Genetic Background of Preeclampsia

  • Junichi SugawaraEmail author
  • Yuji Oe
  • Maiko Wagata
Part of the Comprehensive Gynecology and Obstetrics book series (CGO)


Preeclampsia is a multifactorial disease caused by complex interactions of genetic and environmental components. Accumulating evidence suggests that genetic contributions to the pathogenesis of the disease are composed of maternal, fetal, and paternal factors. In this chapter, genetic research into preeclampsia was reviewed from diversified perspectives including recent approaches of genome-wide association studies and immunological genetic analysis of human leucocyte antigens. In the last few decades, extensive research by basic, clinical, and epidemiological fields revealed a variety of causative genetic factors, including maternal activin receptor type 2 gene, inhibin beta B gene, paternal glutathione S-transferase P1-1 gene, and fetal catechol-O-methyltransferase gene. However, major problems in genetic research include a relatively small number of cases, the diversity of genetic racial background, and unstandardized diagnostic criteria for the disease. On the other hand, recent innovative progression of system biology may enable us to discover unknown mechanisms through the use of very large genetic databases. To uncover causal relationship between genetic and environmental factors in preeclampsia, large-scale association studies with familial pedigree information should be undertaken by collaborative global networks.


Multifactorial disease Gene environmental interaction Human genetics Genome-wide association study Single nucleotide polymorphism 


  1. 1.
    Chaiworapongsa T, Chaemsaithong P, Yeo L, Romero R. Pre-eclampsia part 1: current understanding of its pathophysiology. Nat Rev Nephrol. 2014;10:466–80.CrossRefPubMedGoogle Scholar
  2. 2.
    Waken RJ, de Las Fuentes L, Rao DC. A review of the genetics of hypertension with a focus on gene-environment interactions. Curr Hypertens Rep. 2017;19:23. Scholar
  3. 3.
    Ward K, Lindheimer MD. Genetic factors in the etiology of preeclampsia/eclampsia. In:Chesley’s hypertensive disorders in pregnancy. London: Elsevier; 2990. p. 51–72.Google Scholar
  4. 4.
    Ros HS, Lichtenstein P, Lipworth L, Cnattingius S. Genetic effects on the liability of developing pre-eclampsia and gestational hypertension. Am J Med Genet. 2000;91:256–60.CrossRefGoogle Scholar
  5. 5.
    Cnattingius S, Reilly M, Pawitan Y, Lichtenstein P. Maternal and fetal genetic factors account for most of familial aggregation of preeclampsia: a population-based Swedish cohort study. Am J Med Genet A. 2004;130:365–71.CrossRefGoogle Scholar
  6. 6.
    Nilsson E, Salonen Ros H, Cnattingius S, Lichtenstein P. The importance of genetic and environmental effects for pre-eclampsia and gestational hypertension: a family study. BJOG. 2004;111:200–6.CrossRefPubMedGoogle Scholar
  7. 7.
    Boyd HA, Tahir H, Wohlfahrt J, Melbye M. Associations of personal and family preeclampsia history with the risk of early-, intermediate-and late-onset preeclampsia. Am J Epidemiol. 2013;178:1611–9.CrossRefPubMedGoogle Scholar
  8. 8.
    Roberts JM, Cooper DW. Pathogenesis and genetics of pre-eclampsia. Lancet. 2001;357:53–6.CrossRefPubMedGoogle Scholar
  9. 9.
    Lohmueller KE, Pearce CL, Pike M, Lander ES, Hirschhorn JN. Meta-analysis of genetic association studies supports a contribution of common variants to susceptibility to common disease. Nat Genet. 2003;33:177–82.CrossRefPubMedGoogle Scholar
  10. 10.
    Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, et al. Finding the missing heritability of complex diseases. Nature. 2009;461:747–53.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature. 2007;447:661–78.CrossRefGoogle Scholar
  12. 12.
    Johnson MP, Brennecke SP, East CE, Göring HH, Kent JW Jr, Dyer TD, et al. Genome-wide association scan identifies a risk locus for preeclampsia on 2q14, near the inhibin, beta B gene. PLoS One. 2012;7:e33666.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Zhao L, Bracken MB, DeWan AT. Genome-wide association study of pre-eclampsia detects novel maternal single nucleotide polymorphisms and copy-number variants in subsets of the Hyperglycemia and Adverse Pregnancy Outcome (HAPO) study cohort. Ann Hum Genet. 2013;77:277–87.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Chesley LC, Cooper DW. Genetics of hypertension in pregnancy: possible single gene control of pre-eclampsia and eclampsia in the descendants of eclamptic women. Br J Obstet Gynaecol. 1986;93:898–908.CrossRefPubMedGoogle Scholar
  15. 15.
    Duckitt K, Harrington D. Risk factors for pre-eclampsia at antenatal booking: systematic review of controlled studies. BMJ. 2005;330:565.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Thornton JG, Macdonald AM. Twin mothers, pregnancy hypertension and pre-eclampsia. Br J Obstet Gynaecol. 1999;106:570–5.CrossRefPubMedGoogle Scholar
  17. 17.
    Treloar SA, Cooper DW, Brennecke SP, Grehan MM, Martin NG. An Australian twin study of the genetic basis of preeclampsia and eclampsia. Am J Obstet Gynecol. 2001;184:374–81.CrossRefPubMedGoogle Scholar
  18. 18.
    Qiu C, Williams MA, Leisenring WM, Sorensen TK, Frederick IO, Dempsey JC, et al. Family history of hypertension and type 2 diabetes in relation to preeclampsia risk. Hypertension. 2003;41:408–13.CrossRefPubMedGoogle Scholar
  19. 19.
    Lie RT, Rasmussen S, Brunborg H, Gjessing HK, Lie-Nielsen E, Irgens LM. Fetal and maternal contributions to risk of pre-eclampsia: population based study. BMJ. 1998;316:1343–7.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Esplin MS, Fausett MB, Fraser A, Kerber R, Mineau G, Carrillo J, et al. Paternal and maternal components of the predisposition to preeclampsia. N Engl J Med. 2001;344:867–72.CrossRefPubMedGoogle Scholar
  21. 21.
    Lykke JA, Langhoff-Roos J, Sibai BM, Funai EF, Triche EW, Paidas MJ. Hypertensive pregnancy disorders and subsequent cardiovascular morbidity and type 2 diabetes mellitus in the mother. Hypertension. 2009;53:944–51.CrossRefPubMedGoogle Scholar
  22. 22.
    Romundstad PR, Magnussen EB, Smith GD, Vatten LJ. Hypertension in pregnancy and later cardiovascular risk: common antecedents? Circulation. 2010;122:579–84.CrossRefPubMedGoogle Scholar
  23. 23.
    Skjaerven R, Wilcox AJ, Klungsøyr K, Irgens LM, Vikse BE, Vatten LJ, et al. Cardiovascular mortality after pre-eclampsia in one child mothers: prospective, population based cohort study. BMJ. 2012;345:e7677.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Cirillo PM, Cohn BA. Pregnancy complications and cardiovascular disease death: 50-year follow-up of the Child Health and Development Studies pregnancy cohort. Circulation. 2015;132:1234–42.CrossRefPubMedGoogle Scholar
  25. 25.
    Cain MA, Salemi JL, Tanner JP, Kirby RS, Salihu HM, Louis JM. Pregnancy as a window to future health: maternal placental syndromes and short-term cardiovascular outcomes. Am J Obstet Gynecol. 2016;215:484.e1–484.e14.CrossRefGoogle Scholar
  26. 26.
    Bokslag A, Teunissen PW, Franssen C, van Kesteren F, Kamp O, Ganzevoort W, et al. Effect of early-onset preeclampsia on cardiovascular risk in the fifth decade of life. Am J Obstet Gynecol. 2017;216:523. e1–523.e7.CrossRefGoogle Scholar
  27. 27.
    Lin R, Lei Y, Yuan Z, Ju H, Li D. Angiotensinogen gene M235T and T174M polymorphisms and susceptibility of pre-eclampsia: a meta-analysis. Ann Hum Genet. 2012;76:377–86.CrossRefPubMedGoogle Scholar
  28. 28.
    Chen Z, Xu F, Wei Y, Liu F, Qi H. Angiotensin converting enzyme insertion/deletion polymorphism and risk of pregnancy hypertensive disorders: a meta-analysis. J Renin-Angiotensin-Aldosterone Syst. 2012;13:184–95.CrossRefPubMedGoogle Scholar
  29. 29.
    Zhao L, Dewan AT, Bracken MB. Association of maternal AGTR1 polymorphisms and preeclampsia: a systematic review and meta-analysis. J Matern Fetal Neonatal Med. 2012;25:2676–80.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Kulandavelu S, Whiteley KJ, Qu D, Mu J, Bainbridge SA, Adamson SL. Endothelial nitric oxide synthase deficiency reduces uterine blood flow, spiral artery elongation, and placental oxygenation in pregnant mice. Hypertension. 2012;60:231–8.CrossRefPubMedGoogle Scholar
  31. 31.
    Miyamoto Y, Saito Y, Kajiyama N, Yoshimura M, Shimasaki Y, Nakayama M, et al. Endothelial nitric oxide synthase gene is positively associated with essential hypertension. Hypertension. 1998;32:3–8.CrossRefPubMedGoogle Scholar
  32. 32.
    Zeng F, Zhu S, Wong MC, Yang Z, Tang J, Li K, et al. Associations between nitric oxide synthase 3 gene polymorphisms and preeclampsia risk: a meta-analysis. Sci Rep. 2016;6:23407.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Renner W, Kotschan S, Hoffmann C, Obermayer-Pietsch B, Pilger E. A common 936 C/T mutation in the gene for vascular endothelial growth factor is associated with vascular endothelial growth factor plasma levels. J Vasc Res. 2000;37:443–8.CrossRefPubMedGoogle Scholar
  34. 34.
    Cheng D, Hao Y, Zhou W, Ma Y. Vascular endothelial growth factor +936C/T, -634G/C, -2578C/A, and -1154G/A polymorphisms with risk of preeclampsia: a meta-analysis. PLoS One. 2013;8:e78173.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Loskutoff DJ, Curriden SA. The fibrinolytic system of the vessel wall and its role in the control of thrombosis. Ann N Y Acad Sci. 1990;598:238–47.CrossRefPubMedGoogle Scholar
  36. 36.
    Collen D. The plasminogen (fibrinolytic) system. Thromb Haemost. 1999;82:259–70.PubMedGoogle Scholar
  37. 37.
    Eriksson P, Kallin B, van’t Hooft FM, Bavenholm P, Hamsten A. Allele-specific increase in basal transcription of the plasminogen-activator inhibitor 1 gene is associated with myocardial infarction. Proc Natl Acad Sci U S A. 1995;92:1851–5.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Zhao L, Bracken MB, Dewan AT, Chen S. Association between the SERPINE1 (PAI-1) 4G/5G insertion/deletion promoter polymorphism (rs1799889) and pre-eclampsia: a systematic review and meta-analysis. Mol Hum Reprod. 2013;19:136–43.CrossRefPubMedGoogle Scholar
  39. 39.
    Dahlback B. Inherited resistance to activated protein C, a major cause of venous thrombosis, is due to a mutation in the factor V gene. Haemostasis. 1994;24:139–51.PubMedGoogle Scholar
  40. 40.
    Wang X, Bai T, Liu S, Pan H, Wang B. Association between thrombophilia gene polymorphisms and preeclampsia: a meta-analysis. PLoS One. 2014;9:e100789.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Fong FM, Sahemey MK, Hamedi G, Eyitayo R, Yates D, Kuan V, et al. Maternal genotype and severe preeclampsia: a HuGE review. Am J Epidemiol. 2014;180:335–45.CrossRefPubMedGoogle Scholar
  42. 42.
    Stamler JS, Slivka A. Biological chemistry of thiols in the vasculature and in vascular-related disease. Nutr Rev. 1996;54:1–30.CrossRefPubMedGoogle Scholar
  43. 43.
    Wu X, Yang K, Tang X, Sa Y, Zhou R, Liu J, et al. Folate metabolism gene polymorphisms MTHFR C677T and A1298C and risk for preeclampsia: a meta-analysis. J Assist Reprod Genet. 2015;32:797–805.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Redman CW, Sargent IL. Latest advances in understanding preeclampsia. Science. 2005;308:1592–4.CrossRefPubMedGoogle Scholar
  45. 45.
    Moffett A, Hiby SE. How does the maternal immune system contribute to the development of pre-eclampsia? Placenta. 2007;28:S51–6.CrossRefPubMedGoogle Scholar
  46. 46.
    Xie C, Yao MZ, Liu JB, Xiong LK. A meta-analysis of tumor necrosis factor-alpha, interleukin-6, and interleukin-10 in preeclampsia. Cytokine. 2011;56:550–9.CrossRefPubMedGoogle Scholar
  47. 47.
    Yang W, Zhu Z, Wang J, Ye W, Ding Y. Evaluation of association of maternal IL-10 polymorphisms with risk of preeclampsia by a meta-analysis. J Cell Mol Med. 2014;18:2466–77.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Shimonovitz S, Hurwitz A, Dushnik M, Anteby E, Geva-Eldar T, Yagel S. Developmental regulation of the expression of 72 and 92 kd type IV collagenases in human trophoblasts: a possible mechanism for control of trophoblast invasion. Am J Obstet Gynecol. 1994;171:832–8.CrossRefPubMedGoogle Scholar
  49. 49.
    Merchant SJ, Davidge ST. The role of matrix metalloproteinases in vascular function: implications for normal pregnancy and pre-eclampsia. Br J Gynaecol. 2004;111:931–9.CrossRefGoogle Scholar
  50. 50.
    Zhang B, Ye S, Herrmann SM, Eriksson P, de Maat M, Evans A, Arveiler D, et al. Functional polymorphism in the regulatory region of gelatinase B gene in relation to severity of coronary atherosclerosis. Circulation. 1999;13:1788–94.CrossRefGoogle Scholar
  51. 51.
    Gong LL, Liu H, Liu LH. Lack of association between matrix metalloproteinase-9 gene-1562C/T polymorphism and preeclampsia: a meta-analysis. Hypertens Pregnancy. 2014;33:389–94.CrossRefPubMedGoogle Scholar
  52. 52.
    Dekker G, Robillard PY, Roberts C. The etiology of preeclampsia: the role of the father. J Reprod Immunol. 2011;89:126–32.CrossRefPubMedGoogle Scholar
  53. 53.
    Zusterzeel PL, te Morsche R, Raijmakers MT, Roes EM, Peters WH, Steegers EA. Paternal contribution to the risk for pre-eclampsia. J Med Genet. 2002;39:44–5.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Petry CJ, Beardsall K, Dunger DB. The potential impact of the fetal genotype on maternal blood pressure during pregnancy. J Hypertens. 2014;32:1553–61.CrossRefPubMedGoogle Scholar
  55. 55.
    Zhu BT. Catechol-O-Methyltransferase (COMT)-mediated methylation metabolism of endogenous bioactive catechols and modulation by endobiotics and xenobiotics: importance in pathophysiology and pathogenesis. Curr Drug Metab. 2002;3:321–49.CrossRefPubMedGoogle Scholar
  56. 56.
    Kanasaki K, Palmsten K, Sugimoto H, Ahmad S, Hamano Y, Xie L, et al. Deficiency in catechol-O-methyltransferase and 2-methoxyoestradiol is associated with pre-eclampsia. Nature. 2008;453:1117–21.CrossRefPubMedGoogle Scholar
  57. 57.
    Hernandez M, Hernandez I, Rodriguez F, Pertegal M, Bonacasa B, Salom MG, et al. Endothelial dysfunction in gestational hypertension induced by catechol-O-methyltransferase inhibition. Exp Physiol. 2013;98:856–66.CrossRefPubMedGoogle Scholar
  58. 58.
    Berg D, Sonsalla R, Kuss E. Concentrations of 2-methoxyoestrogens in human serum measured by a heterologous immunoassay with an 125I-labelled ligand. Acta Endocrinol. 1983;103:282–8.PubMedGoogle Scholar
  59. 59.
    Pertegal M, Fenoy FJ, Bonacasa B, Mendiola J, Delgado JL, Hernández M, et al. 2-methoxyestradiol plasma levels are associated with clinical severity indices and biomarkers of preeclampsia. Reprod Sci. 2015;22:198–206.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Männistö PT, Kaakkola S. Catechol-O-methyltransferase (COMT): biochemistry, molecular biology, pharmacology, and clinical efficacy of the new selective COMT inhibitors. Pharmacol Rev. 1999;51:593–628.PubMedGoogle Scholar
  61. 61.
    Pertegal M, Fenoy FJ, Hernández M, Mendiola J, Delgado JL, Bonacasa B, et al. Fetal Val108/158Met catechol-O-methyltransferase (COMT) polymorphism and placental COMT activity are associated with the development of preeclampsia. Fertil Steril. 2016;105:134–43. e1–3.CrossRefPubMedGoogle Scholar
  62. 62.
    Billington WD. The immunological problem of pregnancy: 50 years with the hope of progress. A tribute to Peter Medawar. J Reprod Immunol. 2003;60:1–11.CrossRefPubMedGoogle Scholar
  63. 63.
    Feeny JG, Scott JS. Pre-eclampsia and changed paternity. Eur J Obstet Reprod Biol. 1980;11:35–8.CrossRefGoogle Scholar
  64. 64.
    Robillard PY, Husley TC, Alexander GR, Keenan A, de Caunes F, Papiernik E. Paternity patterns and risk of pre-eclampsia in the last pregnancy in multiparae. J Reprod Immunol. 1993;24:1–12.CrossRefPubMedGoogle Scholar
  65. 65.
    Li DK, Wi S. Changing paternity and the risk of preeclampsia/eclampsia in the subsequent pregnancy. Am J Epidemiol. 2000;151:57–62.CrossRefPubMedGoogle Scholar
  66. 66.
    Saftlas AF, Beydoun H, Triche E. Immunogenetic determinants of preeclampsia and related pregnancy disorders: a systematic review. Obstet Gynecol. 2005;106:162–72.CrossRefPubMedGoogle Scholar
  67. 67.
    King A, Allan DSJ, Bowen JM, Powis SJ, Joseph S, Verma S, et al. HLA-E is expressed on trophoblast and interacts with CD94/NKG2 receptors on decidual NK cells. Eur J Immunol. 2000;30:1623–31.CrossRefPubMedGoogle Scholar
  68. 68.
    King A, Burrows TD, Hiby SE, Joseph S, Verma S, Lim PB, et al. Surface expression of HLA-C antigen by human extravillous trophoblast. Placenta. 2000;21:376–87.5.CrossRefPubMedGoogle Scholar
  69. 69.
    Hiby SE, King A, Sharkey A, Loke YW. Molecular studies of trophoblast HLA-G polymorphism, isoforms, imprinting and expression in pre-implantation embryo. Tissue Antigens. 1999;53:1–13.CrossRefPubMedGoogle Scholar
  70. 70.
    Vilches C, Parham P. KIR: diverse, rapidly evolving receptors of innate and adaptive immunity. Annu Rev Immunol. 2002;20:217–51.CrossRefPubMedGoogle Scholar
  71. 71.
    Hiby SE, Walker JJ, O’shaughnessy KM, Redman CW, Carrington M, Trowsdale J, et al. Combinations of maternal KIR and fetal HLA-C genes influence the risk of preeclampsia and reproductive success. J Exp Med. 2004;200:957–65.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Yawata M, Yawata N, McQueen KL, Cheng NW, Guethlein LA, Rajalingam R, et al. Predominance of group A KIR haplotypes in Japanese associated with diverse NK cell repertoires of KIR expression. Immunogenetics. 2002;54:543–50.CrossRefPubMedGoogle Scholar
  73. 73.
    Williams F, Meenagh A, Patterson C, Middleton D. Molecular diversity of the HLA-C gene identified in a caucasian population. Hum Immunol. 2002;63:602–13.CrossRefPubMedGoogle Scholar
  74. 74.
    Saito S, Takeda Y, Sakai M, Nakabayahi M, Hayakawa S. The incidence of pre-eclampsia among couples consisting of Japanese women and Caucasian men. J Reprod Immunol. 2006;70:93–8.CrossRefPubMedGoogle Scholar
  75. 75.
    Trowsdale J, Travers JP, Bodmer WF, Patillo RA. Expression of HLA-A, -B, -C and b2m antigen in human choriocarcinoma cell lines. J Exp Med. 1980;152:1ls–l7s.CrossRefGoogle Scholar
  76. 76.
    Ellis SA, Palmer MS, McMicael AJ. Human trophoblast and the choriocarcinoma cell line BeWo express a truncated HLA class I molecule. J Immunol. 1990;144:731–5.PubMedGoogle Scholar
  77. 77.
    Kovats S, Main EK, Librach C, Stubblebine M, Fisher SJ, DeMars R. A class I antigen, HLA- G, expressed in human trophoblasts. Science. 1990;248:220–3.CrossRefPubMedGoogle Scholar
  78. 78.
    Hara N, Fujii T, Yamashita T, Kozuma S, Okai T, Taketani Y. Altered expression of human leukocyte antigen G (HLA-G) on extravillous trophoblasts in preeclampsia: immunohistological demonstration with anti-HLA-G specific antibody “87G” and anti-cytokeratin antibody “CAM5.2”. Am J Reprod Immunol. 1996;36:349–58.CrossRefPubMedGoogle Scholar
  79. 79.
    Steinborn A, Varkonyi T, Scharf A, Bahlmann F, Klee A, Sohn C. Early detection of decreased soluble HLA-G levels in the maternal circulation predicts the occurrence of preeclampsia and intrauterine growth retardation during further course of pregnancy. Am J Reprod Immunol. 2007;57:277–86.CrossRefPubMedGoogle Scholar
  80. 80.
    Hviid TV, Hylenius S, Rørbye C, Nielsen LG. HLA-G allelic variants are associated with differences in the HLA-G mRNA isoform profile and HLA-G mRNA levels. Immunogenetics. 2003;55:63–79.PubMedGoogle Scholar
  81. 81.
    Hylenius S, Andersen AM, Melbye M, Hviid TV. Association between HLA-G genotype and risk of pre-eclampsia: a case-control study using family triads. Mol Hum Reprod. 2004;10:237–46.CrossRefPubMedGoogle Scholar
  82. 82.
    Zhang Z, Li Y, Zhang LL, Jia LT, Yang XQ. Association of 14 bp insertion/deletion polymorphism of the HLA-G gene in father with severe preeclampsia in Chinese. Tissue Antigens. 2012;80:158–64.CrossRefPubMedGoogle Scholar
  83. 83.
    Pabalan N, Jarjanazi H, Sun C, Iversen AC. Meta-analysis of the human leukocyte antigen-G (HLA-G) 14 bp insertion/deletion polymorphism as a risk factor for preeclampsia. Tissue Antigens. 2015;86:186–94.CrossRefPubMedGoogle Scholar
  84. 84.
    Vefring H, Wee L, Jugessur A, Gjessing H, Nilsen S, Lie R. Maternal angiotensinogen (AGT) haplotypes, fetal renin (REN) haplotypes and risk of preeclampsia; estimation of gene-gene interaction from family-triad data. BMC Med Genet. 2010;11:90.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Goddard KA, Tromp G, Romero R, Olson JM, Lu Q, Xu Z, et al. Candidate-gene association study of mothers with pre-eclampsia, and their infants, analyzing 775 SNPs in 190 genes. Hum Hered. 2007;63:1–16.CrossRefPubMedGoogle Scholar
  86. 86.
    Harrison GA, Humphrey KE, Jones N, Badenhop R, Guo G, Elakis G, et al. A genome wide linkage study of preeclampsia/eclampsia reveals evidence for a candidate region on 4q. Am J Hum Genet. 1997;60:1158–67.PubMedPubMedCentralGoogle Scholar
  87. 87.
    Arngrimsson R, Sigurard ttir S, Frigge ML, Bjarnadóttir RI, Jónsson T, Stefánsson H, et al. A genome-wide scan reveals a maternal susceptibility locus for pre-eclampsia on chromosome 2p13. Hum Mol Genet. 1999;8:1799–805.CrossRefPubMedGoogle Scholar
  88. 88.
    Moses EK, Lade JA, Guo G, Wilton AN, Grehan M, Freed K, et al. A genome scan in families from Australia and New Zealand confirms the presence of a maternal susceptibility locus for pre-eclampsia, on chromosome 2. Am J Hum Genet. 2000;67:1581–5.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Lachmeijer AM, Arngrimsson R, Bastiaans EJ, Frigge ML, Pals G, Sigurdardóttir S, et al. A genome-wide scan for preeclampsia in the Netherlands. Eur J Hum Genet. 2001;9:758–64.CrossRefPubMedGoogle Scholar
  90. 90.
    Laivuori H, Lahermo P, Ollikainen V, Widen E, Häivä-Mällinen L, Sundström H, et al. Susceptibility loci for preeclampsia on chromosomes 2p25 and 9p13 in Finnish families. Am J Hum Genet. 2003;72:168–77.CrossRefPubMedGoogle Scholar
  91. 91.
    Moses EK, Fitzpatrick E, Freed KA, Dyer TD, Forrest S, Elliott K, et al. Objective prioritization of positional candidate genes at a quantitative trait locus for pre-eclampsia on 2q22. Mol Hum Reprod. 2006;12:505–12.CrossRefPubMedGoogle Scholar
  92. 92.
    Roten L, Johnson M, Forsmo S, Fitzpatrick E, Dyer T, Brennecke S, et al. Association between the candidate susceptibility gene ACVR2A on chromosome 2q22 and preeclampsia in a large Norwegian population-based study (the HUNT study). Eur J Hum Genet. 2009;17:250–7.CrossRefPubMedGoogle Scholar
  93. 93.
    Mathews LS, Vale WW. Expression cloning of an activin receptor, a predicted transmembrane serine kinase. Cell. 1991;65:973–82.CrossRefPubMedGoogle Scholar
  94. 94.
    Donaldson CJ, Mathews LS, Vale WW. Molecular cloning and binding properties of the human type II activin receptor. Biochem Biophys Res Commun. 1992;184:310–6.CrossRefPubMedGoogle Scholar
  95. 95.
    Zhao L, Triche E, Walsh K, Bracken M, Saftlas A, Hoh J, et al. Genome-wide association study identifies a maternal copy-number deletion in PSG11 enriched among preeclampsia patients. BMC Pregnancy Childbirth. 2012;12:61.CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Snyder S, Wessner D, Wessells J, Waterhouse R, Wahl L, Zimmermann W, Dveksler G. Pregnancy-specific glycoproteins function as immunomodulators by inducing secretion of IL-10, IL-6 and TGF-beta1 by human monocytes. Am J Reprod Immunol. 2001;45:205–16.CrossRefPubMedGoogle Scholar
  97. 97.
    HAPO Study Cooperative Research Group. The Hyperglycemia and Adverse Pregnancy Outcome (HAPO) study. Int J Gynaecol Obstet. 2002;78:69–77.CrossRefGoogle Scholar
  98. 98.
    Rehm HL, Berg JS, Brooks LD, Bustamante CD, Evans JP, Landrum MJ, et al. ClinGen. ClinGen—the clinical genome resource. N Engl J Med. 2015;372:2235–42.CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Uzun A, Triche EW, Schuster J, Dewan AT, Padbury JF. dbPEC: a comprehensive literature-based database for preeclampsia related genes and phenotypes. Database (Oxford). 2016;2016. pii: baw006. doi:

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Division of Feto-Maternal Medical Science, Department of Community Medical SupportTohoku Medical Megabank Organization, Tohoku UniversitySendaiJapan
  2. 2.Department of Obstetrics and GynecologyTohoku University Graduate School of MedicineSendaiJapan

Personalised recommendations