Skip to main content

Plant–Fungi Association: Role of Fungal Endophytes in Improving Plant Tolerance to Water Stress

  • Chapter
  • First Online:
Plant-Microbe Interactions in Agro-Ecological Perspectives

Abstract

Plants are constantly being challenged with various biotic and abiotic stresses throughout their life cycle that exert profound deleterious effects on growth, development and health. Plants employ various physiological, biochemical and molecular mechanisms to combat these stress factors. Microorganism-mediated plant stress tolerance, particularly plant drought tolerance, is important in the study of plant–microbe interactions. Although relatively less well-known, fungal endophyte-mediated plant drought tolerance has been described for several cases. Unlike mycorrhizal fungi, non-mycorrhizal fungi may mediate the effects of water stress by adjusting, regulating or modifying plant physiological, biochemical and metabolic activities. We review the evidence for fungal endophyte-mediated plant drought tolerance and mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andrew M, Barua R, Short SM, Kohn LM et al (2012) Evidence for a common toolbox based on necrotrophy in a fungal lineage spanning necrotrophs, biotrophs, endophytes, host generalists and specialists. PLoS One 7:e29943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  • Arnold AE (2007) Understanding the diversity of foliar endophytic fungi: progress, challenges, and frontiers. Fung Biol Rev 21:51–66

    Google Scholar 

  • Asensio D, Rapparini F, Peñuelas J et al (2012) AM fungi root colonization increases the production of essential isoprenoids vs nonessential isoprenoids especially under drought stress conditions or after jasmonic acid application. Phytochemistry 77:149–161

    Article  CAS  PubMed  Google Scholar 

  • Ashmore M, Toet S, Emberson L et al (2006) Ozone-a significant threat to future world food production? New Phytol 170:201–204

    Article  PubMed  Google Scholar 

  • Augé RM, Moore JL (2005) Arbuscular mycorrhizal symbiosis and plant drought resistance. In: Mehrotra VS (ed) Mycorrhiza: role and applications. Allied Publishers Limited, New Delhi, pp 136–157

    Google Scholar 

  • Azad K, Kaminskyj S (2016) A fungal endophyte strategy for mitigating the effect of salt and drought stress on plant growth. Symbiosis 68(1):73–78. doi:10.1007/s13199-015-0370-y

  • Bae H, Sicher RC, Kim MS, Kim SH, Strem MD, Melnick RL et al (2009) The beneficial endophyte Trichoderma hamatum isolate DIS 219b promotes growth and delays the onset of the drought response in Theobroma cacao. J Exp Bot 60:3279–3295. http://dx.doi.org/10.1093/jxb/erp165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baltruschat H, Fodor J, Harrach BD, Niemczyk E, Barna B, Gullner G, Janeczko A, Kogel KH, Schäfer P, Schwarczinger I, Zuccaro A, Skoczowski et al (2008) Salt tolerance of barley induced by the root endophyte Piriformospora indica is associated with a strong increase in antioxidants. New Phytol 180(2):501–510. doi:10.1111/j.1469-8137.2008.02583.x

    Article  CAS  PubMed  Google Scholar 

  • Bao X, Roossinck MJ (2013) Multiplexed interactions: viruses of endophytic fungi. Adv Virus Res 86:37–58. doi:10.1016/B978-0-12-394315-6.00002-7

    Article  CAS  PubMed  Google Scholar 

  • Bartoli CG, Simontacchi M, Tambussi E, Beltrano J, Montaldi E, Puntarulo S (1999) Drought and watering-dependent oxidative stress: effect on antioxidant content in Triticum aestivum L. leaves. J Exp Bot 50:375–385

    Article  CAS  Google Scholar 

  • Baslam M, Goicoechea N (2012) Water deficit improved the capacity of arbuscular mycorrhizal fungi (AMF) for inducing the accumulation of antioxidant compounds in lettuce leaves. Mycorrhiza 22:347–359

    Article  CAS  PubMed  Google Scholar 

  • Battisti DS, Naylor RL (2009) Historical warnings of future food insecurity with unprecedented seasonal heat. Science 323:240–244

