Skip to main content

Thermal Plasma Fluidized Bed

  • Chapter
  • First Online:
Book cover Plasma Fluidized Bed

Abstract

In this chapter, the thermal plasma fluidized bed is introduced in detail. The thermal plasma fluidized bed includes: DC plasma jet spouted bed, AC plasma jet fluidized bed, radio frequency discharge (RF) fluidized bed (RF plasma fluidized bed, RF plasma circulating fluidized bed, RF downer bed), microwave discharge fluidized bed and electrothermal plasma fluidized bed. Moreover, this chapter introduces the research progress and applications of various reactors, and points out the shortcomings of these reactors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arpagaus C, Rossi A, Von Rohr PR. Short-time plasma surface modification of HDPE powder in a plasma downer reactor-process, wettability improvement and ageing effects. Appl Surf Sci. 2005a;252(5):1581–95.

    Article  Google Scholar 

  • Arpagaus C, Sonnenfeld A, Von Rohr PR. A downer reactor for short-time plasma surface modification of polymer powders. Chem Eng Technol. 2005b;28(1):87–94.

    Article  Google Scholar 

  • Attri P, Arora B, Choi EH. Utility of plasma: a new road from physics to chemistry. RSC Adv. 2013;3(31):12540–67.

    Article  Google Scholar 

  • Bal S, Musialski A, Swierczek R. Gasification of coal fines in a laboratory plasma-chemical reactor with a spouted bed. [Ar plasma]. Vet Rec. 1971;147(6):166–7.

    Google Scholar 

  • Bashlai KI, Barantsev IF, Grinbaum MB, Stanyakin VM, Samodurov VV, Todes OM. Thermal and electrical characteristics of a high-frequency electrothermal fluidization bed. J Eng Phys. 1972;22(6):665–9.

    Google Scholar 

  • Bretagnol F, Tatoulian M, Arefi-Khonsari F, Lorang G, Amouroux J. Surface modification of polyethylene powder by nitrogen and ammonia low pressure plasma in a fluidized bed reactor. React Funct Polymers. 2004;61(2):221–32.

    Article  Google Scholar 

  • Chang JS, Ono S, Teil S. Medium pressure glow discharge plasma oxidation by fluifized bed reactors, 1987.

    Google Scholar 

  • Chen X, Pfender E. Effect of the Knudsen number on heat transfer to a particle immersed into a thermal plasma. Plasma Chem Plasma P. 1983a;3(1):97–113.

    Article  Google Scholar 

  • Chen X, Pfender E. Behavior of small particles in a thermal plasma flow. Plasma Chem Plasma P. 1983b;3(3):351–66.

    Article  Google Scholar 

  • Chen X, Chen J, Wang Y. Unsteady heating of metallic particles in a rarefied plasma. Plasma Chem Plasma P. 1995;15(2):199–219.

    Article  Google Scholar 

  • Chen G, Chen S, Zhou M, Feng W, Gu W, Yang S. Application of a novel atmospheric pressure plasma fluidized bed in the powder surface modification. J Phys D Appl Phys. 2006;39(24):5211.

    Article  Google Scholar 

  • Chen G, Chen S, Feng W, Chen W, Yang SZ. Surface modification of the nanoparticles by an atmospheric room-temperature plasma fluidized bed. Appl Surf Sci. 2008;254(13):3915–20.

    Article  Google Scholar 

  • Chen G, Zhou M, Chen S, Lv G, Yao J. Nanolayer biofilm coated on magnetic nanoparticles by using a dielectric barrier discharge glow plasma fluidized bed for immobilizing an antimicrobial peptide. Nanotechnology. 2009;20(46):465706.

    Article  Google Scholar 

  • Cormier JM, Rusu I. Syngas production via methane steam reforming with oxygen: plasma reactors versus chemical reactors. J Phys D Appl Phys. 2001;34(34):2798.

    Article  Google Scholar 

  • Du C. A plasma fluidized bed for the production of syngas from MSW. China patent 201410844203.9. 2014a.

    Google Scholar 

  • Du C. A plasma fluidized bed for the cineration of fly ash. China patent 201410850031.6. 2014b.

    Google Scholar 

  • El-Naas MH, Munz R, Ajersch F. Modelling of a plasma reactor for the synthesis of calcium carbide. CANMetallQuart. 1998a;37(1):67–74.

    Article  Google Scholar 

  • El-Naas MH, Munz R, Ajersch F. Solid-phase synthesis of calcium carbide in a plasma reactor. Plasma Chem Plasma P. 1998b;18(3):409–27.

    Google Scholar 

  • EL-Naas MH, Munz R, Ajersch F. Production of calcium carbide in a plasmajet fluid bed reactor. Proc ISPC-12. 1995:613–8.

    Google Scholar 

  • El-Naas MH. Synthesis of calcium carbide in a plasma spout fluid bed. Montreal: McGill University; 1996.

    Google Scholar 

  • Emome A, Jurewize T. Fuel synthesis for solid oxide fuel cells by plasma spouted bed gasification. In: 14th international symposium on plasma chemistry (Prague, 1999); 1999.

    Google Scholar 

  • Fauchais P, Vardelle A. Pending problems in thermal plasmas and actual development. Plasma Phys Controlled Fusion. 2000;42(12B):B365.

    Article  Google Scholar 

  • Feng H. Analysis of microwave assisted fluidized-bed drying of particulate product with a simplified heat and mass transfer model. International Communications in Heat & Mass Transfer, 2002;29(8):1021–1028.

    Article  Google Scholar 

  • Flamant G, Bamrim A. The plasma spouted bed reactor for applications in metallurgy and material synthesis. High Temp Mater Process. 2000a;4(4):455–71.

    Article  Google Scholar 

  • Flamant G, Bamrim A. The plasma spouted bed reactor for applications in metallurgy and material synthesis. High Temp Mater Process. 2000b;4(4):18.

    Article  Google Scholar 

  • Fridmari HSA, Saveliev A, Nester S, Kerirzedy L. Nonequilibrium gliding arc in fluidized bed. In: 13th international symposium on plasma chemistry (Beijing, 1997). 1997.

    Google Scholar 

  • Gerdes T, Tap R, Bahke P, Willert-Porada M. CVD–processes in microwave heated fluidized bed reactors. Adv Microwave Radio Freq Process. 2006;54–55(09):720–34.

    Article  Google Scholar 

  • Gomez E, Rani DA, Cheeseman CR, Deegan D, Wise M, Boccaccini AR. Thermal plasma technology for the treatment of wastes: a critical review. J Hazard Mater. 2008;161(4):614–26.

    Google Scholar 

  • Heberlein J, Murphy AB. Thermal plasma waste treatment. J Phys D Appl Phys. 2008;41(5):053001.

    Article  Google Scholar 

  • Hu MB, Dang SC, Ma Q, Xia WD. Stabilizing effect of plasma discharge on bubbling fluidized granular bed. Chin Phys B. 2015;24(7):288–92.

    Google Scholar 

  • Karches M, Rohr PRV. Microwave plasma characteristics of a circulating fluidized bed-plasma reactor for coating of powders. Surf Coat Tech. 2001;142–144(3):28–33.

    Article  Google Scholar 

  • Karches M, Bayer C, Rohr PRV. A circulating fluidised bed for plasma-enhanced Chem vapor deposition on powders at low temperatures. Surf Coat Tech. 1999;116–119(4):879–85.

    Article  Google Scholar 

  • Karches M, Takashima AH, Kanno Y. Development of a circulating fluidized-bed reactor for microwave-activated catalysis. Ind Eng Chem Res. 2004;43(26):8200–6.

    Article  Google Scholar 

  • Kogelschatz U, Eliasson B, Egli W. Dielectric-barrier discharges. Principle and applications. J Phys IV. 1997;7(C4):44–66.

    Google Scholar 

  • Kono HO, Soltani-Ahmadi A, Suzuki M. Kinetic forces of solid particles in coarse particles fluidized beds. Powder Technol. 1987;52(1):49–58.

    Article  Google Scholar 

  • Kroker T, Kolb T, Schenk A, Krawczyk K, Młotek M, Gericke KH. Catalytic conversion of simulated biogas mixtures to synthesis gas in a fluidized bed reactor supported by a DBD. Plasma Chem Plasma P. 2012;32(3):565–82.

    Article  Google Scholar 

  • Kumar A, Dwivedi HK, Nehra V. Atmospheric non-thermal plasma sources. International J. Eng, 2008;2(1):53–68.

    Google Scholar 

  • Lee H, Sekiguchi H. Plasma-catalytic hybrid system using spouted bed with a gliding arc discharge: CH4 reforming as a model reaction. J Phys D Appl Phys. 2011;44(27):274008.

    Article  Google Scholar 

  • Lee YC, Chyou YP, Pfender E. Particle dynamics and particle heat and mass transfer in thermal plasmas. Part II. Particle heat and mass transfer in thermal plasmas. Plasma Chem Plasma P. 1985;5(4):391–414.

    Article  Google Scholar 

  • Liu L, Rudolph V, Litster J. A direct current, plasma fluidized bed reactor: its characteristics and application in diamond synthesis. Powder Technol. 1996a;88(1):65–70.

    Article  Google Scholar 

  • Liu LX, Rudolph V, Litster JD. A direct current, plasma fluidized bed reactor: its characteristics and application in diamond synthesis. Powder Technol. 1996b;88(1):65–70.

    Article  Google Scholar 

  • Matsukata M, Suzuki K, Ueyama K, Kojima T. Development of a microwave plasma-fluidized bed reactor for novel particle processing. Int J Multiph Flow. 1994;20(4):763–73.

    Article  Google Scholar 

  • Morstein M, Karches M, Bayer C, Casanova D, Rohr PRV. Plasma CVD of ultrathin TiO2 films on powders in a circulating fluidized bed. Chem Vapor Depos. 2000;6(1):16–20.

    Article  Google Scholar 

  • Mutel B, Bigan M, Vezin H. Remote nitrogen plasma treatment of a polyethylene powder: optimisation of the process by composite experimental designs. Appl Surf Sci. 2004;239(1):25–35.

    Google Scholar 

  • Pacek AW, Nienow A. Fluidisation of fine and very dense hardmetal powders. Powder Technol. 1990;60(2):145–58.

    Article  Google Scholar 

  • Pajkic Z, Willert-Porada M. Atmospheric pressure microwave plasma fluidized bed CVD of AIN coatings. Surf Coat Tech. 2009;203(20):3168–72.

    Article  Google Scholar 

  • Pajkic Z, Wolf H, Gerdes T, Willert-Porada M. Microwave plasma fluidized bed arc-PVD coating of particulate materials. Surf Coat Tech. 2008;202(16):3927–32.

    Article  Google Scholar 

  • Park SH, Sang DK. Functionalization of HDPE powder by CF4 plasma surface treatment in a fluidized bed reactor. Korean J Chem Eng. 1999;16(6):731–6.

    Article  Google Scholar 

  • Park SM, Jung SH, Park SH, Kim SD. Silicon oxide thin film deposition on alumina in a circulating fluidized bed reactor. Key Eng Mater. 2005;277:577–82.

    Article  Google Scholar 

  • Prat R, Koh YJ, Babukutty Y, Kogoma M, Okazaki S, Kodama M. Polymer deposition using atmospheric pressure plasma glow (APG) discharge. Polymer. 2000;41(20):7355–60.

    Article  Google Scholar 

  • Rogers T, Morin TJ. Slip flow in fixed and fluidized bed plasma reactors. Plasma Chem Plasma P. 1991;11(2):203–28.

    Article  Google Scholar 

  • Rykalin NN. Plasma engineering in metallurgy and inorganic materials technology. Pure Appl Chem. 1976;48(2):179–94.

    Article  Google Scholar 

  • Schmidt-Szałowski K, Górska A, Motek M. Plasma-catalytic conversion of methane by DBD and gliding discharges. J Adv Oxid Technol. 2006;9(2):215–9.

    Google Scholar 

  • Steinbach BP. An electrothermal fluidized bed carbon particle plasma reactor for hazardous waste treament. University of Missouri-Columbia; 1996.

    Google Scholar 

  • Steinbach PB, Manahan SE, Larsen DW. The chemical reduction of small inorganic gases in an electrothermal plasma reactor. Microchem J. 2003;75(3):223–31.

    Article  Google Scholar 

  • Takarada T, Tamura K, Takezawa H, Nakagawa N, Kato K. The effect of pretreatment in a fluidized bed upon diamond synthesis on particles by chemical vapour deposition. J Mater Sci. 1993;28(6):1545–50.

    Article  Google Scholar 

  • Tsukada M, Goto K, Yamamoto RH, Horio M. Metal powder granulation in a plasma-spouted/fluidized bed. Powder Technol. 1995;82(3):347–53.

    Article  Google Scholar 

  • Ua-amnueychai W, Kodama S, Tanthapanichakoon W, Sekiguchi H. Preparation of zinc coated PMMA using solid precursor by gliding arc discharge. Chem Eng J. 2015;278:301–8.

    Article  Google Scholar 

  • Uglov AA, Gnedovets AG. Effect of particle charging on momentum and heat transfer from rarefied plasma flow. Plasma Chem Plasma P. 1991;11(2):251–67.

    Article  Google Scholar 

  • Vaidyanathan A, Mulholland J, Ryu J, Smith MS, Circeo LJ. Characterization of fuel gas products from the treatment of solid waste streams with a plasma arc torch. J Environ Manage. 2007;82(1):77–82.

    Article  Google Scholar 

  • Visser J. Van der Waals and other cohesive forces affecting powder fluidization. Powder Technol. 1989;58(1):1–10.

    Article  Google Scholar 

  • Waldie B. Review of recent work on the processing of powders in high-temperature plasmas Part II—particle dynamics, heat transfer, and mass transfer. Chem Eng. 1972;261:188–93.

    Google Scholar 

  • Wu CN, Yan BH, Jin Y, Cheng Y. Modeling and simulation of chemically reacting flows in gas-solid catalytic and non-catalytic processes. Particuology. 2010;8(6):525–30.

    Article  Google Scholar 

  • Yang JS, Bao WR, Zhang YF, Xie KC. Engineering application study of producing acetylene through coal pyrolysis in plasma reactor. Chem Eng. 2006;34(6):52–5.

    Google Scholar 

  • Ye QZ, Li J, Xie ZH. Analytical model of the breakdown mechanism in a two-phase mixture. J Phys D Appl Phys. 2004;37(24):3373.

    Article  Google Scholar 

  • Zhu CW, Zhao GY, Hlavacek V. A DC plasma-fluidized bed reactor for the production of calcium carbide. J Mater Sci. 1995;30(9):2412–9.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changming Du .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd. and Zhejiang University Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Du, C., Qiu, R., Ruan, J. (2018). Thermal Plasma Fluidized Bed. In: Plasma Fluidized Bed. Advanced Topics in Science and Technology in China. Springer, Singapore. https://doi.org/10.1007/978-981-10-5819-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-5819-6_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-5818-9

  • Online ISBN: 978-981-10-5819-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics