Skip to main content

MicroRNA

  • Chapter
  • First Online:
Preeclampsia

Abstract

Aberrant expression of microRNAs (miRNAs) occurs in the preeclamptic placenta, where it causes dysregulation of functional molecules. The human placenta expresses a unique set of miRNAs (e.g., chromosome 19 miRNA cluster miRNAs). miRNAs, including placenta-specific miRNAs, are released from the placental villous trophoblast into the maternal circulation via exosomes. Because placenta-specific miRNAs are detectable in maternal blood, information about the placenta can be obtained during routine pregnancy screening via minimally invasive tests such as blood sampling, rather than highly invasive tests such as tissue biopsy. Radical treatment for preeclampsia (PE) is termination of the pregnancy, but in cases of early-onset PE, the pregnancy should be prolonged as long as possible to improve the infant’s prognosis. Prediction of PE in the first trimester could make it possible to prevent PE and develop novel therapeutic strategies to treat PE. This chapter explores the predictive utility of plasma placenta-specific miRNAs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136(2):215–33. https://doi.org/10.1016/j.cell.2009.01.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Esteller M. Non-coding RNAs in human disease. Nat Rev Genet. 2011;12(12):861–74. https://doi.org/10.1038/nrg3074.

    Article  CAS  PubMed  Google Scholar 

  3. Berezikov E, Chung WJ, Willis J, Cuppen E, Lai EC. Mammalian mirtron genes. Mol Cell. 2007;28(2):328–36. https://doi.org/10.1016/j.molcel.2007.09.028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Castellano L, Stebbing J. Deep sequencing of small RNAs identifies canonical and non-canonical miRNA and endogenous siRNAs in mammalian somatic tissues. Nucleic Acids Res. 2013;41(5):3339–51. https://doi.org/10.1093/nar/gks1474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Miyoshi K, Miyoshi T, Siomi H. Many ways to generate microRNA-like small RNAs: non-canonical pathways for microRNA production. Mol Gen Genomics. 2010;284(2):95–103. https://doi.org/10.1007/s00438-010-0556-1.

    Article  CAS  Google Scholar 

  6. Ladewig E, Okamura K, Flynt AS, Westholm JO, Lai EC. Discovery of hundreds of mirtrons in mouse and human small RNA data. Genome Res. 2012;22(9):1634–45. https://doi.org/10.1101/gr.133553.111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Schamberger A, Sarkadi B, Orban TI. Human mirtrons can express functional microRNAs simultaneously from both arms in a flanking exon-independent manner. RNA Biol. 2012;9(9):1177–85. https://doi.org/10.4161/rna.21359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Xie M, Li M, Vilborg A, Lee N, Shu MD, Yartseva V, et al. Mammalian 5′-capped microRNA precursors that generate a single microRNA. Cell. 2013;155(7):1568–80. https://doi.org/10.1016/j.cell.2013.11.027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yang JS, Maurin T, Robine N, Rasmussen KD, Jeffrey KL, Chandwani R, et al. Conserved vertebrate mir-451 provides a platform for Dicer-independent, Ago2-mediated microRNA biogenesis. Proc Natl Acad Sci U S A. 2010;107(34):15163–8. https://doi.org/10.1073/pnas.1006432107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kim M, Tan YS, Cheng WC, Kingsbury TJ, Heimfeld S, Civin CI. MIR144 and MIR451 regulate human erythropoiesis via RAB14. Br J Haematol. 2015;168(4):583–97. https://doi.org/10.1111/bjh.13164.