    Article  CAS  PubMed  Google Scholar 

  • Bayat F, Mirlohib A, Khodambashic M et al (2009) Effects of endophytic fungi on some drought tolerance mechanisms of tall fescue in a hydroponics. Russ J Plant Physiol 56(4):510–516

    Article  CAS  Google Scholar 

  • Blum A (1996) Crop responses to drought and the interpretation of adaptation. Plant Growth Regul 20:135–148

    Article  CAS  Google Scholar 

  • Boyer JS (1982) Plant productivity and environment. Science 218:443–448

    Article  CAS  PubMed  Google Scholar 

  • Bray EA, Bailey-Serres J, Weretilnyk E et al (2000) Responses to abiotic stresses. In: Gruissem W, Buchannan B, Jones R (eds) Biochemistry and molecular biology of plants. Am Soc Plant Physiol, Rockville, pp 1158–1249

    Google Scholar 

  • Brundrett MC (2004) Diversity and classification of mycorrhizal associations. Biol Rev 79:473–495

    Article  PubMed  Google Scholar 

  • Chaves MM, Maroco JP, Pereira JS et al (2003) Understanding plant responses to drought- from genes to the whole plant. Funct Plant Biol 30:239–264

    Article  CAS  Google Scholar 

  • Cheplick GP (2004) Recovery from drought stress in Lolium perenne (Poaceae): are fungal endophytes detrimental? Am J Bot 91:1960–1968

    Article  PubMed  Google Scholar 

  • Cheplick GP (2006) Costs of fungal endophyte infection in Lolium perenne genotypes from Eurasia and North Africa under extreme resource limitation. Environ Exp Bot 60:202–210

    Article  Google Scholar 

  • Cheplick GP, Perera A, Koulouris K et al (2000) Effect of drought on the growth of Lolium perenne genotypes with and without fungal endophytes. Funct Ecol 14:657–667

    Article  Google Scholar 

  • Clay K (1988) Fungal endophytes of grasses-a defensive mutualism between plants and fungi. Ecology 69:10–16

    Article  Google Scholar 

  • Cong GQ, Yin CL, He BL, Li L, Gao KX et al (2015) Effect of the endophytic fungus Chaetomium globosum ND35 on the growth and resistance to drought of winter wheat at the seedling stage under water stress. Acta Ecol Sin 35:6120–6128

    Google Scholar 

  • Davies FT, Potter JR, Linderman RG et al (1993) Drought resistance of mycorrhizal pepper plants independent of leaf P concentration response in gas exchange and water relations. Physiol Plant 87:45–53

    Article  CAS  Google Scholar 

  • De Battista JP, Bacon CW, Severson RF, Plattner RD, Bouton JH et al (1990) Indole acetic acid production by the fungal endophyte of tall fescue. Agron J 82:878e880

    Google Scholar 

  • Deckert RJ, Melville LH, Peterson L et al (2001) Structural features of a Lophodermium endophyte during the cryptic life-cycle phase in the foliage of Pinuss trobus. Mycol Res 105:991–997

    Article  Google Scholar 

  • Del Rio D, Steward AJ, Pellegrini N et al (2005) A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutr Metab Cardiovasc Dis 15:316–328

    Article  PubMed  Google Scholar 

  • Desclaux D, Roumet P (1996) Impact of drought stress on the phenology of two soybean (Glycine max L. Merril) cultivars. Field Crops Res 46:61–70

    Google Scholar 

  • Dhargalkar S, Bhat DJ (2009) Echinosphaeria pteridis sp. and its Vermiculariopsiella anamorph. Mycotaxon 108:115–122

    Article  Google Scholar 

  • Eerens JPJ, Lucas RJ, Easton S, White JGH et al (1998) Influence of the endophyte (Neotyphodium lolii) on morphology, physiology, and alkaloid synthesis of perennial ryegrass during high temperature and water stress. N Z J Agric Res 41(2):219–226. doi:10.1080/00288233.1998.9513305

    Article  Google Scholar 

  • Elmi AA, West CP (1995) Endophyte effects on tall fescue stomatal response, osmotic adjustment, and tiller survival. New Phytol 131:61–67

    Article  Google Scholar 

  • Fisher PJ (1996) Survival and spread of the endophyte Stagonospora pteridiicola in Pteridium aquilinum, other ferns and some flowering plants. New Phytol 132:119–122

    Article  Google Scholar 

  • Flexas J, Medrano H (2002) Drought-inhibition of photosynthesis in C3 plants: stomatal and non-stomatal limitations revisited. Ann Bot 89:183–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frohlich J, Hyde KD (1999) Biodiversity of palm fungi in the tropics: are global fungal diversity estimates realistic? Biodivers Conserv 8:97Z–1004

    Article  Google Scholar 

  • Garrett KA, Dendy SP, Frank EE, Rouse MN, Travers SE et al (2006) Climate change effects of plant disease: genomes to ecosystems. Annu Rev Phytopathol 44:489–509

    Article  CAS  PubMed  Google Scholar 

  • Geber MA, Dawson TE (1990) Genetic variation in and covariation between leaf gas exchange, morphology and development in Polygonum arenastrum, an annual plant. Oecologia 85:153–158

    Article  PubMed  Google Scholar 

  • Gechev TS, Van Breusegem F, Stone JM, Denev I, Laloi C et al (2006) Reactive oxygen species as signals that modulate plant stress responses and programmed cell death. BioEssays 28:1091–1101

    Article  CAS  PubMed  Google Scholar 

  • Ghannoum O, Conroy JP, Driscoll SP, Paul MJ, Foyer CH, Lawlor DW et al (2003) Non-stomatal limitations are responsible for drought-induced photosynthetic inhibition in four C4 grasses. New Phytol 159:835–844

    Article  CAS  Google Scholar 

  • Gill S, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochim 48:909–930

    Article  CAS  Google Scholar 

  • Grover A, Kapoor A, Laksmi OS, Agarwal S, Sahi C, Katiyar-Agarwal S, Agarwal M, Dubey H et al (2001) Understanding molecular alphabets of the plant abiotic stress responses. Curr Sci 80(2):206–216

    CAS  Google Scholar 

  • Hawksworth DL (1988) The variety of fungal-algal symbioses, their evolutionary significance, and the nature of lichens. Bot J Linn Soc 96:3–20

    Article  Google Scholar 

  • Hoffmann AA, Merilä J (1999) Heritable variation and evolution under favourable and unfavourable conditions. Trends Ecol Evol 14:96–101

    Article  CAS  PubMed  Google Scholar 

  • IPCC (2007) Climate change 2007: synthesis report. In: Pachauri RK, Reisinger A (eds) Contribution of working groups I, II and III to the fourth assessment report of the intergovernmental panel on climate change. IPCC, Geneva

    Google Scholar 

  • Jackson RB, Sperry JS, Dawson TE et al (2000) Root water uptake and transport: using physiological processes in global predictions. Trends Plant Sci 5:482–488

    Article  CAS  PubMed  Google Scholar 

  • Kane KH (2011) Effects of endophyte infection on drought stress tolerance of Lolium perenne accessions from the Mediterranean region. Environ Exp Bot 71(3):337–344

    Google Scholar 

  • Kesselmeier J, Staudt M (1999) Biogenic volatile organic compounds (VOC): an overview on emission, physiology and ecology. J Atmos Chem 33:23–88

    Article  CAS  Google Scholar 

  • Khan AL, Shinwari ZK, Kim Y, Waqas M, Hamayun M, Kamran M, Lee IJ et al (2012) Role of endophyte Chaetomium globosum lk4 in growth of Capsicum annuum by production of gibberellins and indole acetic acid. Pak J Bot 44:1601–1607

    Google Scholar 

  • Khan AL, Waqas M, Khan AR, Hussain J, Kang SM, Gilani SA, Hamayun M, Shin JH, Kamran M, Al-Harrasi A, Yun BW, Adnan M, Lee IJ et al (2013) Fungal endophyte Penicillium janthinellum LK5 improves growth of ABA-deficient tomato under salinity. World J Microbiol Biotechnol 29(11):2133–2144. doi:10.1007/s11274-013-1378-1

