Skip to main content

Influencing Factors on Understanding Plasma Fluidized Bed

  • Chapter
  • First Online:
Plasma Fluidized Bed

Part of the book series: Advanced Topics in Science and Technology in China ((ATSTC))

  • 820 Accesses

Abstract

There is a comprehensive introduction about the influencing factors of plasma fluidized bed treatment effect in this chapter, which includes: the resident time, input power, gas flow rate, carrier gas composition, the design of the distributor, gas pressure, temperature, particle size and density, solid mass flow rate. All kinds of influencing factors are analyzed in detail, and the relevant precautions when using plasma fluidized bed are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arnauld P, Cavadias S, Amouroux J. The interaction of a fluidized bed with a thermal plasma: application to limestone decomposition. In: 7th International symposium on plasma chemistry (Eindhoven, 1985). 1985.

    Google Scholar 

  • Bromberg L, Cohn D, Rabinovich A, O’Brie C, Hochgreb S. Plasma reforming of methane. Energ Fuel. 1998;12(1):1–18.

    Article  Google Scholar 

  • Chen X, Pfender E. Effect of the Knudsen number on heat transfer to a particle immersed into a thermal plasma. Plasma Chem Plasma P. 1983;3(1):97–113.

    Article  Google Scholar 

  • Chen GL, Fan SH, Li CL, Gu WC, Feng WR, Zhang GL, et al. A novel atmospheric pressure plasma fluidized bed and its application in mutation of plant seeds. Chinese Phys Lett. 2005;22(8):1980–3.

    Article  Google Scholar 

  • Chen G, Chen S, Zhou M, Feng W, Gu W, Yang S. Application of a novel atmospheric pressure plasma fluidized bed in the powder surface modification. J Phys D Appl Phys. 2006;39(24):5211.

    Article  Google Scholar 

  • Cormier JM, Rusu I. Syngas production via methane steam reforming with oxygen: plasma reactors versus chemical reactors. J Phys D Appl Phys. 2001a;34(18):2798.

    Article  Google Scholar 

  • Cormier JM, Rusu I. Syngas production via methane steam reforming with oxygen: plasma reactors versus chemical reactors. J Phys D Appl Phys. 2001b;34(34):2798.

    Article  Google Scholar 

  • Du CM. A plasma fluidized bed for the production of syngas from MSW. China patent 201410844203.9. 2014a.

    Google Scholar 

  • Du CM. The treatment of VOCs by a plasma fluidized bed. China patent 201410849939.5. 2014b.

    Google Scholar 

  • Du CM, Tang J, Mo J, Ma DY, Wang J, Wang K, et al. Decontamination of bacteria by gas-liquid gliding arc discharge: application to Escherichia coli. IEEE T Plasma Sci. 2014;42(9):2221–8.

    Article  Google Scholar 

  • El-Naas MH, Munz R, Ajersch F. Solid-phase synthesis of calcium carbide in a plasma reactor. Plasma Chem Plasma P. 1998a;18(3):409–27.

    Google Scholar 

  • El-Naas MH, Munz RJ, Ajersch F. Modelling of a plasma reactor for the synthesis of calcium carbide. CANMetallQuart. 1998b;37(1):67–74.

    Article  Google Scholar 

  • Heintze M, Brüser V, Brandl W, Marginean G, Bubert H, Haiber S. Surface functionalisation of carbon nano-fibres in fluidised bed plasma. Surf Coat Tech. 2003;174–175(03):831–4.

    Article  Google Scholar 

  • Jung SH, Sang MP, Park SH, Sang DK. Surface modification of fine powders by atmospheric pressure plasma in a circulating fluidized bed reactor. Ind Eng Chem Res. 2004;43(18):5483–8.

    Article  Google Scholar 

  • Karches M, Takashima AH, Kanno Y. Development of a circulating fluidized-bed reactor for microwave-activated catalysis. Ind Eng Chem Res. 2004;43(26):8200–6.

    Article  Google Scholar 

  • Kroker T, Kolb T, Schenk A, Krawczyk K, MÅ‚otek M, Gericke KH. Catalytic conversion of simulated biogas mixtures to synthesis gas in a fluidized bed reactor supported by a DBD. Plasma Chem Plasma P. 2012;32(3):565–82.

    Article  Google Scholar 

  • Lee H, Sekiguchi H. Plasma-Catalytic hybrid system using spouted bed with gliding arc discharge. In: 240th American chemical society national meeting (Boston, 2010). 2010.

    Google Scholar 

  • Li SD, Tian SH, Du CM, He C, Cen CP, Xiong Y. Vaseline-loaded expanded graphite as a new adsorbent for toluene. Chem Eng J. 2010;162(2):546–51.

    Article  Google Scholar 

  • Liang M, Chen J, Lin WM, Liu K. Thermodynamics study on solid phase decarbonization of high carbon ferromanganese powder. Ferro-Alloys. 2009.

    Google Scholar 

  • Liu LX, Rudolph V, Litster JD. A direct current, plasma fluidized bed reactor: its characteristics and application in diamond synthesis. Powder Technol. 1996;88(1):65–70.

    Article  Google Scholar 

  • Matsumoto S, Hino M, Kobayashi T. Synthesis of diamond films in a RF induction thermal plasma. Appl Phys Lett. 1987;51(10):737–9.

    Article  Google Scholar 

  • MÅ‚otek M, Sentek J, Krawczyk K, Schmidt-SzaÅ‚owski K. The hybrid plasma-catalytic process for non-oxidative methane coupling to ethylene and ethane. Appl Catal A-Gen. 2009;366(2):232–41.

    Article  Google Scholar 

  • Nezu A, Morishima T, Watanabe T. Thermal plasma treatment of waste ion-exchange resins doped with metals. Thin Solid Films. 2003;435(1):335–9.

    Article  Google Scholar 

  • Pajkic Z, Willert-Porada M. Atmospheric pressure microwave plasma fluidized bed CVD of AlN coatings. Surf Coat Tech. 2009;203(20):3168–72.

    Article  Google Scholar 

  • Renzo AD, Maio FPD. Homogeneous and bubbling fluidization regimes in DEM-CFD simulations: hydrodynamic stability of gas and liquid fluidized beds. Chem Eng Sci. 2007;62(1–2):116–30.

    Article  Google Scholar 

  • Savinov SY, Lee H, Song HK, Na BK. Decomposition of methane and carbon dioxide in a radio-frequency discharge. Ind Eng Chem Res. 1999;38(7):2540–7.

    Article  Google Scholar 

  • Savintsev MI. Diffusion saturation in electrothermal fluidized bed. Met Sci Heat Treat. 1990;32(11):842–5.

    Article  Google Scholar 

  • Schmidt-Szalowski K, Krawczyck K, Mlotek M. Properties of a heterogeneous system of solid particles in gliding discharge plasma. In: 10th International symposium on high pressure low temperature plasma chemistry (Hakone X, 2006). 2006.

    Google Scholar 

  • Schmidt-SzaÅ‚owski K, Krawczyk K, MÅ‚otek M. Catalytic effects of metals on the conversion of methane in gliding discharges. Plasma Process Polym. 2007;4(7–8):728–36.

    Article  Google Scholar 

  • Shi TH, Wang ZC, Liu Y, Jia SG, Du CM. Removal of hexavalent chromium from aqueous solutions by D301, D314 and D354 anion-exchange resins. J Hazard Mater. 2009;161(2):900–6.

    Article  Google Scholar 

  • Spillmann A, Sonnenfeld A, Rohr PRV. Flowability modification of lactose powder by plasma enhanced chem vapor deposition. Plasma Process Polym. 2007;4(Supplement S1):S16–S20.

    Google Scholar 

  • Taylor PR, Pirzada SA. Thermal plasma processing of materials: A review. Adv Perform Mater. 1994;1(1):35–50.

    Article  Google Scholar 

  • Ua-amnueychai W, Kodama S, Tanthapanichakoon W, Sekiguchi H. Preparation of zinc coated PMMA using solid precursor by gliding arc discharge. Chem Eng J. 2015;278:301–8.

    Article  Google Scholar 

  • Uglov AA, Gnedovets AG. Effect of particle charging on momentum and heat transfer from rarefied plasma flow. Plasma Chem Plasma P. 1991;11(2):251–67.

    Article  Google Scholar 

  • Uhm HS, Na YH, Hong YC, Yun J, Cho CH, Park YK. High-efficiency gasification of low-grade coal by microwave steam plasma. Energ Fuel. 2014;28(7):4402–8.

    Article  Google Scholar 

  • Vedrenne I, Herve T, Nikravech M, Amouroux J. C2 + hydrocarbons synthesis from methane in a plasma-spouted bed device. Stud Surf Sci Catal. 1991;61:207–12.

    Article  Google Scholar 

  • Vivien C, Wartelle C, Mutel B, Grimblot J. Surface property modification of a polyethylene powder by coupling fluidized bed and far cold remote nitrogen plasma technologies. Surf Interface Anal. 2002;34(1):575–9.

    Article  Google Scholar 

  • Wang Q, Cheng Y, Jin Y. Dry reforming of methane in an atmospheric pressure plasma fluidized bed with Ni/γ-Al2O3 catalyst. Catal Today. 2009;148(3):275–82.

    Article  Google Scholar 

  • Wang TC, Lu N, Li J, Wu Y. Plasma-TiO2 catalytic method for high-efficiency remediation of p-nitrophenol contaminated soil in pulsed discharge. Environ Sci Technol. 2011;45(21):9301–7.

    Article  Google Scholar 

  • Yan B, Cheng Y, Jin Y. Cross-scale modeling and simulation of coal pyrolysis to acetylene in hydrogen plasma reactors. AIChE J. 2013;59(6):2119–33.

    Article  Google Scholar 

  • Ye QZ, Li J, Xie ZH. Analytical model of the breakdown mechanism in a two-phase mixture. J Phys D Appl Phys. 2004;37(24):3373.

    Article  Google Scholar 

  • Zhu CW, Zhao GY, Hlavacek V. A d.c. plasma-fluidized bed reactor for the production of calcium carbide. J Mater Sci. 1995;30(9):2412–9.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changming Du .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd. and Zhejiang University Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Du, C., Qiu, R., Ruan, J. (2018). Influencing Factors on Understanding Plasma Fluidized Bed. In: Plasma Fluidized Bed. Advanced Topics in Science and Technology in China. Springer, Singapore. https://doi.org/10.1007/978-981-10-5819-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-5819-6_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-5818-9

  • Online ISBN: 978-981-10-5819-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics