Skip to main content

Scientific and Industrial Application of Plasma Fluidized Bed

  • Chapter
  • First Online:
Plasma Fluidized Bed

Abstract

This chapter introduces the application of plasma fluidized bed in detail, including the following four fields: metallurgy process, coal gasification and pyrolysis, environmental protection and materials. The metallurgy process includes: metallurgy extraction, synthetic of calcium carbide, alloy granulation, etc. In the field of gasification/pyrolysis of coal, including gasification/pyrolysis of coal for acetylene, pyrolysis/gasification of coal to syngas, biomass pyrolysis/gasification, gasification/pyrolysis of biomass for syngas, gasification/pyrolysis of biomass for bio–oil, gasification of solid waste cracking of heavy hydrocarbon and reformation of biogas. In terms of environmental protection, there are applications of abatement of VOCs, control of NOx, sterilization of food, plasma modified catalyst for water purification and solid waste treatment. In the field of materials, there are applications of surface activation and functionalization, plasma enhanced chemical vapor deposition (PECVD) and synthesis of nanoparticles. The application of plasma fluidized bed has been widely used, and it has a wide application prospect.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allah ZA, Whitehead JC. Plasma–catalytic dry reforming of methane in an atmospheric pressure AC gliding arc discharge. Catal Today. 2015;256:76–9.

    Article  Google Scholar 

  • Al–Shamery K, Horowitz G, Sitter H, Rybahn HG. Interface controlled organic thin films. Berlin: Springer; 2009.

    Google Scholar 

  • Aranovich BS, Peliks AA, Gluz MD, Borodulya VS, Ganzha VL. Graphite entrainment in reactors with electrothermal fluidized bed. Fibre Chem. 1973;4(5):540–2.

    Article  Google Scholar 

  • Arnauld P, Cavadias S, Amouroux J. The interaction of a fluidized bed with a thermal plasma: application to limestone decomposition. In: 7th international symposium on plasma chemistry (Eindhoven, 1985); 1985.

    Google Scholar 

  • Arpagaus C, Rossi A, Rohr PRV. Short–time plasma surface modification of HDPE powder in a plasma downer reactor–process, wettability improvement and ageing effects. Appl Surf Sci. 2005;252(5):1581–95.

    Article  Google Scholar 

  • Attri P, Arora B, Choi EH. Utility of plasma: a new road from physics to chemistry. RSC Adv. 2013;3(31):12540–67.

    Article  Google Scholar 

  • Bai XY, Yi WM, Wang LH, Li YJ, Cai HZ. Fast pyrolysis of corn stalk for bio-oil in a plasma heated fluidized bed. Trans CSAE. 2005;21(12):127–30.

    Google Scholar 

  • Bao WR, Chang LP, Lu YK. Study on main factors influencing acetylene formation during coal pyrolysis in arc plasma. Process Saf Environ. 2006;84(3):222–6.

    Article  Google Scholar 

  • Bartolomeu R, Foix M, Fernandes A, Tatoulian M, Ribeiro MF, Henriques C, et al. Fluidized bed plasma for pre-treatment of Co-ferrierite catalysts: an approach to NOx abatement. Catal Today. 2011;176(1):234–8.

    Article  Google Scholar 

  • Bashlai KI, Barantsev IF, Grinbaum MB, Stanyakin VM, Samodurov VV, Todes OM. Thermal and electrical characteristics of a high-frequency electrothermal fluidization bed. J Eng Phys. 1972;22(6):665–9.

    Google Scholar 

  • Baskakov AP. The mechanism of heat transfer between a fluidized bed and a surface. Int J Chem React Eng. 1964;4:320–4.

    Google Scholar 

  • Bieri J, Bialczak W, Wystalska K. Solid waste vitrification using a direct current plasma arc. In: Environmental engineering-proceedings of the 2nd national congress on environmental engineering (Netherlands, 2007); 2007.

    Google Scholar 

  • Bourdin E, Fauchais P, Boulos M. Transient heat conduction under plasma conditions. Int J Heat Mass Tran. 1983;26(4):567–82.

    Article  Google Scholar 

  • Bretagnol F, Tatoulian M, Arefi-Khonsari F, Lorang G, Amouroux J. Surface modification of polyethylene powder by nitrogen and ammonia low pressure plasma in a fluidized bed reactor. React Funct Polym. 2004;61(2):221–32.

    Article  Google Scholar 

  • Bullard DE, Lynch DC. Reduction of ilmenite in a nonequilibrium hydrogen plasma. Metall Mater Trans B. 1997a;28(3):517–9.

    Article  Google Scholar 

  • Bullard DE, Lynch DC. Reduction of titanium dioxide in a nonequilibrium hydrogen plasma. Metall Mater Trans B. 1997b;28(6):1069–80.

    Article  Google Scholar 

  • Butscher D, Schlup T, Roth C, Müller-Fischer N, Gantenbein-Demarchi C, Rohr PRV. Inactivation of microorganisms on granular materials: reduction of Bacillus amyloliquefaciens endospores on wheat grains in a low pressure plasma circulating fluidized bed reactor. J Food Eng. 2015;159:48–56.

    Article  Google Scholar 

  • Byun Y, Cho M, Chung JW, Namkung W, Lee HD, Jang SD, et al. Hydrogen recovery from the thermal plasma gasification of solid waste. J Hazard Mater. 2011;190(1–3):317–23.

    Article  Google Scholar 

  • Chen X, Chen J, Wang Y. Unsteady heating of metallic particles in a rarefied plasma. Plasma Chem Plasma P. 1995;15(2):199–219.

    Article  Google Scholar 

  • Chen X, Chyou YP, Lee YC, Pfender E. Heat transfer to a particle under plasma conditions with vapor contamination from the particle. Plasma Chem Plasma P. 1985;5(2):119–41.

    Google Scholar 

  • Chen X, He P. Heat transfer from a rarefied plasma flow to a metallic or nonmetallic particle. Plasma Chem Plasma P. 1986;6(4):313–33.

    Article  MathSciNet  Google Scholar 

  • Chen X, Pfender E. Unsteady heating and radiation effects of small particles in a thermal plasma. Plasma Chem Plasma P. 1982;2(3):293–316.

    Article  Google Scholar 

  • Chen X, Pfender E. Behavior of small particles in a thermal plasma flow. Plasma Chem Plasma P. 1983a;3(3):351–66.

    Article  Google Scholar 

  • Chen X, Pfender E. Effect of the Knudsen number on heat transfer to a particle immersed into a thermal plasma. Plasma Chem Plasma P. 1983b;3(1):97–113.

    Article  Google Scholar 

  • Chen GL, Fan SH, Li CL, Gu WC, Feng WR, Zhang GL, et al. A novel atmospheric pressure plasma fluidized bed and its application in mutation of plant seeds. Chin Phys Lett. 2005;22(8):1980–3.

    Article  Google Scholar 

  • Chen G, Chen S, Zhou M, Feng W, Gu W, Yang S. Application of a novel atmospheric pressure plasma fluidized bed in the powder surface modification. J Phys D Appl Phys. 2006;39(24):5211.

    Article  Google Scholar 

  • Chen J, Cheng Y, Xiong X, Wu C, Jin Y. Research progress of coal pyrolysis to acetylene in thermal plasma reactor. Chem Ind Eng Prog. 2009;28(3):361–7.

    Google Scholar 

  • Chen Z, Dai XJ, Magniez K, Lamb PR, Fox BL, Wang X. Improving the mechanical properties of multiwalled carbon nanotube/epoxy nanocomposites using polymerization in a stirring plasma system. Compos Part A-Appl S. 2014;56(56):172–80.

    Article  Google Scholar 

  • Cormier JM, Rusu I. Syngas production via methane steam reforming with oxygen: plasma reactors versus chemical reactors. J Phys D Appl Phys. 2001;34(34):2798.

    Article  Google Scholar 

  • Currier R, Blacic J. Plasma processing of lunar and planetary materials. In: Space resources roundtable II (Colorado, 2000); 2000.