    Article  CAS  PubMed  Google Scholar 

  11. Morin RD, O'Connor MD, Griffith M, Kuchenbauer F, Delaney A, Prabhu AL, et al. Application of massively parallel sequencing to microRNA profiling and discovery in human embryonic stem cells. Genome Res. 2008;18(4):610–21. https://doi.org/10.1101/gr.7179508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Vickers KC, Sethupathy P, Baran-Gale J, Remaley AT. Complexity of microRNA function and the role of isomiRs in lipid homeostasis. J Lipid Res. 2013;54(5):1182–91. https://doi.org/10.1194/jlr.R034801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Xia J, Zhang W. A meta-analysis revealed insights into the sources, conservation and impact of microRNA 5′-isoforms in four model species. Nucleic Acids Res. 2014;42(3):1427–41. https://doi.org/10.1093/nar/gkt967.

    Article  CAS  PubMed  Google Scholar 

  14. Wyman SK, Knouf EC, Parkin RK, Fritz BR, Lin DW, Dennis LM, et al. Post-transcriptional generation of miRNA variants by multiple nucleotidyl transferases contributes to miRNA transcriptome complexity. Genome Res. 2011;21(9):1450–61. https://doi.org/10.1101/gr.118059.110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Donker RB, Mouillet JF, Nelson DM, Sadovsky Y. The expression of Argonaute2 and related microRNA biogenesis proteins in normal and hypoxic trophoblasts. Mol Hum Reprod. 2007;13(4):273–9. https://doi.org/10.1093/molehr/gam006.

    Article  CAS  PubMed  Google Scholar 

  16. Forbes K, Farrokhnia F, Aplin JD, Westwood M. Dicer-dependent miRNAs provide an endogenous restraint on cytotrophoblast proliferation. Placenta. 2012;33(7):581–5. https://doi.org/10.1016/j.placenta.2012.03.006.

    Article  CAS  PubMed  Google Scholar 

  17. Forbes K. IFPA Gabor Than Award lecture: molecular control of placental growth: the emerging role of microRNAs. Placenta. 2013;34(Suppl):S27–33. https://doi.org/10.1016/j.placenta.2012.12.011.

    Article  CAS  PubMed  Google Scholar 

  18. Yang M, Chen Y, Chen L, Wang K, Pan T, Liu X, et al. miR-15b-AGO2 play a critical role in HTR8/SVneo invasion and in a model of angiogenesis defects related to inflammation. Placenta. 2016;41:62–73. https://doi.org/10.1016/j.placenta.2016.03.007.

    Article  CAS  PubMed  Google Scholar 

  19. Zhang R, Wang YQ, Su B. Molecular evolution of a primate-specific microRNA family. Mol Biol Evol. 2008;25(7):1493–502. https://doi.org/10.1093/molbev/msn094.

    Article  CAS  PubMed  Google Scholar 

  20. Luo SS, Ishibashi O, Ishikawa G, Ishikawa T, Katayama A, Mishima T, et al. Human villous trophoblasts express and secrete placenta-specific microRNAs into maternal circulation via exosomes. Biol Reprod. 2009;81(4):717–29. https://doi.org/10.1095/biolreprod.108.075481.

    Article  CAS  PubMed  Google Scholar 

  21. Zhou X, Li Q, Xu J, Zhang X, Zhang H, Xiang Y, et al. The aberrantly expressed miR-193b-3p contributes to preeclampsia through regulating transforming growth factor-beta signaling. Sci Rep. 2016;6:19910. https://doi.org/10.1038/srep19910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Morales-Prieto DM, Ospina-Prieto S, Chaiwangyen W, Schoenleben M, Markert UR. Pregnancy-associated miRNA-clusters. J Reprod Immunol. 2013;97(1):51–61. https://doi.org/10.1016/j.jri.2012.11.001.

    Article  CAS  PubMed  Google Scholar 

  23. Morales-Prieto DM, Ospina-Prieto S, Schmidt A, Chaiwangyen W, Markert UR. Elsevier Trophoblast Research Award Lecture: origin, evolution and future of placenta miRNAs. Placenta. 2014;35(Suppl):S39–45. https://doi.org/10.1016/j.placenta.2013.11.017.

    Article  CAS  PubMed  Google Scholar 

  24. Seitz H, Royo H, Bortolin ML, Lin SP, Ferguson-Smith AC, Cavaille J. A large imprinted microRNA gene cluster at the mouse Dlk1-Gtl2 domain. Genome Res. 2004;14(9):1741–8. https://doi.org/10.1101/gr.2743304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Noguer-Dance M, Abu-Amero S, Al-Khtib M, Lefevre A, Coullin P, Moore GE, et al. The primate-specific microRNA gene cluster (C19MC) is imprinted in the placenta. Hum Mol Genet. 2010;19(18):3566–82. https://doi.org/10.1093/hmg/ddq272.

    Article  CAS  PubMed  Google Scholar 

  26. Bentwich I, Avniel A, Karov Y, Aharonov R, Gilad S, Barad O, et al. Identification of hundreds of conserved and nonconserved human microRNAs. Nat Genet. 2005;37(7):766–70. https://doi.org/10.1038/ng1590.

    Article  CAS  PubMed  Google Scholar 

  27. Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9(6):654–9. https://doi.org/10.1038/ncb1596.

    Article  CAS  PubMed  Google Scholar 

  28. Kosaka N, Iguchi H, Yoshioka Y, Takeshita F, Matsuki Y, Ochiya T. Secretory mechanisms and intercellular transfer of microRNAs in living cells. J Biol Chem. 2010;285(23):17442–52. https://doi.org/10.1074/jbc.M110.107821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Weber JA, Baxter DH, Zhang S, Huang DY, Huang KH, Lee MJ, et al. The microRNA spectrum in 12 body fluids. Clin Chem. 2010;56(11):1733–41. https://doi.org/10.1373/clinchem.2010.147405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Donker RB, Mouillet JF, Chu T, Hubel CA, Stolz DB, Morelli AE, et al. The expression profile of C19MC microRNAs in primary human trophoblast cells and exosomes. Mol Hum Reprod. 2012;18(8):417–24. https://doi.org/10.1093/molehr/gas013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dragovic RA, Collett GP, Hole P, Ferguson DJ, Redman CW, Sargent IL, et al. Isolation of syncytiotrophoblast microvesicles and exosomes and their characterisation by multicolour flow cytometry and fluorescence Nanoparticle Tracking Analysis. Methods. 2015;87:64–74. https://doi.org/10.1016/j.ymeth.2015.03.028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Vargas A, Zhou S, Ethier-Chiasson M, Flipo D, Lafond J, Gilbert C, et al. Syncytin proteins incorporated in placenta exosomes are important for cell uptake and show variation in abundance in serum exosomes from patients with preeclampsia. FASEB J. 2014;28(8):3703–19. https://doi.org/10.1096/fj.13-239053.

    Article  CAS  PubMed  Google Scholar 

  33. Mincheva-Nilsson L, Baranov V. The role of placental exosomes in reproduction. Am J Reprod Immunol. 2010;63(6):520–33. https://doi.org/10.1111/j.1600-0897.2010.00822.x.

    Article  CAS  PubMed  Google Scholar 

  34. Tannetta D, Masliukaite I, Vatish M, Redman C, Sargent I. Update of syncytiotrophoblast derived extracellular vesicles in normal pregnancy and preeclampsia. J Reprod Immunol. 2016. https://doi.org/10.1016/j.jri.2016.08.008.

  35. Arroyo JD, Chevillet JR, Kroh EM, Ruf IK, Pritchard CC, Gibson DF, et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci U S A. 2011;108(12):5003–8. https://doi.org/10.1073/pnas.1019055108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Turchinovich A, Weiz L, Langheinz A, Burwinkel B. Characterization of extracellular circulating microRNA. Nucleic Acids Res. 2011;39(16):7223–33. https://doi.org/10.1093/nar/gkr254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Vickers KC, Palmisano BT, Shoucri BM, Shamburek RD, Remaley AT. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat Cell Biol. 2011;13(4):423–33. https://doi.org/10.1038/ncb2210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Salomon C, Torres MJ, Kobayashi M, Scholz-Romero K, Sobrevia L, Dobierzewska A, et al. A gestational profile of placental exosomes in maternal plasma and their effects on endothelial cell migration. PLoS One. 2014;9(6):e98667. https://doi.org/10.1371/journal.pone.0098667.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Sarker S, Scholz-Romero K, Perez A, Illanes SE, Mitchell MD, Rice GE, et al. Placenta-derived exosomes continuously increase in maternal circulation over the first trimester of pregnancy. J Transl Med. 2014;12:204. https://doi.org/10.1186/1479-5876-12-204.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Dragovic RA, Southcombe JH, Tannetta DS, Redman CW, Sargent IL. Multicolor flow cytometry and nanoparticle tracking analysis of extracellular vesicles in the plasma of normal pregnant and pre-eclamptic women. Biol Reprod. 2013;89(6):151. https://doi.org/10.1095/biolreprod.113.113266.

    Article  PubMed  Google Scholar 

  41. Goswami D, Tannetta DS, Magee LA, Fuchisawa A, Redman CW, Sargent IL, et al. Excess syncytiotrophoblast microparticle shedding is a feature of early-onset pre-eclampsia, but not normotensive intrauterine growth restriction. Placenta. 2006;27(1):56–61. https://doi.org/10.1016/j.placenta.2004.11.007.

    Article  CAS  PubMed  Google Scholar 

  42. Kambe S, Yoshitake H, Yuge K, Ishida Y, Ali MM, Takizawa T, et al. Human exosomal placenta-associated miR-517a-3p modulates the expression of PRKG1 mRNA in Jurkat cells. Biol Reprod. 2014;91(5):129. https://doi.org/10.1095/biolreprod.114.121616.

    Article  PubMed  Google Scholar 

  43. Takahashi H, Ohkuchi A, Kuwata T, Usui R, Baba Y, Suzuki H, et al. Endogenous and exogenous miR-520c-3p modulates CD44-mediated extravillous trophoblast invasion. Placenta. 2017;50:25–31.

    Article  CAS  PubMed  Google Scholar 

  44. Mitchell MD, Peiris HN, Kobayashi M, Koh YQ, Duncombe G, Illanes SE, et al. Placental exosomes in normal and complicated pregnancy. Am J Obstet Gynecol. 2015;213(4 Suppl):S173–81. https://doi.org/10.1016/j.ajog.2015.07.001.

    Article  CAS  PubMed  Google Scholar 

  45. Mouillet JF, Ouyang Y, Coyne CB, Sadovsky Y. MicroRNAs in placental health and disease. Am J Obstet Gynecol. 2015;213(4 Suppl):S163–72. https://doi.org/10.1016/j.ajog.2015.05.057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Pineles BL, Romero R, Montenegro D, Tarca AL, Han YM, Kim YM, et al. Distinct subsets of microRNAs are expressed differentially in the human placentas of patients with preeclampsia. Am J Obstet Gynecol. 2007;196(3):261.e1–6. https://doi.org/10.1016/j.ajog.2007.01.008.

    Article  Google Scholar 

  47. Zhu XM, Han T, Sargent IL, Yin GW, Yao YQ. Differential expression profile of microRNAs in human placentas from preeclamptic pregnancies vs normal pregnancies. Am J Obstet Gynecol. 2009;200(6):661.e1–7. https://doi.org/10.1016/j.ajog.2008.12.045.

    Article  CAS  Google Scholar 

  48. Hu Y, Li P, Hao S, Liu L, Zhao J, Hou Y. Differential expression of microRNAs in the placentae of Chinese patients with severe pre-eclampsia. Clin Chem Lab Med. 2009;47(8):923–9. https://doi.org/10.1515/cclm.2009.228.

    Article  CAS  PubMed  Google Scholar 

  49. Zhang Y, Diao Z, Su L, Sun H, Li R, Cui H, et al. MicroRNA-155 contributes to preeclampsia by down-regulating CYR61. Am J Obstet Gynecol. 2010;202(5):466.e1–7. https://doi.org/10.1016/j.ajog.2010.01.057.

    Article  Google Scholar 

  50. Enquobahrie DA, Abetew DF, Sorensen TK, Willoughby D, Chidambaram K, Williams MA. Placental microRNA expression in pregnancies complicated by preeclampsia. Am J Obstet Gynecol. 2011;204(2):178.e12–21. https://doi.org/10.1016/j.ajog.2010.09.004.

    Article  Google Scholar 

  51. Ishibashi O, Ohkuchi A, Ali MM, Kurashina R, Luo SS, Ishikawa T, et al. Hydroxysteroid (17-beta) dehydrogenase 1 is dysregulated by miR-210 and miR-518c that are aberrantly expressed in preeclamptic placentas: a novel marker for predicting preeclampsia. Hypertension. 2012;59(2):265–73. https://doi.org/10.1161/hypertensionaha.111.180232.

    Article  CAS  PubMed  Google Scholar 

  52. Xu P, Zhao Y, Liu M, Wang Y, Wang H, Li YX, et al. Variations of microRNAs in human placentas and plasma from preeclamptic pregnancy. Hypertension. 2014;63(6):1276–84. https://doi.org/10.1161/hypertensionaha.113.02647.

    Article  CAS  PubMed  Google Scholar 

  53. Zhang M, Muralimanoharan S, Wortman AC, Mendelson CR. Primate-specific miR-515 family members inhibit key genes in human trophoblast differentiation and are upregulated in preeclampsia. Proc Natl Acad Sci U S A. 2016. https://doi.org/10.1073/pnas.1607849113.

  54. Chan YC, Banerjee J, Choi SY, Sen CK. miR-210: the master hypoxamir. Microcirculation. 2012;19(3):215–23. https://doi.org/10.1111/j.1549-8719.2011.00154.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Miettinen MM, Mustonen MV, Poutanen MH, Isomaa VV, Vihko RK. Human 17 beta-hydroxysteroid dehydrogenase type 1 and type 2 isoenzymes have opposite activities in cultured cells and characteristic cell- and tissue-specific expression. Biochem J. 1996;314(Pt 3):839–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Guo L, Yang Q, Lu J, Li H, Ge Q, Gu W, et al. A comprehensive survey of miRNA repertoire and 3′ addition events in the placentas of patients with pre-eclampsia from high-throughput sequencing. PLoS One. 2011;6(6):e21072. https://doi.org/10.1371/journal.pone.0021072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Pillay P, Maharaj N, Moodley J, Mackraj I. Placental exosomes and pre-eclampsia: maternal circulating levels in normal pregnancies and, early and late onset pre-eclamptic pregnancies. Placenta. 2016;46:18–25. https://doi.org/10.1016/j.placenta.2016.08.078.

    Article  CAS  PubMed  Google Scholar 

  58. Germain SJ, Sacks GP, Sooranna SR, Sargent IL, Redman CW. Systemic inflammatory priming in normal pregnancy and preeclampsia: the role of circulating syncytiotrophoblast microparticles. J Immunol. 2007;178(9):5949–56.

    Article  CAS  PubMed  Google Scholar 

  59. Miura K, Miura S, Yamasaki K, Higashijima A, Kinoshita A, Yoshiura K, et al. Identification of pregnancy-associated microRNAs in maternal plasma. Clin Chem. 2010;56(11):1767–71. https://doi.org/10.1373/clinchem.2010.147660.

    Article  CAS  PubMed  Google Scholar 

  60. Miura K, Higashijima A, Murakami Y, Tsukamoto O, Hasegawa Y, Abe S, et al. Circulating chromosome 19 miRNA cluster microRNAs in pregnant women with severe pre-eclampsia. J Obstet Gynaecol Res. 2015;41(10):1526–32. https://doi.org/10.1111/jog.12749.

    Article  CAS  PubMed  Google Scholar 

  61. Kotlabova K, Doucha J, Hromadnikova I. Placental-specific microRNA in maternal circulation—identification of appropriate pregnancy-associated microRNAs with diagnostic potential. J Reprod Immunol. 2011;89(2):185–91. https://doi.org/10.1016/j.jri.2011.02.006.

    Article  CAS  PubMed  Google Scholar 

  62. Hromadnikova I, Kotlabova K, Ondrackova M, Kestlerova A, Novotna V, Hympanova L, et al. Circulating C19MC microRNAs in preeclampsia, gestational hypertension, and fetal growth restriction. Mediat Inflamm. 2013;2013:186041. https://doi.org/10.1155/2013/186041.

    Google Scholar 

  63. Hromadnikova I, Kotlabova K, Doucha J, Dlouha K, Krofta L. Absolute and relative quantification of placenta-specific microRNAs in maternal circulation with placental insufficiency-related complications. J Mol Diagn. 2012;14(2):160–7. https://doi.org/10.1016/j.jmoldx.2011.11.003.

    Article  CAS  PubMed  Google Scholar 

  64. Wu L, Zhou H, Lin H, Qi J, Zhu C, Gao Z, et al. Circulating microRNAs are elevated in plasma from severe preeclamptic pregnancies. Reproduction. 2012;143(3):389–97. https://doi.org/10.1530/rep-11-0304.

    Article  CAS  PubMed  Google Scholar 

  65. Hromadnikova I, Kotlabova K, Hympanova L, Doucha J, Krofta L. First trimester screening of circulating C19MC microRNAs can predict subsequent onset of gestational hypertension. PLoS One. 2014;9(12):e113735. https://doi.org/10.1371/journal.pone.0113735.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Williams Z, Ben-Dov IZ, Elias R, Mihailovic A, Brown M, Rosenwaks Z, et al. Comprehensive profiling of circulating microRNA via small RNA sequencing of cDNA libraries reveals biomarker potential and limitations. Proc Natl Acad Sci U S A. 2013;110(11):4255–60. https://doi.org/10.1073/pnas.1214046110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Liu Y, Zhao Y, Yu A, Zhao B, Gao Y, Niu H. Diagnostic accuracy of the soluble Fms-like tyrosine kinase-1/placental growth factor ratio for preeclampsia: a meta-analysis based on 20 studies. Arch Gynecol Obstet. 2015;292(3):507–18. https://doi.org/10.1007/s00404-015-3671-8.

    Article  CAS  PubMed  Google Scholar 

  68. Sovio U, Gaccioli F, Cook E, Hund M, Charnock-Jones DS, Smith GC. Prediction of preeclampsia using the soluble fms-like tyrosine kinase 1 to placental growth factor ratio: a prospective cohort study of unselected nulliparous women. Hypertension. 2017;69(4):731–8. https://doi.org/10.1161/hypertensionaha.116.08620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Takizawa T, Ishibashi O, Matsubara S, Migita M, Takeshita T. Exosomes released from human placenta into maternal circulation: placenta-specific miRNAs (review). Exp Med (Yodosha, Tokyo, Japan [in Japanese]). 2011;29(3):392–8.

    CAS  Google Scholar 

  70. Farrokhnia F, Aplin JD, Westwood M, Forbes K. MicroRNA regulation of mitogenic signaling networks in the human placenta. J Biol Chem. 2014;289(44):30404–16. https://doi.org/10.1074/jbc.M114.587295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zhu X, Yang Y, Han T, Yin G, Gao P, Ni Y, et al. Suppression of microRNA-18a expression inhibits invasion and promotes apoptosis of human trophoblast cells by targeting the estrogen receptor alpha gene. Mol Med Rep. 2015;12(2):2701–6. https://doi.org/10.3892/mmr.2015.3724.

    Article  CAS  PubMed  Google Scholar 

  72. Kumar P, Luo Y, Tudela C, Alexander JM, Mendelson CR. The c-Myc-regulated microRNA-17~92 (miR-17~92) and miR-106a~363 clusters target hCYP19A1 and hGCM1 to inhibit human trophoblast differentiation. Mol Cell Biol. 2013;33(9):1782–96. https://doi.org/10.1128/mcb.01228-12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wang Y, Zhang Y, Wang H, Wang J, Pan Z, Luo S. Aberrantly up-regulated miR-20a in pre-eclampsic placenta compromised the proliferative and invasive behaviors of trophoblast cells by targeting forkhead box protein A1. Int J Biol Sci. 2014;10(9):973–82. https://doi.org/10.7150/ijbs.9088.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Li P, Guo W, Du L, Zhao J, Wang Y, Liu L, et al. microRNA-29b contributes to pre-eclampsia through its effects on apoptosis, invasion and angiogenesis of trophoblast cells. Clin Sci (Lond). 2013;124(1):27–40. https://doi.org/10.1042/cs20120121.

    Article  CAS  Google Scholar 

  75. Sun M, Chen H, Liu J, Tong C, Meng T. MicroRNA-34a inhibits human trophoblast cell invasion by targeting MYC. BMC Cell Biol. 2015;16:21. https://doi.org/10.1186/s12860-015-0068-2.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Zou Y, Jiang Z, Yu X, Zhang Y, Sun M, Wang W, et al. MiR-101 regulates apoptosis of trophoblast HTR-8/SVneo cells by targeting endoplasmic reticulum (ER) protein 44 during preeclampsia. J Hum Hypertens. 2014;28(10):610–6. https://doi.org/10.1038/jhh.2014.35.

    Article  CAS  PubMed  Google Scholar 

  77. Li Q, Pan Z, Wang X, Gao Z, Ren C, Yang W. miR-125b-1-3p inhibits trophoblast cell invasion by targeting sphingosine-1-phosphate receptor 1 in preeclampsia. Biochem Biophys Res Commun. 2014;453(1):57–63. https://doi.org/10.1016/j.bbrc.2014.09.059.

    Article  CAS  PubMed  Google Scholar 

  78. Tamaru S, Mizuno Y, Tochigi H, Kajihara T, Okazaki Y, Okagaki R, et al. MicroRNA-135b suppresses extravillous trophoblast-derived HTR-8/SVneo cell invasion by directly down regulating CXCL12 under low oxygen conditions. Biochem Biophys Res Commun. 2015;461(2):421–6. https://doi.org/10.1016/j.bbrc.2015.04.055.

    Article  CAS  PubMed  Google Scholar 

  79. TM L, Lu W, Zhao LJ. MicroRNA-137 affects proliferation and migration of placenta trophoblast cells in preeclampsia by targeting ERRalpha. Reprod Sci. 2016. https://doi.org/10.1177/1933719116650754.

  80. Dai Y, Qiu Z, Diao Z, Shen L, Xue P, Sun H, et al. MicroRNA-155 inhibits proliferation and migration of human extravillous trophoblast derived HTR-8/SVneo cells via down-regulating cyclin D1. Placenta. 2012;33(10):824–9. https://doi.org/10.1016/j.placenta.2012.07.012.

    Article  CAS  PubMed  Google Scholar 

  81. Bai Y, Yang W, Yang HX, Liao Q, Ye G, Fu G, et al. Downregulated miR-195 detected in preeclamptic placenta affects trophoblast cell invasion via modulating ActRIIA expression. PLoS One. 2012;7(6):e38875. https://doi.org/10.1371/journal.pone.0038875.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Yu Y, Wang L, Liu T, Guan H. MicroRNA-204 suppresses trophoblast-like cell invasion by targeting matrix metalloproteinase-9. Biochem Biophys Res Commun. 2015;463(3):285–91. https://doi.org/10.1016/j.bbrc.2015.05.052.

    Article  CAS  PubMed  Google Scholar 

  83. Mouillet JF, Chu T, Nelson DM, Mishima T, Sadovsky Y. MiR-205 silences MED1 in hypoxic primary human trophoblasts. FASEB J. 2010;24(6):2030–9. https://doi.org/10.1096/fj.09-149724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Zhang Y, Fei M, Xue G, Zhou Q, Jia Y, Li L, et al. Elevated levels of hypoxia-inducible microRNA-210 in pre-eclampsia: new insights into molecular mechanisms for the disease. J Cell Mol Med. 2012;16(2):249–59. https://doi.org/10.1111/j.1582-4934.2011.01291.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Luo R, Shao X, Xu P, Liu Y, Wang Y, Zhao Y, et al. MicroRNA-210 contributes to preeclampsia by downregulating potassium channel modulatory factor 1. Hypertension. 2014;64(4):839–45. https://doi.org/10.1161/hypertensionaha.114.03530.

    Article  CAS  PubMed  Google Scholar 

  86. Kopriva SE, Chiasson VL, Mitchell BM, Chatterjee P. TLR3-induced placental miR-210 down-regulates the STAT6/interleukin-4 pathway. PLoS One. 2013;8(7):e67760. https://doi.org/10.1371/journal.pone.0067760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Fu G, Ye G, Nadeem L, Ji L, Manchanda T, Wang Y, et al. MicroRNA-376c impairs transforming growth factor-beta and nodal signaling to promote trophoblast cell proliferation and invasion. Hypertension. 2013;61(4):864–72. https://doi.org/10.1161/hypertensionaha.111.203489.

    Article  CAS  PubMed  Google Scholar 

  88. Luo L, Ye G, Nadeem L, Fu G, Yang BB, Honarparvar E, et al. MicroRNA-378a-5p promotes trophoblast cell survival, migration and invasion by targeting Nodal. J Cell Sci. 2012;125(Pt 13):3124–32. https://doi.org/10.1242/jcs.096412.

    Article  CAS  PubMed  Google Scholar 

  89. Xie L, Mouillet JF, Chu T, Parks WT, Sadovsky E, Knofler M, et al. C19MC microRNAs regulate the migration of human trophoblasts. Endocrinology. 2014;155(12):4975–85. https://doi.org/10.1210/en.2014-1501.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Ding J, Huang F, Wu G, Han T, Xu F, Weng D, et al. MiR-519d-3p suppresses invasion and migration of trophoblast cells via targeting MMP-2. PLoS One. 2015;10(3):e0120321. https://doi.org/10.1371/journal.pone.0120321.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Gao WL, Liu M, Yang Y, Yang H, Liao Q, Bai Y, et al. The imprinted H19 gene regulates human placental trophoblast cell proliferation via encoding miR-675 that targets Nodal Modulator 1 (NOMO1). RNA Biol. 2012;9(7):1002–10. https://doi.org/10.4161/rna.20807.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants-in-Aids for Scientific Research and Private University Strategic Research Foundation Support Program (2013–2017) from the Ministry of Education, Culture, Sports, Science and Technology/Japan Society for the Promotion of Science, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshihiro Takizawa M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Takizawa, T., Ohkuchi, A., Matsubara, S., Takeshita, T., Saito, S. (2018). MicroRNA. In: Saito, S. (eds) Preeclampsia. Comprehensive Gynecology and Obstetrics. Springer, Singapore. https://doi.org/10.1007/978-981-10-5891-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-5891-2_13

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-5890-5

  • Online ISBN: 978-981-10-5891-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics