction of placental heme oxygenase-1 is protective against TNFalpha-induced cytotoxicity and promotes vessel relaxation. Mol Med. 2000;6(5):391–409. Epub 2000/08/22.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Cudmore M, Ahmad S, Al-Ani B, Fujisawa T, Coxall H, Chudasama K, et al. Negative regulation of soluble Flt-1 and soluble endoglin release by heme oxygenase-1. Circulation. 2007;115(13):1789–97. Epub 2007/03/29.CrossRefPubMedGoogle Scholar
  6. 6.
    Wang K, Ahmad S, Cai M, Rennie J, Fujisawa T, Crispi F, et al. Dysregulation of hydrogen sulfide producing enzyme cystathionine gamma-lyase contributes to maternal hypertension and placental abnormalities in preeclampsia. Circulation. 2013;127(25):2514–22. Epub 2013/05/25.CrossRefPubMedGoogle Scholar
  7. 7.
    Maynard SE, Min JY, Merchan J, Lim KH, Li J, Mondal S, et al. Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J Clin Invest. 2003;111(5):649–58. Epub 2003/03/06.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Ahmad S, Ahmed A. Elevated placental soluble vascular endothelial growth factor receptor-1 inhibits angiogenesis in preeclampsia. Circ Res. 2004;95(9):884–91. Epub 2004/10/09.CrossRefPubMedGoogle Scholar
  9. 9.
    Lynch AM, Salmon JE. Dysregulated complement activation as a common pathway of injury in preeclampsia and other pregnancy complications. Placenta. 2010;31(7):561–7. Epub 2010/04/30.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Zhou CC, Zhang Y, Irani RA, Zhang H, Mi T, Popek EJ, et al. Angiotensin receptor agonistic autoantibodies induce pre-eclampsia in pregnant mice. Nat Med. 2008;14(8):855–62. Epub 2008/07/29.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Iriyama T, Sun K, Parchim NF, Li J, Zhao C, Song A, et al. Elevated placental adenosine signaling contributes to the pathogenesis of preeclampsia. Circulation. 2015;131(8):730–41. Epub 2014/12/30.CrossRefPubMedGoogle Scholar
  12. 12.
    Chen JF, Eltzschig HK, Fredholm BB. Adenosine receptors as drug targets—what are the challenges? Nat Rev Drug Discov. 2013;12(4):265–86. Epub 2013/03/29.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Karmouty-Quintana H, Xia Y, Blackburn MR. Adenosine signaling during acute and chronic disease states. J Mol Med. 2013;91(2):173–81. Epub 2013/01/24.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Liu H, Xia Y. Beneficial and detrimental role of adenosine signaling in diseases and therapy. J Appl Physiol. 2015;119(10):1173–82. Epub 2015/09/01.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Zhang Y, Xia Y. Adenosine signaling in normal and sickle erythrocytes and beyond. Microbes Infect. 2012;14(10):863–73. Epub 2012/05/29.CrossRefPubMedGoogle Scholar
  16. 16.
    Fredholm BB, IJzerman AP, Jacobson KA, Linden J, Muller CE. International Union of Basic and Clinical Pharmacology. LXXXI. Nomenclature and classification of adenosine receptors—an update. Pharmacol Rev. 2011;63(1):1–34. Epub 2011/02/10.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Fredholm BB, IJzerman AP, Jacobson KA, Klotz KN, Linden J. International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacol Rev. 2001;53(4):527–52. Epub 2001/12/06.PubMedGoogle Scholar
  18. 18.
    Salsoso R, Farias M, Gutierrez J, Pardo F, Chiarello DI, Toledo F, et al. Adenosine and preeclampsia. Mol Aspects Med. 2017;55:126–39. Epub 2017/01/17.CrossRefPubMedGoogle Scholar
  19. 19.
    Fredholm BB, Irenius E, Kull B, Schulte G. Comparison of the potency of adenosine as an agonist at human adenosine receptors expressed in Chinese hamster ovary cells. Biochem Pharmacol. 2001;61(4):443–8. Epub 2001/02/28.CrossRefPubMedGoogle Scholar
  20. 20.
    Zhou Y, Schneider DJ, Morschl E, Song L, Pedroza M, Karmouty-Quintana H, et al. Distinct roles for the A2B adenosine receptor in acute and chronic stages of bleomycin-induced lung injury. J Immunol. 2011;186(2):1097–106. Epub 2010/12/15.CrossRefPubMedGoogle Scholar
  21. 21.
    Zhang Y, Dai Y, Wen J, Zhang W, Grenz A, Sun H, et al. Detrimental effects of adenosine signaling in sickle cell disease. Nat Med. 2011;17(1):79–86. Epub 2010/12/21.CrossRefPubMedGoogle Scholar
  22. 22.
    Ohta A, Sitkovsky M. Role of G-protein-coupled adenosine receptors in downregulation of inflammation and protection from tissue damage. Nature. 2001;414(6866):916–20. Epub 2002/01/10.CrossRefPubMedGoogle Scholar
  23. 23.
    Sitkovsky M, Lukashev D. Regulation of immune cells by local-tissue oxygen tension: HIF1 alpha and adenosine receptors. Nat Rev Immunol. 2005;5(9):712–21. Epub 2005/08/20.CrossRefPubMedGoogle Scholar
  24. 24.
    Shryock JC, Snowdy S, Baraldi PG, Cacciari B, Spalluto G, Monopoli A, et al. A2A-adenosine receptor reserve for coronary vasodilation. Circulation. 1998;98(7):711–8. Epub 1998/08/26.CrossRefPubMedGoogle Scholar
  25. 25.
    Eckle T, Faigle M, Grenz A, Laucher S, Thompson LF, Eltzschig HK. A2B adenosine receptor dampens hypoxia-induced vascular leak. Blood. 2008;111(4):2024–35. Epub 2007/12/07.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Eckle T, Fullbier L, Wehrmann M, Khoury J, Mittelbronn M, Ibla J, et al. Identification of ectonucleotidases CD39 and CD73 in innate protection during acute lung injury. J Immunol. 2007;178(12):8127–37. Epub 2007/06/06.CrossRefPubMedGoogle Scholar
  27. 27.
    Karmouty-Quintana H, Zhong H, Acero L, Weng T, Melicoff E, West JD, et al. The A2B adenosine receptor modulates pulmonary hypertension associated with interstitial lung disease. FASEB J. 2012;26(6):2546–57. Epub 2012/03/15.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Sun CX, Zhong H, Mohsenin A, Morschl E, Chunn JL, Molina JG, et al. Role of A2B adenosine receptor signaling in adenosine-dependent pulmonary inflammation and injury. J Clin Invest. 2006;116(8):2173–82. Epub 2006/07/15.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Karmouty-Quintana H, Weng T, Garcia-Morales LJ, Chen NY, Pedroza M, Zhong H, et al. Adenosine A2B receptor and hyaluronan modulate pulmonary hypertension associated with chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol. 2013;49(6):1038–47. Epub 2013/07/17.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Dai Y, Zhang W, Wen J, Zhang Y, Kellems RE, Xia Y. A2B adenosine receptor-mediated induction of IL-6 promotes CKD. J Am Soc Nephrol. 2011;22(5):890–901. Epub 2011/04/23.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Zhang W, Zhang Y, Wang W, Dai Y, Ning C, Luo R, et al. Elevated ecto-5′-nucleotidase-mediated increased renal adenosine signaling via A2B adenosine receptor contributes to chronic hypertension. Circ Res. 2013;112(11):1466–78. Epub 2013/04/16.CrossRefPubMedGoogle Scholar
  32. 32.
    Mi T, Abbasi S, Zhang H, Uray K, Chunn JL, Xia LW, et al. Excess adenosine in murine penile erectile tissues contributes to priapism via A2B adenosine receptor signaling. J Clin Invest. 2008;118(4):1491–501. Epub 2008/03/15.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Chan ES, Fernandez P, Merchant AA, Montesinos MC, Trzaska S, Desai A, et al. Adenosine A2A receptors in diffuse dermal fibrosis: pathogenic role in human dermal fibroblasts and in a murine model of scleroderma. Arthritis Rheum. 2006;54(8):2632–42. Epub 2006/07/28.CrossRefPubMedGoogle Scholar
  34. 34.
    Chan ES, Montesinos MC, Fernandez P, Desai A, Delano DL, Yee H, et al. Adenosine A(2A) receptors play a role in the pathogenesis of hepatic cirrhosis. Br J Pharmacol. 2006;148(8):1144–55. Epub 2006/06/20.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Melani A, Gianfriddo M, Vannucchi MG, Cipriani S, Baraldi PG, Giovannini MG, et al. The selective A2A receptor antagonist SCH 58261 protects from neurological deficit, brain damage and activation of p38 MAPK in rat focal cerebral ischemia. Brain Res. 2006;1073–1074:470–80. Epub 2006/01/31.CrossRefPubMedGoogle Scholar
  36. 36.
    Chen JF, Huang Z, Ma J, Zhu J, Moratalla R, Standaert D, et al. A(2A) adenosine receptor deficiency attenuates brain injury induced by transient focal ischemia in mice. J Neurosci. 1999;19(21):9192–200. Epub 1999/10/26.PubMedGoogle Scholar
  37. 37.
    Kalda A, Yu L, Oztas E, Chen JF. Novel neuroprotection by caffeine and adenosine A(2A) receptor antagonists in animal models of Parkinson’s disease. J Neurol Sci. 2006;248(1–2):9–15. Epub 2006/06/30.CrossRefPubMedGoogle Scholar
  38. 38.
    Yoneyama Y, Suzuki S, Sawa R, Takeuchi T, Kobayashi H, Takei R, et al. Changes in plasma adenosine concentrations during normal pregnancy. Gynecol Obstet Invest. 2000;50(3):145–8. Epub 2000/10/03.CrossRefPubMedGoogle Scholar
  39. 39.
    Yoneyama Y, Suzuki S, Sawa R, Yoneyama K, Power GG, Araki T. Increased plasma adenosine concentrations and the severity of preeclampsia. Obstet Gynecol. 2002;100(6):1266–70. Epub 2002/12/07.PubMedGoogle Scholar
  40. 40.
    Yoneyama Y, Suzuki S, Sawa R, Otsubo Y, Miura A, Kuwabara Y, et al. Plasma 5′-nucleotidase activities and uric acid levels in women with pre-eclampsia. Gynecol Obstet Invest. 2002;54(3):168–71. Epub 2003/02/07.CrossRefPubMedGoogle Scholar
  41. 41.
    Matsubara S, Sato I. Plasma adenosine levels and P-selectin expression on platelets in preeclampsia. Obstet Gynecol. 2001;98(2):354–5. Epub 2001/08/21.CrossRefPubMedGoogle Scholar
  42. 42.
    Chaiworapongsa T, Chaemsaithong P, Yeo L, Romero R. Pre-eclampsia part 1: current understanding of its pathophysiology. Nat Rev Nephrol. 2014;10(8):466–80. Epub 2014/07/09.CrossRefPubMedGoogle Scholar
  43. 43.
    Espinoza J, Espinoza AF, Power GG. High fetal plasma adenosine concentration: a role for the fetus in preeclampsia? Am J Obstet Gynecol. 2011;205(5):485.e24–7. Epub 2011/08/23.CrossRefGoogle Scholar
  44. 44.
    von Versen-Hoynck F, Rajakumar A, Bainbridge SA, Gallaher MJ, Roberts JM, Powers RW. Human placental adenosine receptor expression is elevated in preeclampsia and hypoxia increases expression of the A2A receptor. Placenta. 2009;30(5):434–42. Epub 2009/03/24.CrossRefGoogle Scholar
  45. 45.
    St Hilaire C, Carroll SH, Chen H, Ravid K. Mechanisms of induction of adenosine receptor genes and its functional significance. J Cell Physiol. 2009;218(1):35–44. Epub 2008/09/04.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Faculty of Medicine, Department of Obstetrics and GynecologyUniversity of TokyoTokyoJapan
  2. 2.Department of Biochemistry and Molecular BiologyThe University of Texas Health Science Center at HoustonHoustonUSA

Personalised recommendations