    Google Scholar 

  • Currier R, Trkula M. Hydrogen plasma reduction of planetary materials. In: ISRU III technical interchange meeting (Denver, 1999); 2000.

    Google Scholar 

  • Dasan BG, Mutlu M, Boyaci IH. Decontamination of Aspergillus flavus and Aspergillus parasiticus spores on hazelnuts via atmospheric pressure fluidized bed plasma reactor. Int J Food Microbiol. 2016;216:50–9.

    Article  Google Scholar 

  • Du CM. A plasma fluidized bed for the production of syngas from MSW. China patent 201410844203.9; 2014a.

    Google Scholar 

  • Du CM. A plasma fluidized bed for the cineration of fly ash. China patent 201410850031.6; 2014b.

    Google Scholar 

  • Du CM. A plasma fluidized bed for abatement of VOCs. China patent 201410850032.0; 2014c.

    Google Scholar 

  • Du CM. A plasma–catalytic fluidized bed for VOC abatement. China patent 201410849939.5; 2014d.

    Google Scholar 

  • Du CM. The remediation of organic contamimated soil by a plasma fluidized bed. China patent 201410849940.8; 2014f.

    Google Scholar 

  • Du CM, Xiao MD. Cu2O nanoparticles synthesis by microplasma. Sci Rep-UK. 2014;4:7339.

    Article  Google Scholar 

  • Du CM, Yan JH. Electrical and spectral characteristics of a hybrid gliding arc discharge in air–water. IEEE T Plasma Sci. 2007;35(6):1648–50.

    Article  Google Scholar 

  • Du CM, Shi TH, Sun Y, Zhuang X. Decolorization of acid orange 7 solution by gas–liquid gliding arc discharge plasma. J Hazard Mater. 2008;154(1–3):1192.

    Article  Google Scholar 

  • Du CM, Zhang LL, Wang J, Zhang CR, Li HX, Xiong Y. Degradation of acid orange 7 by gliding arc discharge plasma in combination with advanced fenton catalysis. Plasma Chem Plasma P. 2010;30(6):855–71.

    Article  Google Scholar 

  • Du CM, Li H, Zhang L, Wang J, Huang D, Xiao M, et al. Hydrogen production by steam-oxidative reforming of bio-ethanol assisted by Laval nozzle arc discharge. Int J Hydrogen Energ. 2012;37(10):8318–29.

    Article  Google Scholar 

  • Du CM, Huang DW, Li HX, Xiao MD, Wang K, Zhang L, et al. Adsorption of acid orange II from aqueous solution by plasma modified activated carbon fibers. Plasma Chem Plasma P. 2013;33(1):65–82.

    Google Scholar 

  • Du CM, Huang DW, Mo JM, Ma DY, Wang QK, Mo ZX, et al. Renewable hydrogen from ethanol by a miniaturized nonthermal arc plasma-catalytic reforming system. Int J Hydrogen Energ. 2014a;39(17):9057–69.

    Article  Google Scholar 

  • Du CM, Tang J, Mo JM, Ma DY, Wang J, Wang K, et al. Decontamination of bacteria by gas-liquid gliding arc discharge: application to. IEEE T Plasma Sci. 2014b;42(9):2221–8.

    Article  Google Scholar 

  • Du CM, Ma DY, Wu J, Lin YC, Xiao W, Ruan JJ, et al. Plasma-catalysis reforming for H2 production from ethanol. Int J Hydrogen Energ. 2015a;40(45):15398–410.

    Article  Google Scholar 

  • Du CM, Wu J, Ma DY, Liu Y, Qiu PP, Qiu RL, et al. Gasification of corn cob using non-thermal arc plasma. Int J Hydrogen Energ. 2015b;40(37):12634–49.

    Article  Google Scholar 

  • El–Naas MH. Synthesis of calcium carbide in a plasma spout fluid bed. Canada: McGill University; 1996.

    Google Scholar 

  • El–Naas MH, Munz R, Ajersch F. Solid–phase synthesis of calcium carbide in a plasma reactor. Plasma Chem Plasma P. 1998;18(3):409–27.

