Hydrodynamics of Plasma Fluidized Bed

Chapter
Part of the Advanced Topics in Science and Technology in China book series (ATSTC)

Abstract

This chapter systematically reviews the hydrodynamics of plasma fluidized bed and its progress. Firstly, the hydrodynamics of plasma spouted bed is introduced from the aspects of minimum spouted velocity, spoutable height, pressure drop and particle attrition, and the relevant formulas are given. Finally, the hydrodynamics of plasma fluidized bed was analyzed.

Keywords

Hydrodynamics Plasma fluidized bed Plasma spouted bed 

References

  1. Du C, Shi T, Sun Y, Zhuang X. Decolorization of acid orange 7 solution by gas-liquid gliding arc discharge plasma. J Hazard Mater. 2008;154(1–3):1192.CrossRefGoogle Scholar
  2. Du CM, Zhang LL, Wang J, Zhang CR, Li HX, Xiong Y. Degradation of acid orange 7 by gliding arc discharge plasma in combination with advanced fenton catalysis. Plasma Chem Plasma P. 2010;30(6):855–71.CrossRefGoogle Scholar
  3. Du CM, Huang DW, Li HX, Xiao MD, Wang K, Zhang L, et al. Adsorption of acid orange II from aqueous solution by plasma modified activated carbon fibers. Plasma Chem Plasma P. 2013;33(1):65–82.Google Scholar
  4. Du CM, Ma DY, Wu J, Lin YC, Xiao W, Ruan JJ, et al. Plasma-catalysis reforming for H2 production from ethanol. Int J Hydrogen Energ. 2015;40(45):15398–410.CrossRefGoogle Scholar
  5. Fauchais P, Vardelle A. Pending problems in thermal plasmas and actual development. Plasma Phys Contr Fusion. 2000;42(12B):B365.CrossRefGoogle Scholar
  6. Flamant G. Hydrodynamics and heat transfer in a plasma spouted bed reactor. Plasma Chem Plasma P. 1990;10(1):71–85.Google Scholar
  7. Francke E, Amouroux J. LDA simultaneous measurements of local density and velocity distribution of particles in plasma fluidized bed at atmospheric pressure. Plasma Chem Plasma P. 1997;17(4):433–52.Google Scholar
  8. Fridmari A, Saveliev A, Nester S, Kerirzedy L. Nonequilibrium gliding arc in fluidized bed. In: 13th international symposium on plasma chemistry ( 1997, Beijing); 1997.Google Scholar
  9. Gerdes T, Tap R, Bahke P, Willert-Porada M. CVD-Processes in Microwave Heated Fluidized Bed Reactors. Adv in Microwave Radio Freq Process. 2006;54–55(09):720–34.CrossRefGoogle Scholar
  10. Grovender EA, Cooney CL, Langer RS, Ameer GA. Modeling the mixing behavior of a novel fluidized extracorporeal immunoadsorber. Chem Eng Sci. 2001;56(18):5437–41.CrossRefGoogle Scholar
  11. Hamdi H. Contribution à la caractérisation du réacteur à lit soufflé par plasma [microforme]: application dans un procédé de gazéification du coke de pétrole. Université de Sherbrooke; 2000.Google Scholar
  12. Hu MB, Dang SC, Ma Q, Xia WD. Stabilizing effect of plasma discharge on bubbling fluidized granular bed. Chin Phys B. 2015;24(7):288–92.Google Scholar
  13. Kumar A, Dwivedi HK, Nehra V. Atmospheric non-thermal plasma sources. Int J Eng. 2008;2(1):53–68.Google Scholar
  14. Lesinski JMBJ, Meillot E, Debbagh-Nour G. Modelling of plasma entrianded bed coal gasifiers. In: 7th international symposium on plasma chemistry (Eindhoven, 1985); 1985.Google Scholar
  15. Lu SY, Chen L, Huang QX, Yang LQ, Du CM, Li XD, et al. Decomposition of ammonia and hydrogen sulfide in simulated sludge drying waste gas by a novel non-thermal plasma. Chemosphere. 2014;117(117C):781.CrossRefGoogle Scholar
  16. Matsumoto S, Hino M, Kobayashi T. Synthesis of diamond films in a RF induction thermal plasma. Appl Phys Lett. 1987;51(10):737–9.CrossRefGoogle Scholar
  17. Mochizuki Y, Ono S, Teii S, Chang J. Fluidization and plasma characteristics of medium pressure RF glow discharge plasma fluidized bed reactors. Adv Powder Technol. 1993;4(3):159–67.CrossRefGoogle Scholar
  18. Nezu A, Morishima T, Watanabe T. Thermal plasma treatment of waste ion-exchange resins doped with metals. Thin Solid Films. 2003;435(1):335–9.CrossRefGoogle Scholar
  19. Park SH, Sang DK. Functionalization of HDPE powder by CF4 plasma surface treatment in a fluidized bed reactor. Korean J Chem Eng. 1999;16(6):731–6.CrossRefGoogle Scholar
  20. Ren Y, Li XD, Yu L, Cheng K, Yan JH, Du CM. Degradation of PCDD/Fs in fly ash by vortex-shaped gliding arc plasma. Plasma Chem Plasma P. 2013;33(1):293–305.CrossRefGoogle Scholar
  21. Rogers T, Morin TJ. Slip flow in fixed and fluidized bed plasma reactors. Plasma Chem Plasma P. 1991;11(2):203–28.CrossRefGoogle Scholar
  22. Sathiyamoorthy S. Plasma spouted/fluidized bed for materials processing. J Phys Conf Ser. 2010;208:012120.CrossRefGoogle Scholar
  23. Şen Y, Bağcı U, Güleç HA, Mutlu M. Modification of food-contacting surfaces by plasma polymerization technique: reducing the biofouling of microorganisms on stainless steel surface. Food Bioprocess Tech. 2012;5(1):166–75.CrossRefGoogle Scholar
  24. Wen C, Yu Y. Mechanics of fluidization. Chem Eng Prog S Ser. 1966;62:100–11.Google Scholar
  25. Wierenga CR, Morin TJ. Characterization of a fluidized-bed plasma reactor. AIChE J. 1989;35(9):1555–8.CrossRefGoogle Scholar
  26. Wu CN, Yan BH, Jin Y, Cheng Y. Modeling and simulation of chemically reacting flows in gas–solid catalytic and non-catalytic processes. Particuology. 2010;8(6):525–30.CrossRefGoogle Scholar
  27. Ye QZ, Li J, Xie ZH. Analytical model of the breakdown mechanism in a two-phase mixture. J Phys D Appl Phys. 2004;37(24):3373.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. and Zhejiang University Press 2018

Authors and Affiliations

  1. 1.School of Environmental Science and EngineeringSun Yat-sen UniversityGuangzhouChina

Personalised recommendations