Heat Transfer and Mass Transfer in the Plasma Fluidized Bed

  • Changming Du
  • Rongliang Qiu
  • Jujun Ruan
Part of the Advanced Topics in Science and Technology in China book series (ATSTC)


This chapter introduces the heat transfer and mass transfer of plasma fluidized bed from three aspects: temperature distribution, heat transfer, circulation and mass transfer in the plasma fluidized bed. In terms of heat transfer, the effects of gas ionization effects, radiation effects and evaporation effects are introduced in detail, and the specific calculation formulas are given. In addition, this chapter summarizes the conditions and parameters of many studies and practical applications, which provide references for future research and application.


Heat transfer and mass transfer 


  1. Bourdin E, Fauchais P, Boulos M. Transient heat conduction under plasma conditions. Int J Heat Mass Tran. 1983;26(4):567–82.CrossRefGoogle Scholar
  2. Chen X, Chen J, Wang Y. Unsteady heating of metallic particles in a rarefied plasma. Plasma Chem Plasma P. 1995;15(2):199–219.CrossRefGoogle Scholar
  3. Chen X, Chyou YP, Lee YC, Pfender E. Heat transfer to a particle under plasma conditions with vapor contamination from the particle. Plasma Chem Plasma P. 1985;5(2):119–41.Google Scholar
  4. Chen X, He P. Heat transfer from a rarefied plasma flow to a metallic or nonmetallic particle. Plasma Chem Plasma P. 1986;6(4):313–33.MathSciNetCrossRefGoogle Scholar
  5. Chen X, Pfender E. Effect of the Knudsen number on heat transfer to a particle immersed into a thermal plasma. Plasma Chem Plasma P. 1983a;3(1):97–113.CrossRefGoogle Scholar
  6. Chen X, Pfender E. Behavior of small particles in a thermal plasma flow. Plasma Chem Plasma P. 1983b;3(3):351–66.CrossRefGoogle Scholar
  7. Chen X, Pfender E. Unsteady heating and radiation effects of small particles in a thermal plasma. Plasma Chem Plasma P. 1982;2(3):293–316.CrossRefGoogle Scholar
  8. Du CM, Shi TH, Sun Y, Zhuang X. Decolorization of Acid Orange 7 solution by gas-liquid gliding arc discharge plasma. J Hazard Mater. 2008;154(1–3):1192.CrossRefGoogle Scholar
  9. Du CM, Tang J, Mo JM, Ma DY, Wang J, Wang K, Zeng Y. Decontamination of bacteria by gas-liquid gliding arc discharge: application to. IEEE T Plasma Sci. 2014;42(9):2221–8.CrossRefGoogle Scholar
  10. Du CM, Yan JH. Electrical and spectral characteristics of a hybrid gliding arc discharge in air-water. IEEE T Plasma Sci. 2007;35(6):1648–50.CrossRefGoogle Scholar
  11. Du CM. A plasma fluidized bed for gasification. China patent 201310203334.4; 2014.Google Scholar
  12. Fauchais P, Vardelle A. Pending problems in thermal plasmas and actual development. Plasma Phys Contr F. 2000;42(12B):B365.CrossRefGoogle Scholar
  13. Flamant G. Hydrodynamics and heat transfer in a plasma spouted bed reactor. Plasma Chem Plasma P. 1990;10(1):71–85.Google Scholar
  14. Gerdes T, Tap R, Bahke P, Willert-Porada M. CVD-processes in microwave heated fluidized bed reactors. Adv in Microwave Radio Freq Process. 2006;54–55(09):720–34.CrossRefGoogle Scholar
  15. Lee YC, Chyou YP, Pfender E. Particle dynamics and particle heat and mass transfer in thermal plasmas. Part II. Particle heat and mass transfer in thermal plasmas. Plasma Chem Plasma P. 1985;5(4):391–414.CrossRefGoogle Scholar
  16. Moissan H, Dewar J. Nouvelles expériences sur la liquéfaction de fluor. C R. 1897;125:505–11.Google Scholar
  17. Rykalin NN. Plasma engineering in metallurgy and inorganic materials tcchnology. Pure Appl Chem. 1976;48(2):179–94.CrossRefGoogle Scholar
  18. Shi TH, Jia SG, Chen Y, Wen YH, Du CM, Guo HL, et al. Adsorption of Pb (II), Cr (III), Cu (II), Cd (II) and Ni (II) onto a vanadium mine tailing from aqueous solution. J Hazard Mater. 2009a;168(1–3):838.CrossRefGoogle Scholar
  19. Shi TH, Wang ZC, Liu Y, Jia SG, Du CM. Removal of hexavalent chromium from aqueous solutions by D301, D314 and D354 anion-exchange resins. J Hazard Mater. 2009b;161(2–3):900–6.CrossRefGoogle Scholar
  20. Uglov AA, Gnedovets AG. Effect of particle charging on momentum and heat transfer from rarefied plasma flow. Plasma Chem Plasma P. 1991;11(2):251–67.CrossRefGoogle Scholar
  21. Waldie B. Review of recent work on the processing of powders in high-temperature plasmas Part II—particle dynamics, heat transfer, and mass transfer. Chem Eng. 1972;261:188–93.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. and Zhejiang University Press 2018

Authors and Affiliations

  1. 1.School of Environmental Science and EngineeringSun Yat-sen UniversityGuangzhouChina

Personalised recommendations