    Google Scholar 

  • Emome A, Jurewize T. Fuel synthesis for solid oxide fuel cells by plasma spouted bed gasification. In: 14th international symposium on plasma chemistry (Prague, 1999); 1999.

    Google Scholar 

  • Fabry F, Rehmet C, Rohani V, Fulcheri L. Waste gasification by thermal plasma: a review. Waste Biomass Valori. 2013;4(3):421–39.

    Article  Google Scholar 

  • Flamant G. Hydrodynamics and heat transfer in a plasma spouted bed reactor. Plasma Chem Plasma P. 1990;l10(1):71–85.

    Google Scholar 

  • Flamant G. Plasma fluidized and spouted bed reactors: an overview. Pure Appl Chem. 2009;66(6):1231–8.

    Article  Google Scholar 

  • Francke E, Amouroux J. LDA simultaneous measurements of local density and velocity distribution of particles in plasma fluidized bed at atmospheric pressure. Plasma Chem Plasma P. 1997;17(4):433–52.

    Google Scholar 

  • Goldberger WM. Method of generating a plasma arc with a fluidized bed as one electrode. United States Patent 3404078; 1968.

    Google Scholar 

  • Goldberger WM, Oxley JH. Quenching the plasma reaction by means of the fluidized bed. AIChE J. 1963;9(6):778–82.

    Article  Google Scholar 

  • Gomez E, Rani DA, Cheeseman CR, Deegan D, Wise M, Boccaccini AR. Thermal plasma technology for the treatment of wastes: a critical review. J Hazard Mater. 2008;161(2–3):614–26.

    Google Scholar 

  • Grovender EA, Cooney CL, Langer RS, Ameer GA. Modeling the mixing behavior of a novel fluidized extracorporeal immunoadsorber. Chem Eng Sci. 2001;56(18):5437–41.

    Article  Google Scholar 

  • Han SU, Na YH, Yong CH, Dong HS, Chang HC, Park YK. High-efficiency gasification of low-grade coal by microwave steam plasma. Energ Fuel. 2014;28(7):4402–8.

    Article  Google Scholar 

  • Harker AB, Goldberg IB. Diamond growth by microwave generated plasma flame. United States Patent 5349154; 1994.

    Google Scholar 

  • Heberlein J, Murphy AB. Thermal plasma waste treatment. J Phys D Appl Phys. 2008;41(5):053001.

    Article  Google Scholar 

  • Hu MB, Dang SC, Ma Q, Xia WD. Stabilizing effect of plasma discharge on bubbling fluidized granular bed. Chinese Phys B. 2015;24(7):288–92.

    Google Scholar 

  • Jung SH, Park SM, Park SH, Kim SD. Surface modification of fine powders by atmospheric pressure plasma in a circulating fluidized bed reactor. Ind Eng Chem Res. 2004;43(18):5483–8.

    Article  Google Scholar 

  • Karches M, Bayer C, Rohr PRV. A circulating fluidised bed for plasma-enhanced Chem Vapor Depos on powders at low temperatures. Surf Coat Tech. 1999;116–119(4):879–85.

    Article  Google Scholar 

  • Kim GH, Kim SD, Park SH. Plasma enhanced chemical vapor deposition of TiO2 films on silica gel powders at atmospheric pressure in a circulating fluidized bed reactor. Chem Eng Process. 2009;48(6):1135–9.

    Article  Google Scholar 

  • Kogelschatz U, Eliasson B, Egli W. Dielectric-barrier discharges. Principle and applications. J Phys IV. 1997;07(C4):47–66.

    Google Scholar 

  • Krawczyk K, Ulejczyk B, Song H, Lamenta A, Paluch B, Schmidt–Szalowski K. Plasma-catalytic reactor for decomposition of chlorinated hydrocarbons. Plasma Chem Plasma P. 2009;29(1):27–41.

    Article  Google Scholar 

  • Kreibaum J. Plasma spouted bed calcination of lac Doré vanadium ore concentrate. Canada: McGill University; 1986.

    Google Scholar 

  • Kumar A, Dwivedi HK, Nehra V. Atmospheric non-thermal plasma sources. Int J Eng. 2008;2(1):53–68.

    Google Scholar 

  • Laroussi M. Low-temperature plasmas for medicine? IEEE T Plasma Sci. 2009;37(6):714–25.

    Article  Google Scholar 

  • Leroy JB, Fatah N, Mutel B, Grimblot J. Treatment of a polyethylene powder using a remote nitrogen plasma reactor coupled with a fluidized bed: influence on wettability and flowability. Plasmas Polym. 2003;8(1):13–29.

    Article  Google Scholar 

  • Lesinski JMBJ, Meillot E, Debbagh–Nour G. Modelling of plasma entrianded bed coal gasifiers. In: 7th international symposium on plasma chemistry (Eindhoven, 1985); 1985.

    Google Scholar 

  • Li MW, Gonzalez-Aguilar J, Fulcheri L. Synthesis of titania nanoparticles using a compact nonequilibrium plasma torch. Jpn J Appl Phys. 2008;47(9):7343–5.

    Article  Google Scholar 

  • Li SD, Tian SH, Du CM, He C, Cen CP, Xiong Y. Vaseline–loaded expanded graphite as a new adsorbent for toluene. Chem Eng J. 2010;162(2):546–51.

    Article  Google Scholar 

  • Li X, Han J, Wu CN, Guo Y, Yan B, Cheng Y. Coal tar pyrolysis to acetylene in thermal plasma. CIESC Journal. 2014;65(9):3680–6.

    Google Scholar 

  • Lin YC, Chyang CS. Radial gas mixing in a fluidized bed using response surface methodology. Powder Technol. 2003;131(1):48–55.

    Article  Google Scholar 

  • Liu LX, Rudolph V, Litster J. A direct current, plasma fluidized bed reactor: its characteristics and application in diamond synthesis. Powder Technol. 1996;88(1):65–70.

    Article  Google Scholar 

  • Lu S, Chen L, Huang Q, Yang L, Du C, Li X, et al. Decomposition of ammonia and hydrogen sulfide in simulated sludge drying waste gas by a novel non-thermal plasma. Chemosphere. 2014a;117:781–5.

    Article  Google Scholar 

  • Lu SY, Chen L, Huang QX, Yang LQ, Du CM, Li XD, et al. Decomposition of ammonia and hydrogen sulfide in simulated sludge drying waste gas by a novel non-thermal plasma. Chemosphere. 2014b;117(117C):781.

    Article  Google Scholar 

  • Lundholm K, Nordin A, Öhman M, Boström D. Reduced bed agglomeration by co-combustion biomass with peat fuels in a fluidized bed. Energ Fuel. 2005;19(6):2273–8.

    Article  Google Scholar 

  • Ma JC, Zhao HB, Guo L, Zheng CG. Investigations on batch preparation of iron-based oxygen carrier by spouted bed and using in chemical looping combustion of coal. J Eng Thermophys. 2013;34(10):1960–3.

    Google Scholar 

  • Manieh AA, Scott DS, Spink DR. Electrothermal fluidized bed chlorination of zircon. Can J Chem Eng. 1974;52(4):507–14.

    Article  Google Scholar 

  • Matsukata M, Oh–hashi H, Kojima T, Mitsuyoshi Y, Ueyama K. Vertical progress of methane conversion in a DC plasma fluidized bed reactor. Chem Eng Sci. 1992;47(9–11):2963–8.

    Article  Google Scholar 

  • Mendes A, Dollet A, Ablitzer C, Perrais C, Flamant G. Numerical simulation of reactive transfers in spouted beds at high temperature: application to coal gasification. J Anal Appl Pyrol. 2008;82(1):117–28.

    Article  Google Scholar 

  • Mochizuki Y, Ono S, Teii S, Chang J. Fluidization and plasma characteristics of medium pressure RF glow discharge plasma fluidized bed reactors. Adv Powder Technol. 1993;4(3):159–67.

    Article  Google Scholar 

  • Moissan H, Dewar J. Nouvelles expériences sur la liquéfaction de fluor. C R. 1897;125:505–11.

    Google Scholar 

  • Morstein M, Karches M, Bayer C, Casanova D, Rohr PRV. Plasma CVD of ultrathin TiO2 films on powders in a circulating fluidized bed. Chem Vapor Depos. 2000;6(1):16–20.

    Article  Google Scholar 

  • Mutel B, Fatah N, Vezin H, Grimblot J. Surface Modification of polyethylene powders using a remote nitrogen plasma and a fluidized bed reactor. In: 16th international symposium on plasma chemistry Taormina (Italy, 2003); 2003.

    Google Scholar 

  • Nessim C, Boulos M, Kogelschatz U. In–flight coating of nanoparticles in atmospheric–pressure DBD torch plasmas. EUR Phys J-Appl Phys. 2009;47(2):22819.

    Article  Google Scholar 

  • Nezu A, Morishima T, Watanabe T. Thermal plasma treatment of waste ion-exchange resins doped with metals. Thin Solid Films. 2003;435(1):335–9.

    Article  Google Scholar 

  • Nikravech M, Baba K, Lazzaroni C. Development of fluidized spray plasma (FSP) device to deposit nanostructural catalysts on ceramic beads. In: 22nd international symposium on plasma chemistry (Antwerp, 2015); 2015.

    Google Scholar 

  • Pajkic Z, Willert-Porada M. Arc-PVD coating of powders in a microwave plasma fluidized bed. In: IEEE 35th international conference on plasma science (Karlsruhe, 2008); 2008.

    Google Scholar 

  • Pajkic Z, Willert-Porada M. Atmospheric pressure microwave plasma fluidized bed CVD of AlN coatings. Surf Coat Tech. 2009;203(20):3168–72.

    Article  Google Scholar 

  • Park SM, Jung SH, Park SH, Kim SD. Silicon oxide thin film deposition on alumina in a circulating fluidized bed reactor. Key Eng Mat. 2005;277–279:577–82.

    Article  Google Scholar 

  • Pfender E. Thermal plasma technology: where do we stand and where are we going? Plasma Chem Plasma P. 1999;19(1):1–31.

    Google Scholar 

  • Ren Y, Li XD, Yu L, Cheng K, Yan JH, Du CM. Degradation of PCDD/Fs in fly ash by vortex–shaped gliding arc plasma. Plasma Chem Plasma P. 2013;33(1):293–305.

    Article  Google Scholar 

  • Renzo AD, Maio FPD. Homogeneous and bubbling fluidization regimes in DEM–CFD simulations: hydrodynamic stability of gas and liquid fluidized beds. Chem Eng Sci. 2007;62(1–2):116–30.

    Article  Google Scholar 

  • Rohr PRV, Borer B. Plasma–enhanced CVD for particle synthesis using circulating fluidized bed technology. Chem Vapor Depos. 2007;13(9):499–506.

    Article  Google Scholar 

  • Roth C, Keller L, Rohr PRV. Adjusting dissolution time and flowability of salicylic acid powder in a two stage plasma process. Surf Coat Tech. 2012;206(19–20):3832–8.

    Article  Google Scholar 

  • Sabat KC, Rajput P, Paramguru RK, Bhoi B, Mishra BK. Reduction of oxide minerals by hydrogen plasma: an overview. Plasma Chem Plasma P. 2014;34(1):1–23.

    Article  Google Scholar 

  • Sabat KC, Paramguru RK, Pradhan S, Mishra BK. Reduction of cobalt oxide (Co3O4) by low temperature hydrogen plasma. Plasma Chem Plasma P. 2015;35(2):387–99.

    Google Scholar 

  • Sachs M, Wirth K. Effect of oxygen content on the functionalization of polymer powders using an atmospheric plasma jet in combination with a fluidized bed reactor. In: 22nd international symposium on plasma chemistry (Antwerp, 2015); 2015.

    Google Scholar 

  • Sakano M, Tanaka M, Watanabe T. Application of radio–frequency thermal plasmas to treatment of fly ash. Thin Solid Films. 2001;386(2):189–94.

    Article  Google Scholar 

  • Sanchez I, Flamant G, Gauthier D, Flamand R, Badie JM, Mazza G. Plasma-enhanced chemical vapor deposition of nitrides on fluidized particles. Powder Technol. 2001;120(1–2):134–40.

    Article  Google Scholar 

  • Santoianni J, Heier ME, Gorodetsky A, Reese S, Hicks KO. Plasma gasification reacotrs with modified carbon beds and reduced coke requirement. United States Patent 9222026; 2015.

    Google Scholar 

  • Sarjeant PT, Roy R. New glassy and polymorphic oxide phases using rapid quenching techniques. J Am Ceram Soc. 1967;50(10):500–3.

    Article  Google Scholar 

  • Sathiyamoorthy D. Plasma spouted/fluidized bed for materials processing. J Phys Conf Ser. 2010;012120.

    Google Scholar 

  • Savintsev MI. Diffusion saturation in electrothermal fluidized bed. Met Sci Heat Treat. 1990;32(11):842–5.

    Article  Google Scholar 

  • Schmidt-Szalowski K, Krawczyck K, Mlotek M. Properties of a heterogeneous system of solid particles in gliding discharge plasma. In: 10th international symposium on high pressure low temperature plasma chemistry (Hakone X, 2006); 2006.

    Google Scholar 

  • Şen Y, Bağcı U, Güleç HA, Mutlu M. Modification of food-contacting surfaces by plasma polymerization technique: reducing the biofouling of microorganisms on stainless steel surface. Food Bioprocess Tech. 2012;5(1):166–75.

    Article  Google Scholar 

  • Shi TH, Jia SG, Chen Y, Wen YH, Du CM, Guo HL, et al. Adsorption of Pb (II), Cr (III), Cu (II), Cd (II) and Ni (II) onto a vanadium mine tailing from aqueous solution. J Hazard Mater. 2009a;168(1–3):838.

    Article  Google Scholar 

  • Shi TH, Wang ZC, Liu Y, Jia SG, Du CM. Removal of hexavalent chromium from aqueous solutions by D301, D314 and D354 anion–exchange resins. J Hazard Mater. 2009b;161(2–3):900–6.

    Article  Google Scholar 

  • Song LH, Park SH, Jung SH, Sang DK, Park SB. Synthesis of polyethylene glycol-polystyrene core-shell structure particles in a plasma-fluidized bed reactor. Korean J Chem Eng. 2011;28(2):627–32.

    Article  Google Scholar 

  • Spillmann A, Sonnenfeld A, Rohr PRV. Flowability modification of lactose powder by plasma enhanced Chem Vapor Depos. Plasma Process Polym. 2007;4(Supplement S1):S16–S20.

    Google Scholar 

  • Tang L, Huang H, Hao H, Zhao K. Development of plasma pyrolysis/gasification systems for energy efficient and environmentally sound waste disposal. J Electrostat. 2013;71(5):839–47.

    Article  Google Scholar 

  • Taylor PR, Pirzada SA. Thermal plasma processing of materials: a review. Adv Perform Mater. 1994;1(1):35–50.

    Article  Google Scholar 

  • Thorley B, Saunby JB, Mathur KB, Osberg GL. An analysis of air and solid flow in a spouted wheat bed. Can J Chem Eng. 1959;37(5):184–92.

    Article  Google Scholar 

  • Tsukada M, Goto K, Yamamoto RH, Horio M. Metal powder granulation in a plasma-spouted/fluidized bed. Powder Technol. 1995;82(3):347–53.

    Article  Google Scholar 

  • Uemura Y, Baba K, Ohe H, Ohzuno Y, Hatate Y. Catalytic decomposition of hydrocarbon into hydrogen and carbon in a spouted-bed reactor as the second–stage reactor of a plastic recycling process. J Mater Cycles Waste. 2003;5(2):94–7.

    Article  Google Scholar 

  • Uglov AA, Gnedovets AG. Effect of particle charging on momentum and heat transfer from rarefied plasma flow. Plasma Chem Plasma P. 1991;11(2):251–67.

    Article  Google Scholar 

  • Upadhya K, Moore JJ, Reid KJ. Application of thermodynamic and kinetic principles in the reduction of metal oxides by carbon in a plasma environment. Metall Trans B. 1986;17(1):197–201.

    Article  Google Scholar 

  • Vivien C, Wartelle C, Mutel B, Grimblot J. Surface property modification of a polyethylene powder by coupling fluidized bed and far cold remote nitrogen plasma technologies. Surf Interface Anal. 2002;34(1):575–9.

    Article  Google Scholar 

  • Wang LH, Bai XY, Yi YM, Kong FX, Li YJ, He F, et al. Characteristics of bio-oil from plasma heated fluidized bed pyrolysis of corn stalk. Trans CSAE. 2006;663–665(3):502–5.

    Google Scholar 

  • Wang Q, Cheng Y, Jin Y. Dry reforming of methane in an atmospheric pressure plasma fluidized bed with Ni/γ–Al2O3 catalyst. Catal Today. 2009;148(3):275–82.

    Article  Google Scholar 

  • Wang TC, Lu N, Li J, Wu Y. Degradation of pentachlorophenol in soil by pulsed corona discharge plasma. J Hazard Mater. 2010;180(1–3):436–41.

    Article  Google Scholar 

  • Wang TC, Lu N, Li J, Wu Y. Plasma-TiO2 catalytic method for high-efficiency remediation of p-nitrophenol contaminated soil in pulsed discharge. Environ Sci Technol. 2011;45(21):9301–7.

    Article  Google Scholar 

  • Weinberg FJ, Bartleet TG, Carleton FB, Rimbotti P, BrophyJH, Manning R. Partial oxidation of fuel-rich mixtures in a spouted bed combustor. Combust Flame. 1988;72(3):235–9.

    Article  Google Scholar 

  • Wu CN, Yan BH, Zhang L, Shuang Y, Jin YT, Cheng Y. Analysis of key techniques and economic feasibility for one-step production of acetylene by coal pyrolysis in thermal plasma reactor. CIESC J; 2010.

    Google Scholar 

  • Yamamoto T. VOC decomposition by nonthermal plasma processing—A new approach. J Electrostat. 1997;42(1–2):227–38.

    Article  Google Scholar 

  • Yan B, Xu P, Guo CY, Jin Y, Cheng Y. Experimental study on coal pyrolysis to acetylene in thermal plasma reactors. Chem Eng J. 2012;207–208(10):109–16.

    Article  Google Scholar 

  • Yan B, Cheng Y, Jin Y. Cross-scale modeling and simulation of coal pyrolysis to acetylene in hydrogen plasma reactors. AIChE J. 2013;59(6):2119–33.

    Article  Google Scholar 

  • Yang JS, Bao WR, Zhang YF, Xie KC. Engineering application study of producing acetylene through coal pyrolysis in plasma reactor. Chem Eng. 2006;34(6):52–5.

    Google Scholar 

  • Ye QZ, Li J, Xie ZH. Analytical model of the breakdown mechanism in a two–phase mixture. J Phys D Appl Phys. 2004;37(24):3373.

    Article  Google Scholar 

  • Zhu CW, Zhao GY, Hlavacek V. A dc plasma–fluidized bed reactor for the production of calcium carbide. J Mater Sci. 1995;30(9):2412–9.

    Article  Google Scholar 

  • Zhu F, Zhang J, Yang Z, Guo Y, Li H, Zhang Y. The dispersion study of TiO2 nanoparticles surface modified through plasma polymerization. Physica E. 2005;27(4):457–61.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changming Du .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd. and Zhejiang University Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Du, C., Qiu, R., Ruan, J. (2018). Scientific and Industrial Application of Plasma Fluidized Bed. In: Plasma Fluidized Bed. Advanced Topics in Science and Technology in China. Springer, Singapore. https://doi.org/10.1007/978-981-10-5819-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-5819-6_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-5818-9

  • Online ISBN: 978-981-10-5819-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics