Tissue Engineering and Cell-Based Therapy in Regenerative Medicine



Tissue Engineering is an offspring of the field of biomaterials development, a more sophisticated method of using biomaterials, which are materials used in medical devices. Tissue engineering involves the use cells, scaffolds and active molecules to build functional tissues. Tissue engineering aims to create working constructs that have the ability to rehabilitate and preserve damaged tissues or organs. Artificial skin and cartilage are examples of tissues that have been engineered.


Chronic Obstructive Pulmonary Disorder (COPD) Small Airway Growth Medium (SAGM) Germline Stem Cells (GSCs) Idiopathic Pulmonary Fibrosis (IPF) Drug Controller General Of India (DCGI) 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Ethics Statement

All in vivo work have been done according to the guidelines of the Faculty Councils for Post-Graduate Studies in Science, Technology and Engineering, Agriculture & Veterinary Science of the University of Calcutta, Kolkata (Ref. No. BEHR/1029/2304).


  1. 1.
    Gomparts BN, Strieter RM (2007) Stem cells and chronic lung disease. Annu Rev Med 58:285–298CrossRefGoogle Scholar
  2. 2.
    Dahlin K, Mager EM, Allen L, Tigue Z, Goodglick L, Wadehra M, Dobbs L (2004) Identification of genes differentially expressed in rat alveolar type I cells. Am J Respir Cell Mol Biol 31(3):309–316CrossRefPubMedGoogle Scholar
  3. 3.
    Hoppeler H, Lindstedt SL, Claassen H, Taylor CR, Mathieu O, Weibel ER (1984) Scaling mitochondrial volume in heart to body mass. Respir Physiol 55(2):131–137CrossRefPubMedGoogle Scholar
  4. 4.
    Laffon M, Jayr C, Barbry P, Wang Y, Folkesson HG, Pittet JF, Clerici C, Matthay MA (2002) Lidocaine induces a reversible decrease in alveolar epithelial fluid clearance in rats. Anesthesiology 96(2):392–399CrossRefPubMedGoogle Scholar
  5. 5.
    Evans MJ, Cabral-Anderson LJ, Freeman G (1978) Role of the Clara cell in renewal of the bronchiolar epithelium. Lab Invest 38(6):648–653PubMedGoogle Scholar
  6. 6.
    Tai G, Polak JM, Bishop AE, Christodoulou I, Buttery LD (2004) Differentiation of osteoblasts from murine embryonic stem cells by overexpression of the transcriptional factor osterix. Tissue Eng 10(9–10):1456–1466CrossRefPubMedGoogle Scholar
  7. 7.
    Kasper M, Schöbl R, Haroske G, Fischer R, Neubert F, Dimmer V, Müller M (1996) Distribution of von Willebrand factor in capillary endothelial cells of rat lungs with pulmonary fibrosis. Exp Toxicol Pathol 48(4):283–288CrossRefPubMedGoogle Scholar
  8. 8.
    Kasper M, Haroske G (1996) Alterations in the alveolar epithelium after injury leading to pulmonary fibrosis. Histol Histopathol 11(2):463–483 (Review)Google Scholar
  9. 9.
    Kuwano K, Kunitake R, Maeyama T, Hagimoto N, Kawasaki M, Matsuba T, Yoshimi M, Inoshima I, Yoshida K, Hara N (2001) Attenuation of bleomycin-induced pneumopathy in mice by a caspase inhibitor. Am J Physiol Lung Cell Mol Physiol 280(2):L316–L325PubMedGoogle Scholar
  10. 10.
    Uhal BD (1997) Cell cycle kinetics in the alveolar epithelium. Am J Physiol 272(6 Pt 1):L1031–L1045PubMedGoogle Scholar
  11. 11.
    Stripp BR, Reynolds SD (2005) Bioengineered lung epithelium: implications for basic and applied studies in lung tissue regeneration. Am J Respir Cell Mol Biol 32(2):85–86CrossRefPubMedGoogle Scholar
  12. 12.
    Filippatos GS, Hughes WF, Qiao R, Sznajder JI, Uhal BD (1997) Mechanisms of liquid flux across pulmonary alveolar epithelial cell monolayers. Vitro Cell Dev Biol Anim 33(3):195–200CrossRefGoogle Scholar
  13. 13.
    Plopper CG, Mango GW, Hatch GE, Wong VJ, Toskala E, Reynolds SD, Tarkington BK, Stripp BR (2006) Elevation of susceptibility to ozone-induced acute tracheobronchial injury in transgenic mice deficient in Clara cell secretory protein. Toxicol Appl Pharmacol 213(1):74–85CrossRefPubMedGoogle Scholar
  14. 14.
    Yoshikawa S, Miyahara T, Reynolds SD, Stripp BR, Anghelescu M, Eyal FG, Parker JC (1985) Clara cell secretory protein and phospholipase A2 activity modulate acute ventilator-induced lung injury in mice. J Appl Physiol 98(4):1264–1271 (2005 Apr)Google Scholar
  15. 15.
    Ali NN, Edgar AJ, Samadikuchaksaraei A, Timson CM, Romanska HM et al (2002) Derivation of type II alveolar epithelial cells from murine embryonic stem cells. Tissue Eng 8:541–550CrossRefPubMedGoogle Scholar
  16. 16.
    Rippon HJ, Ali NN, Polak JM, Bishop AE (2004) Initial observations on the effect of medium composition on the differentiation of murine embryonic stem cells to alveolar type II cells. Cloning Stem Cells 6:49–56CrossRefPubMedGoogle Scholar
  17. 17.
    Samadikuchaksaraei A, Cohen S, Isaac K, Rippon HJ, Polak JM et al (2006) Derivation of distal airway epithelium from human embryonic stem cells. Tissue Eng 12:867–875CrossRefPubMedGoogle Scholar
  18. 18.
    Wang D, Haviland D, Burns A, Zsigmond E, Wetsel R (2007) A pure population of lung alveolar epithelial type II cells derived from human embryonic stem cells. Proc Natl Acad Sci U S A 104:4449–4454CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Banerjee ER (2014) Looking for the elusive lung stem cell niche—a perspective. Transl Respir Med 2:7–31CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Banerjee ER (2013) Role of T cells in a gp91phox knockout murine model of acute allergic asthma. Allergy Asthma Clin Immunol 9(1):6–12CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Banerjee ER, Henderson WR Jr (2012) Characterization of lung stem cell niches in a mouse model of bleomycin-induced fibrosis. Stem Cell Res Ther 3(3):21–42CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Banerjee ER, LaFlamme MA, Papayannopoulou T, Kahn M, Murry CE, Henderson WR Jr (2012) Human embryonic stem cells differentiated to lung lineage-specific cells ameliorate pulmonary fibrosis in a xenograft transplant mouse model. PLoS One 7(3) e33165:1–15Google Scholar
  23. 23.
    Banerjee ER, Henderson WR Jr (2012) Defining the molecular role of gp91phox in the manifestation of acute allergic asthma using a preclinical murine model. Clin Mol Allergy 10(1):2–16CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Banerjee ER (2011) Triple selectin knockout (ELP-/-) mice fail to develop OVA-induced acute asthma phenotype. J Inflamm 8:19CrossRefGoogle Scholar
  25. 25.
    Banerjee ER, Henderson WR Jr (2011) NADPH oxidase has a regulatory role in acute allergic asthma. J Adv Lab Res Biol 2(3):103–120. ISSN 0976-7614Google Scholar
  26. 26.
    Banerjee ER, Jiang Y, Henderson WR Jr, Latchman YL, Papayannopoulou T (2009) Absence of α4 but not β2 integrins restrains the development of chronic allergic asthma using mouse genetic models. Exp Hematol 37:715–727CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Banerjee ER, Latchman YL, Jiang Y, Priestley GV, Papayannopoulou T (2008) Distinct changes in adult lymphopoiesis in Rag2-/- mice fully reconstituted by & #x03B1;4-deficient adult bone marrow cells. Exp Hematol 36(8):1004–1013CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Inamdar MS, Venu P, Srinivas MS, Rao K, VijayRaghavan K (2009) Derivation and characterization of two sibling human embryonic stem cell lines from discarded grade III embryos. Stem Cells Dev 18(3):423–433CrossRefPubMedGoogle Scholar
  29. 29.
    Shetty R, Inamdar MS (2012) Derivation of human embryonic stem cell lines from poor quality embryos. Methods Mol Biol 873:151–161CrossRefPubMedGoogle Scholar
  30. 30.
    Inamdar MS, Healy L, Sinha A, Stacey G (2012) Global solutions to the challenges of setting up and managing a stem cell laboratory. Stem Cell Rev 8(3):830–843CrossRefPubMedGoogle Scholar
  31. 31.
    Bonig H, Papayannopoulou T (2012) Mobilization of hematopoietic stem/progenitor cells: general principles and molecular mechanisms. Methods Mol Biol 904:1–14PubMedPubMedCentralGoogle Scholar
  32. 32.
    Bilican B, Serio A et al (2012) Mutant induced pluripotent stem cell lines recapitulate aspects of TDP-43 proteinopathies and reveal cell-specific vulnerability. Proc Natl Acad Sci 109(15):5803–5808CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Nestor CE, Ottaviano R et al (2012) Tissue type is a major modifier of the 5-hydroxymethylcytosine content of human genes. Genome Res 22(3):467–477CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Barbaric I, Jones M et al (2011) Pinacidil enhances survival of cryopreserved human embryonic stem cells. Cryobiology 63(3):298–305CrossRefPubMedGoogle Scholar
  35. 35.
    Barbaric I, Jones M et al (2011) High-content screening for chemical modulators of embryonal carcinoma cell differentiation and survival. J Biomol Screen 16(6):603–617CrossRefPubMedGoogle Scholar
  36. 36.
    Frost J, Monk D et al (2011) The effects of culture on genomic imprinting profiles in human embryonic and fetal mesenchymal stem cells. Epigenetics 6(1):52–62CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Hernandez D, Ruban L, Mason C (2011) Feeder-free culture of human embryonic stem cells for scalable expansion in a reproducible manner. Stem Cells Dev 20(6):1089–1098CrossRefPubMedGoogle Scholar
  38. 38.
    Lim HJ, Han J et al (2011) Biochemical and morphological effects of hypoxic environment on human embryonic stem cells in long-term culture and differentiating embryoid bodies. Mol Cells 31(2):123–132CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Wright A, Andrews N, et al (2011) Mapping the stem cell state: eight novel human embryonic stem and embryonal carcinoma cell antibodies. Int J Androl 34(4 Pt 2):e175–87; discussion e187-8Google Scholar
  40. 40.
    Aflatoonian B, Ruban L et al (2010) Generation of Sheffield (Shef) human embryonic stem cell lines using a microdrop culture system. Vitro Cell Dev Biol Anim 46(3–4):236–241CrossRefGoogle Scholar
  41. 41.
    Amps KJ, Jones M et al (2010) In situ cryopreservation of human embryonic stem cells in gas-permeable membrane culture cassettes for high post-thaw yield and good manufacturing practice. Cryobiology 60(3):344–350CrossRefPubMedGoogle Scholar
  42. 42.
    Barbaric I, Gokhale PJ et al (2010) Novel regulators of stem cell fates identified by a multivariate phenotype screen of small compounds on human embryonic stem cell colonies. Stem Cell Res 5(2):104–119CrossRefPubMedGoogle Scholar
  43. 43.
    Na J, Furue MK et al (2010) Inhibition of ERK1/2 prevents neural and mesendodermal differentiation and promotes human embryonic stem cell self-renewal. Stem Cell Res 5(2):157–169CrossRefPubMedGoogle Scholar
  44. 44.
    Aflatoonian B, Aflatoonian R et al (2009) Embryoid bodies from human embryonic stem cells form a niche for male germ cell development in vitro. Papers contributed to the 9th international congress of andrology, pp 169–174Google Scholar
  45. 45.
    Aflatoonian B, Ruban L et al (2009) In vitro post-meiotic germ cell development from human embryonic stem cells. Hum Reprod 24(12):3150–3159CrossRefPubMedGoogle Scholar
  46. 46.
    Kubikova I, Konecna H et al (2009) Proteomic profiling of human embryonic stem cell-derived microvesicles reveals a risk of transfer of proteins of bovine and mouse origin. Cytotherapy 11(3):330–340 (1 p following 340)Google Scholar
  47. 47.
    Dean SK, Yulyana Y et al (2006) Differentiation of encapsulated embryonic stem cells after transplantation. Transplantation 82(9):1175–1184CrossRefPubMedGoogle Scholar
  48. 48.
    Inniss K, Moore H (2006) Mediation of apoptosis and proliferation of human embryonic stem cells by sphingosine-1-phosphate. Stem Cells Dev 15(6):789–796CrossRefPubMedGoogle Scholar
  49. 49.
    Cerqueira MT, Marques AP, Reis RL (2012) Using stem cells in skin regeneration: possibilities and reality. Stem Cells Dev 21(8):1201–1214CrossRefPubMedGoogle Scholar
  50. 50.
    Frost J, Monk D et al (2011) The effects of culture on genomic imprinting profiles in human embryonic and fetal mesenchymal stem cells. Epigenetics 6(1):52–62CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Pringle S, De Bari C et al (2011) Mesenchymal differentiation propensity of a human embryonic stem cell line. Cell Prolif 44(2):120–127CrossRefPubMedGoogle Scholar
  52. 52.
    Karlsson KR, Cowley S et al (2008) Homogeneous monocytes and macrophages from human embryonic stem cells following coculture-free differentiation in M-CSF and IL-3. Exp Hematol 36(9):1167–1175CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Pickering SJ, Braude PR et al (2003) Preimplantation genetic diagnosis as a novel source of embryos for stem cell research. Reprod Biomed Online 7(3):353–364CrossRefPubMedGoogle Scholar
  54. 54.
    Warburton D, Wuenschell C, Flores-Delgado G, Anderson K (1998) Commitment and differentiation of lung cell lineages. Biochem Cell Biol 76(6):971–995CrossRefPubMedGoogle Scholar

The original research work included in this chapter has been published as

  1. 55.
    Kar S, Konsam S, Banerjee ER (2015) Heterogeneity in human embryonic stem cells may prevent endodermal guided differentiation. Stem Cell Res Therapy 5:1Google Scholar
  2. 56.
    Kar S, Hore G, Sanyal N, Banerjee ER (2014) Human embryonic stem cell lines BJNhem 19 and 20 fail to differentiate into lung lineage specific cells despite induction through guided endodermal differentiation. J Tissue Sci Eng 5:3Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Department of ZoologyUniversity of CalcuttaKolkataIndia

Personalised recommendations