Scientific and Industrial Application of Plasma Fluidized Bed

  • Changming Du
  • Rongliang Qiu
  • Jujun Ruan
Part of the Advanced Topics in Science and Technology in China book series (ATSTC)


This chapter introduces the application of plasma fluidized bed in detail, including the following four fields: metallurgy process, coal gasification and pyrolysis, environmental protection and materials. The metallurgy process includes: metallurgy extraction, synthetic of calcium carbide, alloy granulation, etc. In the field of gasification/pyrolysis of coal, including gasification/pyrolysis of coal for acetylene, pyrolysis/gasification of coal to syngas, biomass pyrolysis/gasification, gasification/pyrolysis of biomass for syngas, gasification/pyrolysis of biomass for bio–oil, gasification of solid waste cracking of heavy hydrocarbon and reformation of biogas. In terms of environmental protection, there are applications of abatement of VOCs, control of NOx, sterilization of food, plasma modified catalyst for water purification and solid waste treatment. In the field of materials, there are applications of surface activation and functionalization, plasma enhanced chemical vapor deposition (PECVD) and synthesis of nanoparticles. The application of plasma fluidized bed has been widely used, and it has a wide application prospect.


Application Plasma fluidized bed 


  1. Allah ZA, Whitehead JC. Plasma–catalytic dry reforming of methane in an atmospheric pressure AC gliding arc discharge. Catal Today. 2015;256:76–9.CrossRefGoogle Scholar
  2. Al–Shamery K, Horowitz G, Sitter H, Rybahn HG. Interface controlled organic thin films. Berlin: Springer; 2009.Google Scholar
  3. Aranovich BS, Peliks AA, Gluz MD, Borodulya VS, Ganzha VL. Graphite entrainment in reactors with electrothermal fluidized bed. Fibre Chem. 1973;4(5):540–2.CrossRefGoogle Scholar
  4. Arnauld P, Cavadias S, Amouroux J. The interaction of a fluidized bed with a thermal plasma: application to limestone decomposition. In: 7th international symposium on plasma chemistry (Eindhoven, 1985); 1985.Google Scholar
  5. Arpagaus C, Rossi A, Rohr PRV. Short–time plasma surface modification of HDPE powder in a plasma downer reactor–process, wettability improvement and ageing effects. Appl Surf Sci. 2005;252(5):1581–95.CrossRefGoogle Scholar
  6. Attri P, Arora B, Choi EH. Utility of plasma: a new road from physics to chemistry. RSC Adv. 2013;3(31):12540–67.CrossRefGoogle Scholar
  7. Bai XY, Yi WM, Wang LH, Li YJ, Cai HZ. Fast pyrolysis of corn stalk for bio-oil in a plasma heated fluidized bed. Trans CSAE. 2005;21(12):127–30.Google Scholar
  8. Bao WR, Chang LP, Lu YK. Study on main factors influencing acetylene formation during coal pyrolysis in arc plasma. Process Saf Environ. 2006;84(3):222–6.CrossRefGoogle Scholar
  9. Bartolomeu R, Foix M, Fernandes A, Tatoulian M, Ribeiro MF, Henriques C, et al. Fluidized bed plasma for pre-treatment of Co-ferrierite catalysts: an approach to NOx abatement. Catal Today. 2011;176(1):234–8.CrossRefGoogle Scholar
  10. Bashlai KI, Barantsev IF, Grinbaum MB, Stanyakin VM, Samodurov VV, Todes OM. Thermal and electrical characteristics of a high-frequency electrothermal fluidization bed. J Eng Phys. 1972;22(6):665–9.Google Scholar
  11. Baskakov AP. The mechanism of heat transfer between a fluidized bed and a surface. Int J Chem React Eng. 1964;4:320–4.Google Scholar
  12. Bieri J, Bialczak W, Wystalska K. Solid waste vitrification using a direct current plasma arc. In: Environmental engineering-proceedings of the 2nd national congress on environmental engineering (Netherlands, 2007); 2007.Google Scholar
  13. Bourdin E, Fauchais P, Boulos M. Transient heat conduction under plasma conditions. Int J Heat Mass Tran. 1983;26(4):567–82.CrossRefGoogle Scholar
  14. Bretagnol F, Tatoulian M, Arefi-Khonsari F, Lorang G, Amouroux J. Surface modification of polyethylene powder by nitrogen and ammonia low pressure plasma in a fluidized bed reactor. React Funct Polym. 2004;61(2):221–32.CrossRefGoogle Scholar
  15. Bullard DE, Lynch DC. Reduction of ilmenite in a nonequilibrium hydrogen plasma. Metall Mater Trans B. 1997a;28(3):517–9.CrossRefGoogle Scholar
  16. Bullard DE, Lynch DC. Reduction of titanium dioxide in a nonequilibrium hydrogen plasma. Metall Mater Trans B. 1997b;28(6):1069–80.CrossRefGoogle Scholar
  17. Butscher D, Schlup T, Roth C, Müller-Fischer N, Gantenbein-Demarchi C, Rohr PRV. Inactivation of microorganisms on granular materials: reduction of Bacillus amyloliquefaciens endospores on wheat grains in a low pressure plasma circulating fluidized bed reactor. J Food Eng. 2015;159:48–56.CrossRefGoogle Scholar
  18. Byun Y, Cho M, Chung JW, Namkung W, Lee HD, Jang SD, et al. Hydrogen recovery from the thermal plasma gasification of solid waste. J Hazard Mater. 2011;190(1–3):317–23.CrossRefGoogle Scholar
  19. Chen X, Chen J, Wang Y. Unsteady heating of metallic particles in a rarefied plasma. Plasma Chem Plasma P. 1995;15(2):199–219.CrossRefGoogle Scholar
  20. Chen X, Chyou YP, Lee YC, Pfender E. Heat transfer to a particle under plasma conditions with vapor contamination from the particle. Plasma Chem Plasma P. 1985;5(2):119–41.Google Scholar
  21. Chen X, He P. Heat transfer from a rarefied plasma flow to a metallic or nonmetallic particle. Plasma Chem Plasma P. 1986;6(4):313–33.MathSciNetCrossRefGoogle Scholar
  22. Chen X, Pfender E. Unsteady heating and radiation effects of small particles in a thermal plasma. Plasma Chem Plasma P. 1982;2(3):293–316.CrossRefGoogle Scholar
  23. Chen X, Pfender E. Behavior of small particles in a thermal plasma flow. Plasma Chem Plasma P. 1983a;3(3):351–66.CrossRefGoogle Scholar
  24. Chen X, Pfender E. Effect of the Knudsen number on heat transfer to a particle immersed into a thermal plasma. Plasma Chem Plasma P. 1983b;3(1):97–113.CrossRefGoogle Scholar
  25. Chen GL, Fan SH, Li CL, Gu WC, Feng WR, Zhang GL, et al. A novel atmospheric pressure plasma fluidized bed and its application in mutation of plant seeds. Chin Phys Lett. 2005;22(8):1980–3.CrossRefGoogle Scholar
  26. Chen G, Chen S, Zhou M, Feng W, Gu W, Yang S. Application of a novel atmospheric pressure plasma fluidized bed in the powder surface modification. J Phys D Appl Phys. 2006;39(24):5211.CrossRefGoogle Scholar
  27. Chen J, Cheng Y, Xiong X, Wu C, Jin Y. Research progress of coal pyrolysis to acetylene in thermal plasma reactor. Chem Ind Eng Prog. 2009;28(3):361–7.Google Scholar
  28. Chen Z, Dai XJ, Magniez K, Lamb PR, Fox BL, Wang X. Improving the mechanical properties of multiwalled carbon nanotube/epoxy nanocomposites using polymerization in a stirring plasma system. Compos Part A-Appl S. 2014;56(56):172–80.CrossRefGoogle Scholar
  29. Cormier JM, Rusu I. Syngas production via methane steam reforming with oxygen: plasma reactors versus chemical reactors. J Phys D Appl Phys. 2001;34(34):2798.CrossRefGoogle Scholar
  30. Currier R, Blacic J. Plasma processing of lunar and planetary materials. In: Space resources roundtable II (Colorado, 2000); 2000.Google Scholar
  31. Currier R, Trkula M. Hydrogen plasma reduction of planetary materials. In: ISRU III technical interchange meeting (Denver, 1999); 2000.Google Scholar
  32. Dasan BG, Mutlu M, Boyaci IH. Decontamination of Aspergillus flavus and Aspergillus parasiticus spores on hazelnuts via atmospheric pressure fluidized bed plasma reactor. Int J Food Microbiol. 2016;216:50–9.CrossRefGoogle Scholar
  33. Du CM. A plasma fluidized bed for the production of syngas from MSW. China patent 201410844203.9; 2014a.Google Scholar
  34. Du CM. A plasma fluidized bed for the cineration of fly ash. China patent 201410850031.6; 2014b.Google Scholar
  35. Du CM. A plasma fluidized bed for abatement of VOCs. China patent 201410850032.0; 2014c.Google Scholar
  36. Du CM. A plasma–catalytic fluidized bed for VOC abatement. China patent 201410849939.5; 2014d.Google Scholar
  37. Du CM. The remediation of organic contamimated soil by a plasma fluidized bed. China patent 201410849940.8; 2014f.Google Scholar
  38. Du CM, Xiao MD. Cu2O nanoparticles synthesis by microplasma. Sci Rep-UK. 2014;4:7339.CrossRefGoogle Scholar
  39. Du CM, Yan JH. Electrical and spectral characteristics of a hybrid gliding arc discharge in air–water. IEEE T Plasma Sci. 2007;35(6):1648–50.CrossRefGoogle Scholar
  40. Du CM, Shi TH, Sun Y, Zhuang X. Decolorization of acid orange 7 solution by gas–liquid gliding arc discharge plasma. J Hazard Mater. 2008;154(1–3):1192.CrossRefGoogle Scholar
  41. Du CM, Zhang LL, Wang J, Zhang CR, Li HX, Xiong Y. Degradation of acid orange 7 by gliding arc discharge plasma in combination with advanced fenton catalysis. Plasma Chem Plasma P. 2010;30(6):855–71.CrossRefGoogle Scholar
  42. Du CM, Li H, Zhang L, Wang J, Huang D, Xiao M, et al. Hydrogen production by steam-oxidative reforming of bio-ethanol assisted by Laval nozzle arc discharge. Int J Hydrogen Energ. 2012;37(10):8318–29.CrossRefGoogle Scholar
  43. Du CM, Huang DW, Li HX, Xiao MD, Wang K, Zhang L, et al. Adsorption of acid orange II from aqueous solution by plasma modified activated carbon fibers. Plasma Chem Plasma P. 2013;33(1):65–82.Google Scholar
  44. Du CM, Huang DW, Mo JM, Ma DY, Wang QK, Mo ZX, et al. Renewable hydrogen from ethanol by a miniaturized nonthermal arc plasma-catalytic reforming system. Int J Hydrogen Energ. 2014a;39(17):9057–69.CrossRefGoogle Scholar
  45. Du CM, Tang J, Mo JM, Ma DY, Wang J, Wang K, et al. Decontamination of bacteria by gas-liquid gliding arc discharge: application to. IEEE T Plasma Sci. 2014b;42(9):2221–8.CrossRefGoogle Scholar
  46. Du CM, Ma DY, Wu J, Lin YC, Xiao W, Ruan JJ, et al. Plasma-catalysis reforming for H2 production from ethanol. Int J Hydrogen Energ. 2015a;40(45):15398–410.CrossRefGoogle Scholar
  47. Du CM, Wu J, Ma DY, Liu Y, Qiu PP, Qiu RL, et al. Gasification of corn cob using non-thermal arc plasma. Int J Hydrogen Energ. 2015b;40(37):12634–49.CrossRefGoogle Scholar
  48. El–Naas MH. Synthesis of calcium carbide in a plasma spout fluid bed. Canada: McGill University; 1996.Google Scholar
  49. El–Naas MH, Munz R, Ajersch F. Solid–phase synthesis of calcium carbide in a plasma reactor. Plasma Chem Plasma P. 1998;18(3):409–27.Google Scholar
  50. Emome A, Jurewize T. Fuel synthesis for solid oxide fuel cells by plasma spouted bed gasification. In: 14th international symposium on plasma chemistry (Prague, 1999); 1999.Google Scholar
  51. Fabry F, Rehmet C, Rohani V, Fulcheri L. Waste gasification by thermal plasma: a review. Waste Biomass Valori. 2013;4(3):421–39.CrossRefGoogle Scholar
  52. Flamant G. Hydrodynamics and heat transfer in a plasma spouted bed reactor. Plasma Chem Plasma P. 1990;l10(1):71–85.Google Scholar
  53. Flamant G. Plasma fluidized and spouted bed reactors: an overview. Pure Appl Chem. 2009;66(6):1231–8.CrossRefGoogle Scholar
  54. Francke E, Amouroux J. LDA simultaneous measurements of local density and velocity distribution of particles in plasma fluidized bed at atmospheric pressure. Plasma Chem Plasma P. 1997;17(4):433–52.Google Scholar
  55. Goldberger WM. Method of generating a plasma arc with a fluidized bed as one electrode. United States Patent 3404078; 1968.Google Scholar
  56. Goldberger WM, Oxley JH. Quenching the plasma reaction by means of the fluidized bed. AIChE J. 1963;9(6):778–82.CrossRefGoogle Scholar
  57. Gomez E, Rani DA, Cheeseman CR, Deegan D, Wise M, Boccaccini AR. Thermal plasma technology for the treatment of wastes: a critical review. J Hazard Mater. 2008;161(2–3):614–26.Google Scholar
  58. Grovender EA, Cooney CL, Langer RS, Ameer GA. Modeling the mixing behavior of a novel fluidized extracorporeal immunoadsorber. Chem Eng Sci. 2001;56(18):5437–41.CrossRefGoogle Scholar
  59. Han SU, Na YH, Yong CH, Dong HS, Chang HC, Park YK. High-efficiency gasification of low-grade coal by microwave steam plasma. Energ Fuel. 2014;28(7):4402–8.CrossRefGoogle Scholar
  60. Harker AB, Goldberg IB. Diamond growth by microwave generated plasma flame. United States Patent 5349154; 1994.Google Scholar
  61. Heberlein J, Murphy AB. Thermal plasma waste treatment. J Phys D Appl Phys. 2008;41(5):053001.CrossRefGoogle Scholar
  62. Hu MB, Dang SC, Ma Q, Xia WD. Stabilizing effect of plasma discharge on bubbling fluidized granular bed. Chinese Phys B. 2015;24(7):288–92.Google Scholar
  63. Jung SH, Park SM, Park SH, Kim SD. Surface modification of fine powders by atmospheric pressure plasma in a circulating fluidized bed reactor. Ind Eng Chem Res. 2004;43(18):5483–8.CrossRefGoogle Scholar
  64. Karches M, Bayer C, Rohr PRV. A circulating fluidised bed for plasma-enhanced Chem Vapor Depos on powders at low temperatures. Surf Coat Tech. 1999;116–119(4):879–85.CrossRefGoogle Scholar
  65. Kim GH, Kim SD, Park SH. Plasma enhanced chemical vapor deposition of TiO2 films on silica gel powders at atmospheric pressure in a circulating fluidized bed reactor. Chem Eng Process. 2009;48(6):1135–9.CrossRefGoogle Scholar
  66. Kogelschatz U, Eliasson B, Egli W. Dielectric-barrier discharges. Principle and applications. J Phys IV. 1997;07(C4):47–66.Google Scholar
  67. Krawczyk K, Ulejczyk B, Song H, Lamenta A, Paluch B, Schmidt–Szalowski K. Plasma-catalytic reactor for decomposition of chlorinated hydrocarbons. Plasma Chem Plasma P. 2009;29(1):27–41.CrossRefGoogle Scholar
  68. Kreibaum J. Plasma spouted bed calcination of lac Doré vanadium ore concentrate. Canada: McGill University; 1986.Google Scholar
  69. Kumar A, Dwivedi HK, Nehra V. Atmospheric non-thermal plasma sources. Int J Eng. 2008;2(1):53–68.Google Scholar
  70. Laroussi M. Low-temperature plasmas for medicine? IEEE T Plasma Sci. 2009;37(6):714–25.CrossRefGoogle Scholar
  71. Leroy JB, Fatah N, Mutel B, Grimblot J. Treatment of a polyethylene powder using a remote nitrogen plasma reactor coupled with a fluidized bed: influence on wettability and flowability. Plasmas Polym. 2003;8(1):13–29.CrossRefGoogle Scholar
  72. Lesinski JMBJ, Meillot E, Debbagh–Nour G. Modelling of plasma entrianded bed coal gasifiers. In: 7th international symposium on plasma chemistry (Eindhoven, 1985); 1985.Google Scholar
  73. Li MW, Gonzalez-Aguilar J, Fulcheri L. Synthesis of titania nanoparticles using a compact nonequilibrium plasma torch. Jpn J Appl Phys. 2008;47(9):7343–5.CrossRefGoogle Scholar
  74. Li SD, Tian SH, Du CM, He C, Cen CP, Xiong Y. Vaseline–loaded expanded graphite as a new adsorbent for toluene. Chem Eng J. 2010;162(2):546–51.CrossRefGoogle Scholar
  75. Li X, Han J, Wu CN, Guo Y, Yan B, Cheng Y. Coal tar pyrolysis to acetylene in thermal plasma. CIESC Journal. 2014;65(9):3680–6.Google Scholar
  76. Lin YC, Chyang CS. Radial gas mixing in a fluidized bed using response surface methodology. Powder Technol. 2003;131(1):48–55.CrossRefGoogle Scholar
  77. Liu LX, Rudolph V, Litster J. A direct current, plasma fluidized bed reactor: its characteristics and application in diamond synthesis. Powder Technol. 1996;88(1):65–70.CrossRefGoogle Scholar
  78. Lu S, Chen L, Huang Q, Yang L, Du C, Li X, et al. Decomposition of ammonia and hydrogen sulfide in simulated sludge drying waste gas by a novel non-thermal plasma. Chemosphere. 2014a;117:781–5.CrossRefGoogle Scholar
  79. Lu SY, Chen L, Huang QX, Yang LQ, Du CM, Li XD, et al. Decomposition of ammonia and hydrogen sulfide in simulated sludge drying waste gas by a novel non-thermal plasma. Chemosphere. 2014b;117(117C):781.CrossRefGoogle Scholar
  80. Lundholm K, Nordin A, Öhman M, Boström D. Reduced bed agglomeration by co-combustion biomass with peat fuels in a fluidized bed. Energ Fuel. 2005;19(6):2273–8.CrossRefGoogle Scholar
  81. Ma JC, Zhao HB, Guo L, Zheng CG. Investigations on batch preparation of iron-based oxygen carrier by spouted bed and using in chemical looping combustion of coal. J Eng Thermophys. 2013;34(10):1960–3.Google Scholar
  82. Manieh AA, Scott DS, Spink DR. Electrothermal fluidized bed chlorination of zircon. Can J Chem Eng. 1974;52(4):507–14.CrossRefGoogle Scholar
  83. Matsukata M, Oh–hashi H, Kojima T, Mitsuyoshi Y, Ueyama K. Vertical progress of methane conversion in a DC plasma fluidized bed reactor. Chem Eng Sci. 1992;47(9–11):2963–8.CrossRefGoogle Scholar
  84. Mendes A, Dollet A, Ablitzer C, Perrais C, Flamant G. Numerical simulation of reactive transfers in spouted beds at high temperature: application to coal gasification. J Anal Appl Pyrol. 2008;82(1):117–28.CrossRefGoogle Scholar
  85. Mochizuki Y, Ono S, Teii S, Chang J. Fluidization and plasma characteristics of medium pressure RF glow discharge plasma fluidized bed reactors. Adv Powder Technol. 1993;4(3):159–67.CrossRefGoogle Scholar
  86. Moissan H, Dewar J. Nouvelles expériences sur la liquéfaction de fluor. C R. 1897;125:505–11.Google Scholar
  87. Morstein M, Karches M, Bayer C, Casanova D, Rohr PRV. Plasma CVD of ultrathin TiO2 films on powders in a circulating fluidized bed. Chem Vapor Depos. 2000;6(1):16–20.CrossRefGoogle Scholar
  88. Mutel B, Fatah N, Vezin H, Grimblot J. Surface Modification of polyethylene powders using a remote nitrogen plasma and a fluidized bed reactor. In: 16th international symposium on plasma chemistry Taormina (Italy, 2003); 2003.Google Scholar
  89. Nessim C, Boulos M, Kogelschatz U. In–flight coating of nanoparticles in atmospheric–pressure DBD torch plasmas. EUR Phys J-Appl Phys. 2009;47(2):22819.CrossRefGoogle Scholar
  90. Nezu A, Morishima T, Watanabe T. Thermal plasma treatment of waste ion-exchange resins doped with metals. Thin Solid Films. 2003;435(1):335–9.CrossRefGoogle Scholar
  91. Nikravech M, Baba K, Lazzaroni C. Development of fluidized spray plasma (FSP) device to deposit nanostructural catalysts on ceramic beads. In: 22nd international symposium on plasma chemistry (Antwerp, 2015); 2015.Google Scholar
  92. Pajkic Z, Willert-Porada M. Arc-PVD coating of powders in a microwave plasma fluidized bed. In: IEEE 35th international conference on plasma science (Karlsruhe, 2008); 2008.Google Scholar
  93. Pajkic Z, Willert-Porada M. Atmospheric pressure microwave plasma fluidized bed CVD of AlN coatings. Surf Coat Tech. 2009;203(20):3168–72.CrossRefGoogle Scholar
  94. Park SM, Jung SH, Park SH, Kim SD. Silicon oxide thin film deposition on alumina in a circulating fluidized bed reactor. Key Eng Mat. 2005;277–279:577–82.CrossRefGoogle Scholar
  95. Pfender E. Thermal plasma technology: where do we stand and where are we going? Plasma Chem Plasma P. 1999;19(1):1–31.Google Scholar
  96. Ren Y, Li XD, Yu L, Cheng K, Yan JH, Du CM. Degradation of PCDD/Fs in fly ash by vortex–shaped gliding arc plasma. Plasma Chem Plasma P. 2013;33(1):293–305.CrossRefGoogle Scholar
  97. Renzo AD, Maio FPD. Homogeneous and bubbling fluidization regimes in DEM–CFD simulations: hydrodynamic stability of gas and liquid fluidized beds. Chem Eng Sci. 2007;62(1–2):116–30.CrossRefGoogle Scholar
  98. Rohr PRV, Borer B. Plasma–enhanced CVD for particle synthesis using circulating fluidized bed technology. Chem Vapor Depos. 2007;13(9):499–506.CrossRefGoogle Scholar
  99. Roth C, Keller L, Rohr PRV. Adjusting dissolution time and flowability of salicylic acid powder in a two stage plasma process. Surf Coat Tech. 2012;206(19–20):3832–8.CrossRefGoogle Scholar
  100. Sabat KC, Rajput P, Paramguru RK, Bhoi B, Mishra BK. Reduction of oxide minerals by hydrogen plasma: an overview. Plasma Chem Plasma P. 2014;34(1):1–23.CrossRefGoogle Scholar
  101. Sabat KC, Paramguru RK, Pradhan S, Mishra BK. Reduction of cobalt oxide (Co3O4) by low temperature hydrogen plasma. Plasma Chem Plasma P. 2015;35(2):387–99.Google Scholar
  102. Sachs M, Wirth K. Effect of oxygen content on the functionalization of polymer powders using an atmospheric plasma jet in combination with a fluidized bed reactor. In: 22nd international symposium on plasma chemistry (Antwerp, 2015); 2015.Google Scholar
  103. Sakano M, Tanaka M, Watanabe T. Application of radio–frequency thermal plasmas to treatment of fly ash. Thin Solid Films. 2001;386(2):189–94.CrossRefGoogle Scholar
  104. Sanchez I, Flamant G, Gauthier D, Flamand R, Badie JM, Mazza G. Plasma-enhanced chemical vapor deposition of nitrides on fluidized particles. Powder Technol. 2001;120(1–2):134–40.CrossRefGoogle Scholar
  105. Santoianni J, Heier ME, Gorodetsky A, Reese S, Hicks KO. Plasma gasification reacotrs with modified carbon beds and reduced coke requirement. United States Patent 9222026; 2015.Google Scholar
  106. Sarjeant PT, Roy R. New glassy and polymorphic oxide phases using rapid quenching techniques. J Am Ceram Soc. 1967;50(10):500–3.CrossRefGoogle Scholar
  107. Sathiyamoorthy D. Plasma spouted/fluidized bed for materials processing. J Phys Conf Ser. 2010;012120.Google Scholar
  108. Savintsev MI. Diffusion saturation in electrothermal fluidized bed. Met Sci Heat Treat. 1990;32(11):842–5.CrossRefGoogle Scholar
  109. Schmidt-Szalowski K, Krawczyck K, Mlotek M. Properties of a heterogeneous system of solid particles in gliding discharge plasma. In: 10th international symposium on high pressure low temperature plasma chemistry (Hakone X, 2006); 2006.Google Scholar
  110. Şen Y, Bağcı U, Güleç HA, Mutlu M. Modification of food-contacting surfaces by plasma polymerization technique: reducing the biofouling of microorganisms on stainless steel surface. Food Bioprocess Tech. 2012;5(1):166–75.CrossRefGoogle Scholar
  111. Shi TH, Jia SG, Chen Y, Wen YH, Du CM, Guo HL, et al. Adsorption of Pb (II), Cr (III), Cu (II), Cd (II) and Ni (II) onto a vanadium mine tailing from aqueous solution. J Hazard Mater. 2009a;168(1–3):838.CrossRefGoogle Scholar
  112. Shi TH, Wang ZC, Liu Y, Jia SG, Du CM. Removal of hexavalent chromium from aqueous solutions by D301, D314 and D354 anion–exchange resins. J Hazard Mater. 2009b;161(2–3):900–6.CrossRefGoogle Scholar
  113. Song LH, Park SH, Jung SH, Sang DK, Park SB. Synthesis of polyethylene glycol-polystyrene core-shell structure particles in a plasma-fluidized bed reactor. Korean J Chem Eng. 2011;28(2):627–32.CrossRefGoogle Scholar
  114. Spillmann A, Sonnenfeld A, Rohr PRV. Flowability modification of lactose powder by plasma enhanced Chem Vapor Depos. Plasma Process Polym. 2007;4(Supplement S1):S16–S20.Google Scholar
  115. Tang L, Huang H, Hao H, Zhao K. Development of plasma pyrolysis/gasification systems for energy efficient and environmentally sound waste disposal. J Electrostat. 2013;71(5):839–47.CrossRefGoogle Scholar
  116. Taylor PR, Pirzada SA. Thermal plasma processing of materials: a review. Adv Perform Mater. 1994;1(1):35–50.CrossRefGoogle Scholar
  117. Thorley B, Saunby JB, Mathur KB, Osberg GL. An analysis of air and solid flow in a spouted wheat bed. Can J Chem Eng. 1959;37(5):184–92.CrossRefGoogle Scholar
  118. Tsukada M, Goto K, Yamamoto RH, Horio M. Metal powder granulation in a plasma-spouted/fluidized bed. Powder Technol. 1995;82(3):347–53.CrossRefGoogle Scholar
  119. Uemura Y, Baba K, Ohe H, Ohzuno Y, Hatate Y. Catalytic decomposition of hydrocarbon into hydrogen and carbon in a spouted-bed reactor as the second–stage reactor of a plastic recycling process. J Mater Cycles Waste. 2003;5(2):94–7.CrossRefGoogle Scholar
  120. Uglov AA, Gnedovets AG. Effect of particle charging on momentum and heat transfer from rarefied plasma flow. Plasma Chem Plasma P. 1991;11(2):251–67.CrossRefGoogle Scholar
  121. Upadhya K, Moore JJ, Reid KJ. Application of thermodynamic and kinetic principles in the reduction of metal oxides by carbon in a plasma environment. Metall Trans B. 1986;17(1):197–201.CrossRefGoogle Scholar
  122. Vivien C, Wartelle C, Mutel B, Grimblot J. Surface property modification of a polyethylene powder by coupling fluidized bed and far cold remote nitrogen plasma technologies. Surf Interface Anal. 2002;34(1):575–9.CrossRefGoogle Scholar
  123. Wang LH, Bai XY, Yi YM, Kong FX, Li YJ, He F, et al. Characteristics of bio-oil from plasma heated fluidized bed pyrolysis of corn stalk. Trans CSAE. 2006;663–665(3):502–5.Google Scholar
  124. Wang Q, Cheng Y, Jin Y. Dry reforming of methane in an atmospheric pressure plasma fluidized bed with Ni/γ–Al2O3 catalyst. Catal Today. 2009;148(3):275–82.CrossRefGoogle Scholar
  125. Wang TC, Lu N, Li J, Wu Y. Degradation of pentachlorophenol in soil by pulsed corona discharge plasma. J Hazard Mater. 2010;180(1–3):436–41.CrossRefGoogle Scholar
  126. Wang TC, Lu N, Li J, Wu Y. Plasma-TiO2 catalytic method for high-efficiency remediation of p-nitrophenol contaminated soil in pulsed discharge. Environ Sci Technol. 2011;45(21):9301–7.CrossRefGoogle Scholar
  127. Weinberg FJ, Bartleet TG, Carleton FB, Rimbotti P, BrophyJH, Manning R. Partial oxidation of fuel-rich mixtures in a spouted bed combustor. Combust Flame. 1988;72(3):235–9.CrossRefGoogle Scholar
  128. Wu CN, Yan BH, Zhang L, Shuang Y, Jin YT, Cheng Y. Analysis of key techniques and economic feasibility for one-step production of acetylene by coal pyrolysis in thermal plasma reactor. CIESC J; 2010.Google Scholar
  129. Yamamoto T. VOC decomposition by nonthermal plasma processing—A new approach. J Electrostat. 1997;42(1–2):227–38.CrossRefGoogle Scholar
  130. Yan B, Xu P, Guo CY, Jin Y, Cheng Y. Experimental study on coal pyrolysis to acetylene in thermal plasma reactors. Chem Eng J. 2012;207–208(10):109–16.CrossRefGoogle Scholar
  131. Yan B, Cheng Y, Jin Y. Cross-scale modeling and simulation of coal pyrolysis to acetylene in hydrogen plasma reactors. AIChE J. 2013;59(6):2119–33.CrossRefGoogle Scholar
  132. Yang JS, Bao WR, Zhang YF, Xie KC. Engineering application study of producing acetylene through coal pyrolysis in plasma reactor. Chem Eng. 2006;34(6):52–5.Google Scholar
  133. Ye QZ, Li J, Xie ZH. Analytical model of the breakdown mechanism in a two–phase mixture. J Phys D Appl Phys. 2004;37(24):3373.CrossRefGoogle Scholar
  134. Zhu CW, Zhao GY, Hlavacek V. A dc plasma–fluidized bed reactor for the production of calcium carbide. J Mater Sci. 1995;30(9):2412–9.CrossRefGoogle Scholar
  135. Zhu F, Zhang J, Yang Z, Guo Y, Li H, Zhang Y. The dispersion study of TiO2 nanoparticles surface modified through plasma polymerization. Physica E. 2005;27(4):457–61.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. and Zhejiang University Press 2018

Authors and Affiliations

  1. 1.School of Environmental Science and EngineeringSun Yat-sen UniversityGuangzhouChina

Personalised recommendations