Advertisement

Risk Factors for Preeclampsia

  • Arihiro Shiozaki
  • Shigeru SaitoEmail author
Chapter
Part of the Comprehensive Gynecology and Obstetrics book series (CGO)

Abstract

Several factors are known to increase the risk of preeclampsia. Preeclampsia generally occurs in the first pregnancy. Primipaternity as well as limited sperm exposure; pregnancy after oocyte donation, donor insemination, and embryo donation; multifetal pregnancy; and hydatidiform mole have also been identified as risk factors for preeclampsia. The protective effects of a previous preeclamptic pregnancy are reduced in women who have changed partners. Preeclampsia is more frequent in women with an advanced age, obesity, insulin resistance, pre-existing hypertension and/or renal disease, pre-existing diabetes or gestational hypertension, a family history of preeclampsia, and maternal susceptibility genes. In contrast, cigarette smoking and maternal physical activity reduce the risk of preeclampsia. Further research is needed in order to expand epidemiological evidence for the prevention of early-onset severe preeclampsia. The development of forceful and targeted interventions prior to conception is required to prevent the development of preeclampsia.

Keywords

Preeclampsia Risk Factor Nulliparity Body Mass Index Oocyte Donation 

References

  1. 1.
    Abalos E, Cuesta C, Grosso AL, Chou D, Say L. Global and regional estimates of preeclampsia and eclampsia: a systematic review. Eur J Obstet Gynecol Reprod Biol. 2013;170:1–7.PubMedCrossRefGoogle Scholar
  2. 2.
    Kichou B, Henine N, Kichou L, Benbouabdellah M. Epidemiology of pre-eclampsia in Tizi-ouzou city (Algeria). Ann Cardiol Angeiol. 2015;64(3):164–8.CrossRefGoogle Scholar
  3. 3.
    Elongi Moyene JP, Scheers H, Tandu-Umba B, Haufroid V, Buassa-Bu-Tsumbu B, Verdonck F, Spitz B, Nemery B. Preeclampsia and toxic metals: a case-control study in Kinshasa, DR Congo. Environ Health. 2016;15:48.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Wagnew M, Dessalegn M, Worku A, Nyagero J. Trends of preeclampsia/eclampsia and maternal and neonatal outcomes among women delivering in Addis Ababa selected government hospitals, Ethiopia: a retrospective cross-sectional study. Pan Afr Med J. 2016;25(Suppl 2):12.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Bansal YP. Pre-eclampsia/eclampsia: a profile from Pumwani Maternity Hospital, Nairobi. Kenya East Afr Med J. 1985;62(10):691–8.PubMedGoogle Scholar
  6. 6.
    Udenze IC, Arikawe AP, Makwe CC. Early pregnancy plasminogen activator inhibitor-1 levels in Nigerian women and its relationship with preeclampsia. Niger J Clin Pract. 2017;20(5):517–22.PubMedCrossRefGoogle Scholar
  7. 7.
    Kiondo P, Wamuyu-Maina G, Wandabwa J, Bimenya GS, Tumwesigye NM, Okong P. The effects of vitamin C supplementation on pre-eclampsia in Mulago Hospital, Kampala, Uganda: a randomized placebo controlled clinical trial. BMC Pregnancy Childbirth. 2014;14:283.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Auger N, Luo ZC, Nuyt AM, Kaufman JS, Naimi AI, Platt RW, Fraser WD. Secular trends in preeclampsia incidence and outcomes in a large Canada database: a longitudinal study over 24 years. Can J Cardiol. 2016;32(8):987.e15–23.CrossRefGoogle Scholar
  9. 9.
    Wallis AB, Saftlas AF, Hsia J, Atrash HK. Secular trends in the rates of preeclampsia, eclampsia, and gestational hypertension, United States, 1987–2004. Am J Hypertens. 2008;21(5):521–6.PubMedCrossRefGoogle Scholar
  10. 10.
    Rezende KB, Bornia RG, Esteves AP, Cunha AJ, Amim Junior J. Preeclampsia: prevalence and perinatal repercussions in a University Hospital in Rio de Janeiro, Brazil. Pregnancy Hypertens. 2016;6(4):253–5.PubMedCrossRefGoogle Scholar
  11. 11.
    Canto-Cetina T, Coral-Vázquez RM, Rojano-Mejía D, Godoy SP, Coronel A, Canto P. Higher prepregnancy body mass index is a risk factor for developing preeclampsia in Maya-Mestizo women: a cohort study. Ethn Health. 2017:1–9.Google Scholar
  12. 12.
    Hernández B, Ortiz-Panozo E, Pérez-Cuevas R. Facility-based care for delivery and management of complications related to pregnancy and childbirth in Mexico. Salud Publica Mex. 2012;54(5):496–505.PubMedCrossRefGoogle Scholar
  13. 13.
    Wynn A, Cabeza J, Adachi K, Needleman J, Garcia PJ, Klausner JD. Frequency of maternal and newborn birth outcomes, Lima, Peru, 2013. PLoS One. 2015;10(3):e0116102.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Cripe SM, O’Brien W, Gelaye B, Williams MA. Perinatal outcomes of Southeast Asians with pregnancies complicated by gestational diabetes mellitus or preeclampsia. J Immigr Minor Health. 2012;14(5):747–53.PubMedCrossRefGoogle Scholar
  15. 15.
    Li X, Tan H, Huang X, Zhou S, Hu S, Wang X, Xu X, Liu Q, Wen SW. Similarities and differences between the risk factors for gestational hypertension and preeclampsia: a population based cohort study in south China. Pregnancy Hypertens. 2016;6(1):66–71.PubMedCrossRefGoogle Scholar
  16. 16.
    Eswarappa M, Rakesh M, Sonika P, Snigdha K, Midhun M, Kaushik K, Chennabasappa GK, Sujeeth B. Spectrum of renal injury in pregnancy-induced hypertension: experience from a single center in India. Saudi J Kidney Dis Transpl. 2017;28(2):279–84.PubMedCrossRefGoogle Scholar
  17. 17.
    Aabidha PM, Cherian AG, Paul E, Helan J. Maternal and fetal outcome in pre-eclampsia in a secondary care hospital in South India. J Family Med Prim Care. 2015;4(2):257–60.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Gupta A, Kant S, Pandav CS, Gupta SK, Rai SK, Misra P. Dietary calcium intake, serum calcium level, and their association with preeclampsia in rural North India. Indian J Community Med. 2016;41(3):223–7.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Shiozaki A, Matsuda Y, Satoh S, Saito S. Comparison of risk factors for gestational hypertension and preeclampsia in Japanese singleton pregnancies. J Obstet Gynaecol Res. 2013;39(2):492–9.PubMedCrossRefGoogle Scholar
  20. 20.
    Yamada T, Obata-Yasuoka M, Hamada H, Baba Y, Ohkuchi A, Yasuda S, Kawabata K, Minakawa S, Hirai C, Kusaka H, Murabayashi N, Inde Y, Nagura M, Umazume T, Itakura A, Maeda M, Sagawa N, Ohno Y, Kataoka S, Fujimori K, Kudo Y, Ikeda T, Nakai A, Minakami H. Isolated gestational proteinuria preceding the diagnosis of preeclampsia—an observational study. Acta Obstet Gynecol Scand. 2016;95(9):1048–54.PubMedCrossRefGoogle Scholar
  21. 21.
    Rao AK, Cheng YW, Caughey AB. Perinatal complications among different Asian-American subgroups. Am J Obstet Gynecol. 2006;194(5):e39–41.PubMedCrossRefGoogle Scholar
  22. 22.
    Quillan JP, Kwong A, Passmore P. An epidemiological investigation of pre-eclampsia and elevated blood pressure among Kampuchean refugee women at Sakaeo Holding Center, Thailand. J Trop Med Hyg. 1983;86(5):185–91.PubMedGoogle Scholar
  23. 23.
    Hanprasertpong T, Hanprasertpong J. Pregnancy outcomes in Southeast Asian migrant workers at Southern Thailand. J Obstet Gynaecol. 2015;35(6):565–9.PubMedCrossRefGoogle Scholar
  24. 24.
    Pedersen M, Halldorsson TI, Olsen SF, Hjortebjerg D, Ketzel M, Grandström C, Raaschou-Nielsen O, Sørensen M. Impact of road traffic pollution on pre-eclampsia and pregnancy-induced hypertensive disorders. Epidemiology. 2017;28(1):99–106.PubMedCrossRefGoogle Scholar
  25. 25.
    Metsälä J, Stach-Lempinen B, Gissler M, Eriksson JG, Koivusalo S. Risk of pregnancy complications in relation to maternal prepregnancy body mass index: population-based study from Finland 2006–10. Paediatr Perinat Epidemiol. 2016;30(1):28–37.PubMedCrossRefGoogle Scholar
  26. 26.
    Schneider S, Freerksen N, Röhrig S, Hoeft B, Maul H. Gestational diabetes and preeclampsia—similar risk factor profiles? Early Hum Dev. 2012;88(3):179–84.PubMedCrossRefGoogle Scholar
  27. 27.
    Alsnes IV, Vatten LJ, Fraser A, Bjørngaard JH, Rich-Edwards J, Romundstad PR, Åsvold BO. Hypertension in pregnancy and offspring cardiovascular risk in young adulthood: prospective and sibling studies in the HUNT study (Nord-Trøndelag Health Study) in Norway. Hypertension. 2017;69(4):591–8.PubMedCrossRefGoogle Scholar
  28. 28.
    Cnattingius S, Wikström AK, Stephansson O, Johansson K. The impact of small for gestational age births in early and late preeclamptic pregnancies for preeclampsia recurrence: a cohort study of successive pregnancies in Sweden. Paediatr Perinat Epidemiol. 2016;30(6):563–70.PubMedCrossRefGoogle Scholar
  29. 29.
    Purde MT, Baumann M, Wiedemann U, Nydegger UE, Risch L, Surbek D, Risch M. Incidence of preeclampsia in pregnant Swiss women. Swiss Med Wkly. 2015;145:w14175.PubMedGoogle Scholar
  30. 30.
    Bhattacharya S, Campbell DM, Liston WA, Bhattacharya S. Effect of body mass index on pregnancy outcomes in nulliparous women delivering singleton babies. BMC Public Health. 2007;7:168.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Kenny LC, Black MA, Poston L, Taylor R, Myers JE, Baker PN, McCowan LM, Simpson NA, Dekker GA, Roberts CT, Rodems K, Noland B, Raymundo M, Walker JJ, North RA. Early pregnancy prediction of preeclampsia in nulliparous women, combining clinical risk and biomarkers: the Screening for Pregnancy Endpoints (SCOPE) international cohort study. Hypertension. 2014;64(3):644–52.PubMedCrossRefGoogle Scholar
  32. 32.
    Sibai B, Dekker G, Kupferminc M. Pre-eclampsia. Lancet. 2005;365:785–99.PubMedCrossRefGoogle Scholar
  33. 33.
    Dekker G, Sibai B. Primary, secondary, and tertiary prevention of preeclampsia. Lancet. 2001;357:209–15.PubMedCrossRefGoogle Scholar
  34. 34.
    Bartsch E, Medcalf KE, Park AL, Ray JG, High Risk of Pre-eclampsia Identification Group. Clinical risk factors for pre-eclampsia determined in early pregnancy: systematic review and meta-analysis of large cohort studies. BMJ. 2016;353:i1753.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Saito S, Sakai M, Sasaki Y, Nakashima A, Shiozaki A. Inadequate tolerance induction may induce pre-eclampsia. J Reprod Immunol. 2007 Dec;76(1–2):30–9.PubMedCrossRefGoogle Scholar
  36. 36.
    Robillard PY, Dekker G, Chaouaut G, Husley TC, Saftlas A. Epidemiological studies on primipaternity and immunology in preeclampsia—a statement after twelve years after workshops. J Reprod Immunol. 2011;89:104–17.PubMedCrossRefGoogle Scholar
  37. 37.
    Feeney JG, Scott JS. Pre-eclampsia and changed paternity. Eur J Obstet Gynecol Reprod Biol. 1980;11:35–8.PubMedCrossRefGoogle Scholar
  38. 38.
    Tubbergen P, Lachmeijer AM, Althuisius SM, Vlak ME, van Geijn HP, Dekker GA. Change in paternity: a risk factor for preeclampsia in multiparous women? J Reprod Immunol. 1999;45:81–8.PubMedCrossRefGoogle Scholar
  39. 39.
    Saftlas AF, Levine RJ, Klebanoff MA, Martz KL, Ewell MG, Morris CD, et al. Abortion, changed paternity, and risk of preeclampsia in nulliparous women. Am J Epidemiol. 2003;157:1108–14.PubMedCrossRefGoogle Scholar
  40. 40.
    Rowe JH, Ertelt JM, Xin L, Way SS. Pregnancy imprints regulatory memory that sustains anergy to fetal antigen. Nature. 2012;490(7418):102–6.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Klonoff-Cohen HS, Savitz DA, Cefalo RC, McCann MF. An epidemiologic study of contraception and preeclampsia. JAMA. 1989;262(22):3143–7.PubMedCrossRefGoogle Scholar
  42. 42.
    Robillard PY, Hulsey TC, Périanin J, Janky E, Miri EH, Papiernik E. Association of pregnancy-induced hypertension with duration of sexual cohabitation before conception. Lancet. 1994;344(8928):973–5.PubMedCrossRefGoogle Scholar
  43. 43.
    Wang JX, Knottnerus AM, Schuit G, Norman RJ, Chan A, Dekker GA. Surgically obtained sperm, and risk of gestational hypertension and pre-eclampsia. Lancet. 2002;359:673–4.PubMedCrossRefGoogle Scholar
  44. 44.
    Robertson SA, Guerin LR, Bromfield JJ, Branson KM, Ahlström AC, Care AS. Seminal fluid drives expansion of the CD4+CD25+ T regulatory cell pool and induces tolerance to paternal alloantigens in mice. Biol Reprod. 2009;80(5):1036–45.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Robertson SA, Guerin LR, Moldenhauer LM, Hayball JD. Activating T regulatory cells for tolerance in early pregnancy—the contribution of seminal fluid. J Reprod Immunol. 2009;83(1–2):109–16.PubMedCrossRefGoogle Scholar
  46. 46.
    Shima T, Inada K, Nakashima A, Ushijima A, Ito M, Yoshino O, Saito S. Paternal antigen-specific proliferating regulatory T cells are increased in uterine-draining lymph nodes just before implantation and in pregnant uterus just after implantation by seminal plasma-priming in allogeneic mouse pregnancy. J Reprod Immunol. 2015;108:72–82.PubMedCrossRefGoogle Scholar
  47. 47.
    Skjaerven R, Wilcox AJ, Lie RT. The interval between pregnancies and the risk of preeclampsia. N Engl J Med. 2002;346:33–8.PubMedCrossRefGoogle Scholar
  48. 48.
    Barton JR, Sibai BM. Prediction and prevention of recurrent preeclampsia. Obstet Gynecol. 2008;112(2 Pt 1):359–72.PubMedCrossRefGoogle Scholar
  49. 49.
    Storgaard M, Loft A, Bergh C, Wennerholm UB, Söderström-Anttila V, Romundstad LB, et al. Obstetric and neonatal complications in pregnancies conceived after oocyte donation: a systematic review and meta-analysis. BJOG. 2017;124:561–72.PubMedCrossRefGoogle Scholar
  50. 50.
    Pecks U, Maass N, Neulen J. Oocyte donation: a risk factor for pregnancy-induced hypertension: a meta-analysis and case series. Dtsch Arztebl Int. 2011;108(3):23–31.PubMedPubMedCentralGoogle Scholar
  51. 51.
    Masoudian P, Nasr A, de Nanassy J, Fung-Kee-Fung K, Bainbridge SA, El Demellawy D. Oocyte donation pregnancies and the risk of preeclampsia or gestational hypertension: a systematic review and metaanalysis. Am J Obstet Gynecol. 2016;214(3):328–39.PubMedCrossRefGoogle Scholar
  52. 52.
    Conde-Agudelo A, Belizán JM. Risk factors for pre-eclampsia in a large cohort of Latin American and Caribbean women. BJOG. 2000;107:75–83.PubMedCrossRefGoogle Scholar
  53. 53.
    Mastrobattista JM, Skupski DW, Monga M, Blanco JD, August P. The rate of severe preeclampsia is increased in triplet as compared to twin gestations. Am J Perinatol. 1997;14:263–5.PubMedCrossRefGoogle Scholar
  54. 54.
    Maxwell CV, Lieberman E, Norton M, Cohen A, Seely EW, Lee-Parritz A. Relationship of twin zygosity and risk of preeclampsia. Am J Obstet Gynecol. 2001;185:819–21.PubMedCrossRefGoogle Scholar
  55. 55.
    Shiozaki A, Matsuda Y, Satoh S, Saito S. Impact of fetal sex in pregnancy-induced hypertension and preeclampsia in Japan. J Reprod Immunol. 2011;89:133–9.PubMedCrossRefGoogle Scholar
  56. 56.
    Kajii T, Ohama K. Androgenetic origin of hydatidiform mole. Nature. 1977;268(5621):633–4.PubMedCrossRefGoogle Scholar
  57. 57.
    Zhao M, Yin Y, Guo F, Wang J, Wang K, Chen Q. Placental expression of VEGF is increased in pregnancies with hydatidiform mole: possible association with developing very early onset preeclampsia. Early Hum Dev. 2013;89(8):583.PubMedCrossRefGoogle Scholar
  58. 58.
    Yoneda N, Shiozaki A, Miura K, Yonezawa R, Takemura K, Yoneda S, et al. A triploid partial mole placenta from paternal isodisomy with a diploid fetus derived from one sperm and one oocyte may have caused angiogenic imbalance leading to preeclampsia-like symptoms at 19 weeks of gestation. Placenta. 2013;34:631–4.PubMedCrossRefGoogle Scholar
  59. 59.
    Koga K, Osuga Y, Tajima T, Hirota Y, Igarashi T, Fujii T, Yano T, Taketani Y. Elevated serum soluble fms-like tyrosine kinase 1 (sFlt1) level in women with hydatidiform mole. Fertil Steril. 2010;94(1):305–8.PubMedCrossRefGoogle Scholar
  60. 60.
    Toivanen P, Hirvonen T. Sex ratio of newborn: preponderance of males in toxemia of pregnancy. Science. 1970;170:187–8.PubMedCrossRefGoogle Scholar
  61. 61.
    Global Pregnancy Collaboration, Schalekamp-Timmermans S, Arends LR, Alsaker E, Chappell L, Hansson S, Harsem NK, Jälmby M, Jeyabalan A, Laivuori H, Lawlor DA, Macdonald-Wallis C, Magnus P, Myers J, Olsen J, Poston L, Redman CW, Staff AC, Villa P, Roberts JM, Steegers EA. Fetal sex-specific differences in gestational age at delivery in pre-eclampsia: a meta-analysis. Int J Epidemiol. 2017;46(2):632–42. pii: dyw178.Google Scholar
  62. 62.
    Vatten LJ, Skjaerven R. Offspring sex and pregnancy outcome by length of gestation. Early Hum Dev. 2004;76(1):47–54.PubMedCrossRefGoogle Scholar
  63. 63.
    Funai EF, Paltiel OB, Malaspina D, Friedlander Y, Deutsch L, Harlap S. Risk factors for pre-eclampsia in nulliparous and parous women: the Jerusalem perinatal study. Paediatr Perinat Epidemiol. 2005;19(1):59–68.PubMedCrossRefGoogle Scholar
  64. 64.
    Cox LS, Redman C. The role of cellular senescence in ageing of the placenta. Placenta. 2017;52:139–45.PubMedCrossRefGoogle Scholar
  65. 65.
    Roberts JM, Hansson SR, Vaiman D, Redman CWG, Global Pregnancy Collaboration. Global Pregnancy Collaboration symposium on placental health: summary and recommendations. Placenta. 2017;52:116–21.PubMedCrossRefGoogle Scholar
  66. 66.
    Garmendia ML, Zamudio C, Araya M, Kain J. Association between prepregnancy obesity and metabolic risk in Chilean premenopausal women 10 y postpartum. Nutrition. 2017;38:20–7.PubMedCrossRefGoogle Scholar
  67. 67.
    Molvarec A, Shiozaki A, Ito M, Toldi G, Stenczer B, Szarka A, Nakashima A, Vásárhelyi B, Rigó J Jr, Saito S. Increased prevalence of peripheral blood granulysin-producing cytotoxic T lymphocytes in preeclampsia. J Reprod Immunol. 2011;91(1–2):56–63.PubMedCrossRefGoogle Scholar
  68. 68.
    Hayakawa S, Fujikawa T, Fukuoka H, Chisima F, Karasaki-Suzuki M, Ohkoshi E, Ohi H, Kiyoshi Fujii T, Tochigi M, Satoh K, Shimizu T, Nishinarita S, Nemoto N, Sakurai I. Murine fetal resorption and experimental pre-eclampsia are induced by both excessive Th1 and Th2 activation. J Reprod Immunol. 2000;47(2):121–38. Erratum in: J Reprod Immunol 2001; 49(1): 95.PubMedCrossRefGoogle Scholar
  69. 69.
    Zenclussen AC, Fest S, Joachim R, Klapp BF, Arck PC. Introducing a mouse model for pre-eclampsia: adoptive transfer of activated Th1 cells leads to pre-eclampsia-like symptoms exclusively in pregnant mice. Eur J Immunol. 2004;34(2):377–87.PubMedCrossRefGoogle Scholar
  70. 70.
    Ogawa K, Morisaki N, Saito S, Sato S, Fujiwara T, Sago H. Association of shorter height with increased risk of ischaemic placental disease. Paediatr Perinat Epidemiol. 2017;31(3):198–205.PubMedCrossRefGoogle Scholar
  71. 71.
    Duckitt K, Harrington D. Risk factors for pre-eclampsia at antenatal booking: systematic review of controlled studies. BMJ. 2005;330:565.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Boyd HA, Tahir H, Wohlfahrt J, Melbye M. Associations of personal and family preeclampsia history with the risk of early-, intermediate- and late-onset preeclampsia. Am J Epidemiol. 2013;178(11):1611–9.PubMedCrossRefGoogle Scholar
  73. 73.
    Lie RT, Rasmussen S, Brunborg H, Gjessing HK, Lie-Nielsen E, Irgens LM. Fetal and maternal contributions to risk of preeclampsia: a population based study. BMJ. 1998;316:1343–7.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Esplin MS, Fausett MB, Fraser A, Kerber R, Mineau G, Carrillo J, et al. Paternal and maternal components of the predisposition to preeclampsia. N Engl J Med. 2001;344:867–72.PubMedCrossRefGoogle Scholar
  75. 75.
    Dekker G, Robillard PY, Roberts C. The etiology of preeclampsia: the role of the father. J Reprod Immunol. 2011;89(2):126–32.PubMedCrossRefGoogle Scholar
  76. 76.
    Yang J, Pearl M, DeLorenze GN, Romero R, Dong Z, Jelliffe-Pawlowski L, et al. Racial-ethnic differences in midtrimester maternal serum levels of angiogenic and antiangiogenic factors. Am J Obstet Gynecol. 2016;215:359.e1–9.CrossRefGoogle Scholar
  77. 77.
    Seely EW, Ecker J. Chronic hypertension in pregnancy. N Engl J Med. 2011;365:439–46.PubMedCrossRefGoogle Scholar
  78. 78.
    Vestgaard M, Sommer MC, Ringholm L, Damm P, Mathiesen ER. Prediction of preeclampsia in type 1 diabetes in early pregnancy by clinical predictors: a systematic review. J Matern Fetal Neonatal Med. 2017:1–7.  https://doi.org/10.1080/14767058.2017.1331429.
  79. 79.
    Gauster M, Majali-Martinez A, Maninger S, Gutschi E, Greimel PH, Ivanisevic M, Djelmis J, Desoye G, Hiden U. Maternal type 1 diabetes activates stress response in early placenta. Placenta. 2017;50:110–6.PubMedCrossRefGoogle Scholar
  80. 80.
    Middleton P, Crowther CA, Simmonds L. Different intensities of glycaemic control for pregnant women with pre-existing diabetes. Cochrane Database Syst Rev. 2016;5:CD008540.Google Scholar
  81. 81.
    Bharti J, Vatsa R, Singhal S, Roy KK, Kumar S, Perumal V, Meena J. Pregnancy with chronic kidney disease: maternal and fetal outcome. Eur J Obstet Gynecol Reprod Biol. 2016;204:83–7.PubMedCrossRefGoogle Scholar
  82. 82.
    Zhang JJ, Ma XX, Hao L, Liu LJ, Lv JC, Zhang H. A systematic review and meta-analysis of outcomes of pregnancy in CKD and CKD outcomes in pregnancy. Clin J Am Soc Nephrol. 2015;10:1964–78.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    McDonald SD, Best C, Lam K. The recurrence risk of severe de novo pre-eclampsia in singleton pregnancies: a population-based cohort. BJOG. 2009;116:1578–84.PubMedCrossRefGoogle Scholar
  84. 84.
    Makris A, Yeung KR, Lim SM, Sunderland N, Heffernan S, Thompson JF, Iliopoulos J, Killingsworth MC, Yong J, Xu B, Ogle RF, Thadhani R, Karumanchi SA, Hennessy A. Placental growth factor reduces blood pressure in a uteroplacental ischemia model of preeclampsia in nonhuman primates. Hypertension. 2016;67(6):1263–72.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Salmon JE, Girardi G. Antiphospholipid antibodies and pregnancy loss: a disorder of inflammation. J Reprod Immunol. 2008;77(1):51–6.PubMedCrossRefGoogle Scholar
  86. 86.
    Lefkou E, Mamopoulos A, Dagklis T, Vosnakis C, Rousso D, Girardi G. Pravastatin improves pregnancy outcomes in obstetric antiphospholipid syndrome refractory to antithrombotic therapy. J Clin Invest. 2016;126(8):2933–40.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Saccone G, Berghella V, Maruotti GM, Ghi T, Rizzo G, Simonazzi G, et al.; PREGNANTS (PREGNancy in Women with ANTiphospholipid Syndrome) Working Group. Antiphospholipid antibody profile based obstetric outcomes of primary antiphospholipid syndrome: the PREGNANTS study. Am J Obstet Gynecol. 2017;216(5):525.e1–12. pii: S0002–9378(17)30148–5.  https://doi.org/10.1016/j.ajog.2017.01.026.
  88. 88.
    do Prado AD, Piovesan DM, Staub HL, Horta BL. Association of anticardiolipin antibodies with preeclampsia: a systematic review and meta-analysis. Obstet Gynecol. 2010;116(6):1433–43.PubMedCrossRefGoogle Scholar
  89. 89.
    de Jesus GR, Mendoza-Pinto C, de Jesus NR, Dos Santos FC, Klumb EM, Carrasco MG, Levy RA. Understanding and managing pregnancy in patients with lupus. Autoimmune Dis. 2015;2015:943490.PubMedPubMedCentralGoogle Scholar
  90. 90.
    Simard JF, Arkema EV, Nguyen C, Svenungsson E, Wikström AK, Palmsten K, Salmon JE. Early-onset preeclampsia in lupus pregnancy. Paediatr Perinat Epidemiol. 2017;31:29–36.PubMedCrossRefGoogle Scholar
  91. 91.
    Ponzetto A, Cardaropoli S, Piccoli E, Rolfo A, Gennero L, Kanduc D, et al. Pre-eclampsia is associated with Helicobacter pylori seropositivity in Italy. J Hypertens. 2006;24:2445–9.PubMedCrossRefGoogle Scholar
  92. 92.
    Conde-Agudelo A, Villar J, Lindheimer M. Maternal infection and risk of preeclampsia: systematic review and metaanalysis. Am J Obstet Gynecol. 2008;198:7–22.PubMedCrossRefGoogle Scholar
  93. 93.
    Minassian C, Thomas SL, Williams DJ, Campbell O, Smeeth L. Acute maternal infection and risk of pre-eclampsia: a population-based case-control study. PLoS One. 2013;8(9):e73047.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Huang QT, Chen JH, Zhong M, Hang LL, Wei SS, Yu YH. Chronic hepatitis B infection is associated with decreased risk of preeclampsia: a meta-analysis of observational studies. Cell Physiol Biochem. 2016;38:1860–8.PubMedCrossRefGoogle Scholar
  95. 95.
    Flanagan KL, Halliday A, Burl S, Landgraf K, Jagne YJ, Noho-Konteh F, Townend J, Miles DJ, van der Sande M, Whittle H, Rowland-Jones S. The effect of placental malaria infection on cord blood and maternal immunoregulatory responses at birth. Eur J Immunol. 2010;40(4):1062–72.PubMedCrossRefGoogle Scholar
  96. 96.
    Moore LG, Hershey DW, Jahnigen D, Bowes W. The incidence of pregnancy-induced hypertension is increased among Colorado residents at high altitude. Am J Obstet Gynecol. 1982;144:423–9.PubMedCrossRefGoogle Scholar
  97. 97.
    Dávila RD, Julian CG, Vaughn A, Browne VA, Toledo-Jaldin L, Wilson MJ, et al. Role of cytokines in altitude-associated preeclampsia. Pregnancy Hypertens. 2012;2(1):65–70.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Conde-Agudelo A, Althabe F, Belizán JM, Kafury-Goeta AC. Cigarette smoking during pregnancy and risk of preeclampsia: a systematic review. Am J Obstet Gynecol. 1999;181:1026–35.PubMedCrossRefGoogle Scholar
  99. 99.
    Wei J, Liu CX, Gong TT, Wu QJ, Wu L. Cigarette smoking during pregnancy and preeclampsia risk: a systematic review and meta-analysis of prospective studies. Oncotarget. 2015;6:43667–78. https://doi.org/10.18632/oncotarget.6190.PubMedPubMedCentralGoogle Scholar
  100. 100.
    Cudmore M, Ahmad S, Al-Ani B, Fujisawa T, Coxall H, Chudasama K, et al. Negative regulation of soluble Flt-1 and soluble endoglin release by heme oxygenase-1. Circulation. 2007;115:1789–97.PubMedCrossRefGoogle Scholar
  101. 101.
    Levine RJ, Maynard SE, Qian C, Lim KH, England LJ, Yu KF, Schisterman EF, Thadhani R, Sachs BP, Epstein FH, Sibai BM, Sukhatme VP, Karumanchi SA. Circulating angiogenic factors and the risk of preeclampsia. N Engl J Med. 2004;350:672–83.PubMedCrossRefGoogle Scholar
  102. 102.
    Levine RJ, Lam C, Qian C, Yu KF, Maynard SE, Sachs BP, Sibai BM, Epstein FH, Romero R, Thadhani R, Karumanchi SA. Soluble endoglin and other circulating antiangiogenic factors in preeclampsia. N Engl J Med. 2006;355:992–1005.PubMedCrossRefGoogle Scholar
  103. 103.
    Jeyabalan A, Powers RW, Durica AR, Harger GF, Roberts JM, Ness RB. Cigarette smoke exposure and angiogenic factors in pregnancy and preeclampsia. Am J Hypertens. 2008;21:943–7.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Mimura K, Tomimatsu T, Sharentuya N, Tskitishvili E, Kinugasa-Taniguchi Y, Kanagawa T, Kimura T. Nicotine restores endothelial dysfunction caused by excess sFlt1 and sEng in an in vitro model of preeclamptic vascular endothelium: a possible therapeutic role of nicotinic acetylcholine receptor (nAChR) agonists for preeclampsia. Am J Obstet Gynecol. 2010;202(5):464.e1–6.CrossRefGoogle Scholar
  105. 105.
    Yamada-Nomoto K, Yoshino O, Akiyama I, Ushijima A, Ono Y, Shima T, Nakashima A, Hayashi S, Kadowaki M, Osuga Y, Saito S. Alpha-7 nicotinic acetylcholine receptor (nAChR) agonist inhibits the development of endometriosis by regulating inflammation. Am J Reprod Immunol. 2016;76(6):491–8.PubMedCrossRefGoogle Scholar
  106. 106.
    Algert CS, Roberts CL, Shand AW, et al. Seasonal variation in pregnancy hypertension is correlated with sunlight intensity. Am J Obstet Gynecol. 2010;203:215.e1–5.CrossRefGoogle Scholar
  107. 107.
    De-Regil LM, Palacios C, Lombardo LK, Peña-Rosas JP. Vitamin D supplementation for women during pregnancy. Cochrane Database Syst Rev. 2016;1:CD008873.Google Scholar
  108. 108.
    Aune D, Saugstad OD, Henriksen T, Tonstad S. Physical activity and the risk of preeclampsia: a systematic review and meta-analysis. Epidemiology. 2014;25(3):331–43.PubMedCrossRefGoogle Scholar
  109. 109.
    Magro-Malosso ER, Saccone G, Di Tommaso M, Roman A, Berghella V. Exercise during pregnancy and risk of gestational hypertensive disorders: a systematic review and meta-analysis. Acta Obstet Gynecol Scand. 2017;96(8):921–931.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Obstetrics and GynecologyUniversity of ToyamaToyamaJapan

Personalised recommendations