Immunological Maladaptation

  • Shigeru SaitoEmail author
  • Tomoko Shima
  • Akitoshi Nakashima
Part of the Comprehensive Gynecology and Obstetrics book series (CGO)


Numerous risk factors for preeclampsia have been proposed. Immunological maladaptation is one of the known risk factors, because epidemiological evidence supports a relationship between preeclampsia and inadequate tolerance. Regulatory T (Treg) cells play a central role in the induction and maintenance of tolerance. Treg cells are decreased in number and show impaired function in preeclampsia, while Th1 cells and cytotoxic T cells are increased, suggesting disruption of the tolerance system. Chronic inflammation is observed in preeclampsia, which could be explained by an impaired function of Treg cells and an increase number of M1 macrophages, Th1 cells, and Th17 cells. In addition, production of agonistic autoantibodies targeting the angiotensin II type 1 receptor (AT1-AA) occurs in preeclampsia due to the decrease of Treg cells and increase of activated B cells. Moreover, the antiangiogenic factor sEng is increased in preeclampsia, and it plays an important role in induction of Th17 cell differentiation and inhibition of Treg cell differentiation by inhibiting TGF-β. These changes of the immune system seem to be important in the pathophysiology of preeclampsia. Recent studies have shown that immunotherapy can be effective in animal models of preeclampsia, including infusion of Treg or treatment with IL-10, anti-TNF antibody, CTLA-4 agonistic antibody, rituximab, and PDL1-Fc.


Immunological maladaptation Regulatory T cell Preeclampsia Th17 Tolerance 


  1. 1.
    Saito S, Sakai M, Sasaki Y, et al. Inadequate tolerance induction may induce preeclampsia. J Reprod Immunol. 2007;76:30–9.PubMedCrossRefGoogle Scholar
  2. 2.
    Saito S, Shiozaki A, Nakashima A, et al. The role of the immune system in preeclampsia. Mol Asp Med. 2007;28:192–209.CrossRefGoogle Scholar
  3. 3.
    Redman CW, Sargent IL. Immunology of preeclampsia. Am J Reprod Immunol. 2010;63:534–43.PubMedCrossRefGoogle Scholar
  4. 4.
    Hsu P, Nanan RK. Innate and adaptive immune interactions at the fetal-maternal interface in healthy human pregnancy and pre-eclampsia. Front Immunol. 2014;5:125.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Tang MX, Hu XH, Liu ZZ, et al. What are the roles of macrophages and monocytes in human pregnancy? J Reprod Immunol. 2015;112:73–80.PubMedCrossRefGoogle Scholar
  6. 6.
    LaMarca B, Cornelius DC, Harmon AC, et al. Identifying immune mechanisms mediating the hypertension during preeclampsia. Am J Physiol Regul Integr Comp Physiol. 2016;311:R1–9.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Sasaki Y, Darmochwal-Kolarz D, Suzuki D, et al. Proportion of peripheral blood and decidual CD4+ CD25bright regulatory T cells in pre-eclampsia. Clin Exp Immunol. 2007;149:139–45.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Santner-Nanan B, Peek MJ, Khanam R, et al. Systemic increase in the ratio between Foxp3+ and IL-17-producing CD4+ T cells in healthy pregnancy but not in preeclampsia. J Immunol. 2009;183:7023–30.PubMedCrossRefGoogle Scholar
  9. 9.
    Toldi G, Vásárhelyi ZE, Rigó J Jr, et al. Prevalence of regulatory T-Cell subtypes in preeclampsia. Am J Reprod Immunol. 2015;74:110–5.PubMedCrossRefGoogle Scholar
  10. 10.
    Rahimzadeh M, Norouzian M, Arabpour F, et al. Regulatory T-cells and preeclampsia: an overview of literature. Expert Rev Clin Immunol. 2016;12:209–27.PubMedCrossRefGoogle Scholar
  11. 11.
    Dekker GA, Sibai BM. Etiology and pathogenesis of preeclampsia: current concepts. Am J Obstet Gynecol. 1998;179:1359–75.PubMedCrossRefGoogle Scholar
  12. 12.
    Robillard PY, Hulsey TC, Alexander GR, et al. Paternity patterns and risk of preeclampsia in the last pregnancy in multiparae. J Reprod Immunol. 1993;24:1–12.PubMedCrossRefGoogle Scholar
  13. 13.
    Robillard PY, Hulsey TC, Périanin J, et al. Association of pregnancy-induced hypertension with duration of sexual cohabitation before conception. Lancet. 1994;344:973–5.PubMedCrossRefGoogle Scholar
  14. 14.
    Skjaerven R, Wilcox AJ, Lie RT. The interval between pregnancies and the risk of preeclampsia. N Engl J Med. 2002;346:33–8.PubMedCrossRefGoogle Scholar
  15. 15.
    Klonoff-Cohen HS, Savitz DA, Cefalo RC, McCann MF. An epidemiologic study of contraception and preeclampsia. JAMA. 1989;262:3143–7.PubMedCrossRefGoogle Scholar
  16. 16.
    Hayakawa S, Fujikawa T, Fukuoka H, et al. Murine fetal resorption and experimental pre-eclampsia are induced by both excessive Th1 and Th2 activation. J Reprod Immunol. 2000;47:121–38.PubMedCrossRefGoogle Scholar
  17. 17.
    Zenclussen AC, Fest S, Joachim R, et al. Introducing a mouse model for pre-eclampsia: adoptive transfer of activated Th1 cells leads to pre-eclampsia-like symptoms exclusively in pregnant mice. Eur J Immunol. 2004;34:377–87.PubMedCrossRefGoogle Scholar
  18. 18.
    Tian M, Zhang Y, Liu Z, et al. The PD-1/PD-L1 inhibitory pathway is altered in pre-eclampsia and regulates T cell responses in pre-eclamptic rats. Sci Rep. 2016;6:27683.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Przybyl L, Ibrahim T, Haase N, et al. Regulatory T cells ameliorate intrauterine growth retardation in a transgenic rat model for preeclampsia. Hypertension. 2015;65:1298–306.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Li J, LaMarca B, Reckelhoff JF. A model of preeclampsia in rats: the reduced uterine perfusion pressure (RUPP) model. Am J Physiol Heart Circ Physiol. 2012;303:H1–8.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Saito S, Sakai M. Th1/Th2 balance in preeclampsia. J Reprod Immunol. 2003;59:161–73.PubMedCrossRefGoogle Scholar
  22. 22.
    Saito S, Sakai M, Sasaki Y, et al. Quantitative analysis of peripheral blood Th0, Th1, Th2 and the Th1:Th2 cell ratio during normal human pregnancy and preeclampsia. Clin Exp Immunol. 1999;117:550–5.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Sakaguchi S. Naturally arising CD4+ regulatory T cells for immunologic self-tolerance and negative control of immune responses. Annu Rev Immunol. 2004;22:531–62.PubMedCrossRefGoogle Scholar
  24. 24.
    Zenclussen AC, Gerlof K, Zenclussen ML, et al. Abnormal T-cell reactivity against paternal antigens in spontaneous abortion: adoptive transfer of pregnancy-induced CD4+CD25+ T regulatory cells prevents fetal rejection in a murine abortion model. Am J Pathol. 2005;166:811–22.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Shima T, Sasaki Y, Itoh M, et al. Regulatory T cells are necessary for implantation and maintenance of early pregnancy but not late pregnancy in allogeneic mice. J Reprod Immunol. 2010;85:121–9.PubMedCrossRefGoogle Scholar
  26. 26.
    Inada K, Shima T, Nakashima A, et al. Characterization of regulatory T cells in decidua of miscarriage cases with abnormal or normal fetal chromosomal content. J Reprod Immunol. 2013;97:104–11.PubMedCrossRefGoogle Scholar
  27. 27.
    Inada K, Shima T, Ito M, et al. Helios-positive functional regulatory T cells are decreased in decidua of miscarriage cases with normal fetal chromosomal content. J Reprod Immunol. 2015;107:10–9.PubMedCrossRefGoogle Scholar
  28. 28.
    Rowe JH, Ertelt JM, Xin L, Way SS. Pregnancy imprints regulatory memory that sustains anergy to fetal antigen. Nature. 2012;490:102–6.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Robertson SA, Guerin LR, Bromfield JJ, et al. Seminal fluid drives expansion of the CD4+CD25+ T regulatory cell pool and induces tolerance to paternal alloantigens in mice. Biol Reprod. 2009;80:1036–45.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Shima T, Inada K, Nakashima A, et al. Paternal antigen-specific proliferating regulatory T cells are increased in uterine-draining lymph nodes just before implantation and in pregnant uterus just after implantation by seminal plasma-priming in allogeneic mouse pregnancy. J Reprod Immunol. 2015;108:72–82.PubMedCrossRefGoogle Scholar
  31. 31.
    Salha O, Sharma V, Dada T, et al. The influence of donated gametes on the incidence of hypertensive disorders of pregnancy. Hum Reprod. 1999;14:2268–73.PubMedCrossRefGoogle Scholar
  32. 32.
    Masoudian P, Nasr A, de Nanassy J, et al. Oocyte donation pregnancies and the risk of preeclampsia or gestational hypertension: a systematic review and meta-analysis. Am J Obstet Gynecol. 2016;214:328–39.PubMedCrossRefGoogle Scholar
  33. 33.
    Saito S, Nakabayashi Y, Nakashima A. A new era in reproductive medicine: consequences of third-party oocyte donation for maternal and fetal health. Semin Immunopathol. 2016;38:687–97.PubMedCrossRefGoogle Scholar
  34. 34.
    Nakabayashi Y, Nakashima A, Yoshino O, et al. Impairment of the accumulation of decidual T cells, NK cells, and monocytes, and the poor vascular remodeling of spiral arteries, were observed in oocyte donation cases, regardless of the presence or absence of preeclampsia. J Reprod Immunol. 2016;114:65–74.PubMedCrossRefGoogle Scholar
  35. 35.
    Redman CW, Sacks GP, Sargent IL. Preeclampsia: an excessive maternal inflammatory response to pregnancy. Am J Obstet Gynecol. 1999;180:499–506.PubMedCrossRefGoogle Scholar
  36. 36.
    Melgert BN, Spaans F, Borghuis T, et al. Pregnancy and preeclampsia affect monocyte subsets in humans and rats. PLoS One. 2012;7:e45229.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Gustafsson C, Mjösberg J, Matussek A, et al. Gene expression profiling of human decidual macrophages: evidence for immunosuppressive phenotype. PLoS One. 2008;3:e2078.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Kämmerer U, Eggert AO, Kapp M, et al. Unique appearance of proliferating antigen-presenting cells expressing DC-SIGN (CD209) in the decidua of early human pregnancy. Am J Pathol. 2003;162:887–96.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Laskarin G, Cupurdija K, Tokmadzic VS, et al. The presence of functional mannose receptor on macrophages at the maternal-fetal interface. Hum Reprod. 2005;20:1057–66.PubMedCrossRefGoogle Scholar
  40. 40.
    Svensson J, Jenmalm MC, Matussek A, et al. Macrophages at the fetal-maternal interface express markers of alternative activation and are induced by M-CSF and IL-10. J Immunol. 2011;187:3671–82.PubMedCrossRefGoogle Scholar
  41. 41.
    Houser BL, Tilburgs T, Hill J, et al. Two unique human decidual macrophage populations. J Immunol. 2011;186:2633–42.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Hsu P, Santner-Nanan B, Joung S, et al. Expansion of CD4+ HLA-G+ T Cell in human pregnancy is impaired in pre-eclampsia. Am J Reprod Immunol. 2014;71:217–28.PubMedCrossRefGoogle Scholar
  43. 43.
    Moreau P, Adrian-Cabestre F, Menier C, et al. IL-10 selectively induces HLA-G expression in human trophoblasts and monocytes. Int Immunol. 1999;11:803–11.PubMedCrossRefGoogle Scholar
  44. 44.
    Miwa N, Hayakawa S, Miyazaki S, et al. IDO expression on decidual and peripheral blood dendritic cells and monocytes/macrophages after treatment with CTLA-4 or interferon-gamma increase in normal pregnancy but decrease in spontaneous abortion. Mol Hum Reprod. 2005;11:865–70.PubMedCrossRefGoogle Scholar
  45. 45.
    Hsu P, Santner-Nanan B, Dahlstrom JE, et al. Altered decidual DC-SIGN+ antigen-presenting cells and impaired regulatory T-cell induction in preeclampsia. Am J Pathol. 2012;181:2149–60.PubMedCrossRefGoogle Scholar
  46. 46.
    Hennessy A, Pilmore HL, Simmons LA, et al. A deficiency of placental IL-10 in preeclampsia. J Immunol. 1999;163:3491–5.PubMedGoogle Scholar
  47. 47.
    Renaud SJ, Macdonald-Goodfellow SK, Graham CH. Coordinated regulation of human trophoblast invasiveness by macrophages and interleukin 10. Biol Reprod. 2007;76:448–54.PubMedCrossRefGoogle Scholar
  48. 48.
    Spaans F, Melgert BN, Chiang C, et al. Extracellular ATP decreases trophoblast invasion, spiral artery remodeling and immune cells in the mesometrial triangle in pregnant rats. Placenta. 2014;35:587–95.PubMedCrossRefGoogle Scholar
  49. 49.
    Schonkeren D, van der Hoorn ML, Khedoe P, et al. Differential distribution and phenotype of decidual macrophages in preeclamptic versus control pregnancies. Am J Pathol. 2011;178:709–17.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Prins JR, Faas MM, Melgert BN, et al. Altered expression of immune-associated genes in first-trimester human decidua of pregnancies later complicated with hypertension or foetal growth restriction. Placenta. 2012;33:453–5.PubMedCrossRefGoogle Scholar
  51. 51.
    Medeiros LT, Peraçoli JC, Bannwart-Castro CF, et al. Monocytes from pregnant women with pre-eclampsia are polarized to a M1 phenotype. Am J Reprod Immunol. 2014;72:5–13.PubMedCrossRefGoogle Scholar
  52. 52.
    Katabuchi H, Yih S, Ohba T, et al. Characterization of macrophages in the decidual atherotic spiral artery with special reference to the cytology of foam cells. Med Electron Microsc. 2003;36:253–62.PubMedCrossRefGoogle Scholar
  53. 53.
    Staff AC, Johnsen GM, Dechend R, et al. Preeclampsia and uteroplacental acute atherosis: immune and inflammatory factors. J Reprod Immunol. 2014;101–102:120–6.PubMedCrossRefGoogle Scholar
  54. 54.
    Miyazaki S, Tsuda H, Sakai M, et al. Predominance of Th2-promoting dendritic cells in early human pregnancy decidua. J Leukoc Biol. 2003;74:514–22.PubMedCrossRefGoogle Scholar
  55. 55.
    Gardner L, Moffett A. Dendritic cells in the human decidua. Biol Reprod. 2003;69:1438–46.PubMedCrossRefGoogle Scholar
  56. 56.
    Raker VK, Domogalla MP, Steinbrink K. Tolerogenic dendritic cells for regulatory T cell induction in man. Front Immunol. 2015;6:569.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Plaks V, Birnberg T, Berkutzki T, et al. Uterine DCs are crucial for decidua formation during embryo implantation in mice. J Clin Invest. 2008;118:3954–65.PubMedPubMedCentralGoogle Scholar
  58. 58.
    Moldenhauer LM, Keenihan SN, Hayball JD, et al. GM-CSF is an essential regulator of T cell activation competence in uterine dendritic cells during early pregnancy in mice. J Immunol. 2010;185:7085–96.PubMedCrossRefGoogle Scholar
  59. 59.
    Huang SJ, Zenclussen AC, Chen CP, et al. The implication of aberrant GM-CSF expression in decidual cells in the pathogenesis of preeclampsia. Am J Pathol. 2010;177:2472–82.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Panda B, Panda A, Ueda I, et al. Dendritic cells in the circulation of women with preeclampsia demonstrate a pro-inflammatory bias secondary to dysregulation of TLR receptors. J Reprod Immunol. 2012;94:210–5.PubMedCrossRefGoogle Scholar
  61. 61.
    Huang SJ, Chen CP, Schatz F, et al. Pre-eclampsia is associated with dendritic cell recruitment into the uterine decidua. J Pathol. 2008;214:328–36.PubMedCrossRefGoogle Scholar
  62. 62.
    Darmochwal-Kolarz D, Kludka-Sternik M, Kolarz B, et al. The expression of B7-H1 and B7-H4 co-stimulatory molecules on myeloid and plasmacytoid dendritic cells in pre-eclampsia and normal pregnancy. J Reprod Immunol. 2013;99:33–8.PubMedCrossRefGoogle Scholar
  63. 63.
    Moffett-King A. Natural killer cells and pregnancy. Nat Rev Immunol. 2002;2:656–63.PubMedCrossRefGoogle Scholar
  64. 64.
    Hanna J, Goldman-Wohl D, Hamani Y, et al. Decidual NK cells regulate key developmental processes at the human fetal-maternal interface. Nat Med. 2006;12:1065–74.PubMedCrossRefGoogle Scholar
  65. 65.
    Saito S, Nishikawa K, Morii T, et al. Cytokine production by CD16-CD56bright natural killer cells in the human early pregnancy decidua. Int Immunol. 1993;5:559–63.PubMedCrossRefGoogle Scholar
  66. 66.
    Lyall F, Robson SC, Bulmer JN. Spiral artery remodeling and trophoblast invasion in preeclampsia and fetal growth restriction: relationship to clinical outcome. Hypertension. 2013;62:1046–54.PubMedCrossRefGoogle Scholar
  67. 67.
    Naruse K, Innes BA, Bulmer JN, et al. Secretion of cytokines by villous cytotrophoblast and extravillous trophoblast in the first trimester of human pregnancy. J Reprod Immunol. 2010;86:148–50.PubMedCrossRefGoogle Scholar
  68. 68.
    Smith SD, Dunk CE, Aplin JD. Evidence for immune cell involvement in decidual spiral arteriole remodeling in early human pregnancy. Am J Pathol. 2009;174:1959–71.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Lash GE, Otun HA, Innes BA, et al. Regulation of extravillous trophoblast invasion by uterine natural killer cell is dependent on gestational age. Hum Reprod. 2010;25:1137–45.PubMedCrossRefGoogle Scholar
  70. 70.
    Naruse K, Lash GE, Innes BA, et al. Localization of matrix metalloproteinase (MMP)-2, MMP-9 and tissue inhibitors for MMPs (TIMPs) in uterine natural killer cells in early human pregnancy. Hum Reprod. 2009;24:553–61.PubMedCrossRefGoogle Scholar
  71. 71.
    Harris LK, Keogh RJ, Wareing M, et al. Invasive trophoblasts stimulate vascular smooth muscle cell apoptosis by a fas ligand-dependent mechanism. Am J Pathol. 2006;169:1863–74.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Red-Horse K, Rivera J, Schanz A, et al. Cytotrophoblast induction of arterial apoptosis and lymphangiogenesis in an in vivo model of human placentation. J Clin Invest. 2006;116:2643–52.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Cartwright JE, James-Allan L, Buckley RJ, et al. The role of decidual NK cells in pregnancies with impaired vascular remodelling. J Reprod Immunol. 2017;119:81–4.PubMedCrossRefGoogle Scholar
  74. 74.
    Fraser R, Whitley GS, Thilaganathan B, et al. Decidual natural killer cells regulate vessel stability: implications for impaired spiral artery remodelling. J Reprod Immunol. 2015;110:54–60.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Wallace AE, Whitley GS, Thilaganathan B, et al. Decidual natural killer cell receptor expression is altered in pregnancies with impaired vascular remodeling and a higher risk of pre-eclampsia. J Leukoc Biol. 2015;97:79–86.PubMedCrossRefGoogle Scholar
  76. 76.
    Tilburgs T, Scherjon SA, van der Mast BJ, et al. Fetal-maternal HLA-C mismatch is associated with decidual T cell activation and induction of functional T regulatory cells. J Reprod Immunol. 2009;82:148–57.PubMedCrossRefGoogle Scholar
  77. 77.
    Xiong S, Sharkey AM, Kennedy PR, et al. Maternal uterine NK cell-activating receptor KIR2DS1 enhances placentation. J Clin Invest. 2013;123:4264–72.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Hiby SE, Walker JJ, O’shaughnessy KM, et al. Combinations of maternal KIR and fetal HLA-C genes influence the risk of preeclampsia and reproductive success. J Exp Med. 2004;200:957–65.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Saito S, Takeda Y, Sakai M, et al. The incidence of pre-eclampsia among couples consisting of Japanese women and Caucasian men. J Reprod Immunol. 2006;70:93–8.PubMedCrossRefGoogle Scholar
  80. 80.
    Saito S, Nakashima A, Shima T, et al. Th1/Th2/Th17 and regulatory T-cell paradigm in pregnancy. Am J Reprod Immunol. 2010;63:601–10.PubMedCrossRefGoogle Scholar
  81. 81.
    Aluvihare VR, Kallikourdis M, Betz AG. Regulatory T cells mediate maternal tolerance to the fetus. Nat Immunol. 2004;5:266–71.PubMedCrossRefGoogle Scholar
  82. 82.
    Miyara M, Yoshioka Y, Kitoh A, et al. Functional delineation and differentiation dynamics of human CD4+ T cells expressing the FoxP3 transcription factor. Immunity. 2009;30:899–911.PubMedCrossRefGoogle Scholar
  83. 83.
    Saito S. Th17 cells and regulatory T cells: new light on pathophysiology of preeclampsia. Immunol Cell Biol. 2010;88:615–7.PubMedCrossRefGoogle Scholar
  84. 84.
    Darmochwal-Kolarz D, Saito S, Tabarkiewicz J, et al. Apoptosis signaling is altered in CD4+CD25+FoxP3+ T regulatory lymphocytes in pre-eclampsia. Int J Mol Sci. 2012;13:6548–60.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    van Maren WW, Jacobs JF, de Vries IJ, et al. Toll-like receptor signalling on Tregs: to suppress or not to suppress? Immunology. 2008;124:445–52.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Noris M, Perico N, Remuzzi G. Mechanisms of disease: pre-eclampsia. Nat Clin Pract Nephrol. 2005;1:98–114.PubMedCrossRefGoogle Scholar
  87. 87.
    Madhur MS, Lob HE, McCann LA, et al. Interleukin 17 promotes angiotensin II-induced hypertension and vascular dysfunction. Hypertension. 2010;55:500–7.PubMedCrossRefGoogle Scholar
  88. 88.
    Dhillion P, Wallace K, Herse F, et al. IL-17-mediated oxidative stress is an important stimulator of AT1-AA and hypertension during pregnancy. Am J Physiol Regul Integr Comp Physiol. 2012;303:R353–8.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Darmochwal-Kolarz D, Kludka-Sternik M, Tabarkiewicz J, et al. The predominance of Th17 lymphocytes and decreased number and function of Treg cells in preeclampsia. J Reprod Immunol. 2012;93:75–81.PubMedCrossRefGoogle Scholar
  90. 90.
    Steinborn A, Schmitt E, Kisielewicz A, et al. Pregnancy-associated diseases are characterized by the composition of the systemic regulatory T cell (Treg) pool with distinct subsets of Tregs. Clin Exp Immunol. 2012;167:84–98.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Brewer J, Liu R, Lu Y, et al. Endothelin-1, oxidative stress, and endogenous angiotensin II: mechanisms of angiotensin II type I receptor autoantibody-enhanced renal and blood pressure response during pregnancy. Hypertension. 2013;62:886–92.PubMedCrossRefGoogle Scholar
  92. 92.
    Wallukat G, Homuth V, Fischer T, et al. Patients with preeclampsia develop agonistic autoantibodies against the angiotensin AT1 receptor. J Clin Invest. 1999;103:945–52.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    LaMarca B, Wallukat G, Llinas M, et al. Autoantibodies to the angiotensin type I receptor in response to placental ischemia and tumor necrosis factor alpha in pregnant rats. Hypertension. 2008;52:1168–72.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Levine RJ, Lam C, Qian C, et al. Soluble endoglin and other circulating antiangiogenic factors in preeclampsia. N Engl J Med. 2006;355:992–1005.PubMedCrossRefGoogle Scholar
  95. 95.
    Zeisler H, Llurba E, Chantraine F, et al. Predictive value of the sFlt-1:PlGF ratio in women with suspected preeclampsia. N Engl J Med. 2016;374:13–22.PubMedCrossRefGoogle Scholar
  96. 96.
    Molvarec A, Ito M, Shima T, et al. Decreased proportion of peripheral blood vascular endothelial growth factor-expressing T and natural killer cells in preeclampsia. Am J Obstet Gynecol. 2010;203:567.e1–8.CrossRefGoogle Scholar
  97. 97.
    Nakashima A, Yamanaka-Tatematsu M, Fujita N, et al. Impaired autophagy by soluble endoglin, under physiological hypoxia in early pregnant period, is involved in poor placentation in preeclampsia. Autophagy. 2013;9:303–16.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Saitoh T, Fujita N, Jang MH, et al. Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production. Nature. 2008;456:264–8.PubMedCrossRefGoogle Scholar
  99. 99.
    Wallace K, Richards S, Dhillon P, et al. CD4+ T-helper cells stimulated in response to placental ischemia mediate hypertension during pregnancy. Hypertension. 2011;57:949–55.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Matsubara K, Matsubara Y, Mori M, et al. Immune activation during the implantation phase causes preeclampsia-like symptoms via the CD40-CD40 ligand pathway in pregnant mice. Hypertens Res. 2016;39:407–14.PubMedCrossRefGoogle Scholar
  101. 101.
    Wallace K, Novotny S, Heath J, et al. Hypertension in response to CD4(+) T cells from reduced uterine perfusion pregnant rats is associated with activation of the endothelin-1 system. Am J Physiol Regul Integr Comp Physiol. 2012;303:R144–9.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Novotny SR, Wallace K, Heath J, et al. Activating autoantibodies to the angiotensin II type I receptor play an important role in mediating hypertension in response to adoptive transfer of CD4+ T lymphocytes from placental ischemic rats. Am J Physiol Regul Integr Comp Physiol. 2012;302:R1197–201.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Cornelius DC, Amaral LM, Harmon A, et al. An increased population of regulatory T cells improves the pathophysiology of placental ischemia in a rat model of preeclampsia. Am J Physiol Regul Integr Comp Physiol. 2015;309:R884–91.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Harmon A, Cornelius D, Amaral L, et al. IL-10 supplementation increases Tregs and decreases hypertension in the RUPP rat model of preeclampsia. Hypertens Pregnancy. 2015;34:291–306.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    LaMarca B, Wallace K, Herse F, et al. Hypertension in response to placental ischemia during pregnancy: role of B lymphocytes. Hypertension. 2011;57:865–71.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Novotny S, Wallace K, Herse F, et al. CD4+ T Cells play a critical role in mediating hypertension in response to placental ischemia. J Hypertens (Los Angel). 2013;2:14873.Google Scholar
  107. 107.
    Molvarec A, Shiozaki A, Ito M, et al. Increased prevalence of peripheral blood granulysin-producing cytotoxic T lymphocytes in preeclampsia. J Reprod Immunol. 2011;91:56–63.PubMedCrossRefGoogle Scholar
  108. 108.
    de Groot CJ, van der Mast BJ, Visser W, et al. Preeclampsia is associated with increased cytotoxic T-cell capacity to paternal antigens. Am J Obstet Gynecol. 2010;203:496.e1–6.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Shigeru Saito
    • 1
    Email author
  • Tomoko Shima
    • 1
  • Akitoshi Nakashima
    • 1
  1. 1.Department of Obstetrics and GynecologyGraduate School of Medicine and Pharmaceutical Science for Research, University of ToyamaToyamaJapan

Personalised recommendations