    Article  CAS  PubMed  Google Scholar 

  • Khan AL, Waqas M, Lee IJ et al (2014) Resilience of Penicillium resedanum LK6 and exogenous gibberellin in improving Capsicum annuum growth under abiotic stresses. J Plant Res 128(2):259–268. doi:10.1007/s10265-014-0688-1

    Article  PubMed  CAS  Google Scholar 

  • Kirkham MB (2005) Principles of soil and plant water relations. Elsevier Academic Press, Burlington

    Google Scholar 

  • Krings M, Taylor TN, Dotzler N et al (2012) Fungal endophytes as a driving force in land plant evolution: evidence from the fossil record. In: Southworth D (ed) Biocomplexity of plant-fungal interactions. Wiley, New York, pp 5–28

    Google Scholar 

  • Kwak JM, Nguyen V, Shroeder JI et al (2006) The role of active oxygen species in hormonal responses. Plant Physiol 141:323–329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewis GC, Clements RO (1986) A survey of ryegrass endophyte (Acremonium loliae) in the U.K. and its apparent ineffectuality on a seedling pest. J Agric Sci 107:633–638

    Article  Google Scholar 

  • Li WC, Zhou J, Guo SY, Guo LD et al (2007) Endophytic fungi associated with lichens in Baihua mountain of Beijing, China. Fungal Divers 25:69–80

    Google Scholar 

  • Lopez-Ráez JA, Charnikhova T, Gomez-Roldan V, Matusova R, Kohlen W, De Vos R et al (2008) Tomato strigolactones are derived from carotenoids and their biosynthesis is promoted by phosphate starvation. New Phytol 178:863–874

    Article  PubMed  CAS  Google Scholar 

  • Maherali H, Caruso CM, Sherrard ME, Latta RG et al (2010) Adaptive value and costs of physiological plasticity to soil moisture limitation in recombinant inbred lines of Avena barbata. Am Nat 175:211–224

    Article  PubMed  Google Scholar 

  • Malinowski DP, Belesky DP (2000) Adaptations of endophyte-infected cool-season grasses to environmental stresses: mechanisms of drought and mineral stress tolerance. Crop Sci 40:923–940

    Article  CAS  Google Scholar 

  • Malinowski DP, Belesky DP (2006) Ecological importance of Neotyphodium spp. grass endophytes in agroecosystems. Grassl Sci 52(1):1–14. doi:10.1111/j.1744-697X.2006. 00041.x

    Article  Google Scholar 

  • Malinowski DP, Zuo H, Belesky DP et al (2004) Evidence for copper binding by extracellular root exudates of tall fescue but not perennial ryegrass infected with Neotyphodium spp. endophytes. Plant Soil 267(1):1–12. doi:10.1007/s11104-005-2575-y

    Article  CAS  Google Scholar 

  • Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R et al (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ 33(4):453–467

    Article  CAS  PubMed  Google Scholar 

  • Morgan JM (1984) Osmoregulation and water stress in higher plants. Ann Rev Plant Physiol 35:299–319

    Article  Google Scholar 

  • Morse LJ, Day TA, Faeth SH et al (2002) Effect of Neotyphodium endophyte infection on growth and leaf gas exchange of Arizona fescue under contrasting water availability regimes. Environ Exp Bot 48:257–268

    Article  Google Scholar 

  • Nagabhyru P, Dinkins RD, Wood CL, Bacon CW, Schardl CL et al (2013) Tall fescue endophyte effects on tolerance to water-deficit stress. BMC Plant Biol 13:127

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Okcu G, Kaya DM, Atak M et al (2005) Effects of salt and drought stresses on germination and seedling growth of pea (Pisum sativum L.) Turk J Agric For 29:237–242

    Google Scholar 

  • Parry MA, Andralojc PJ, Khan S, Lea PJ, Keys AJ et al (2002) Rubisco activity: effects of drought stress. Ann Bot 89:833–839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peñuelas J, Munné-Bosch S (2005) Isoprenoids: an evolutionary pool for photoprotection. Trends Plant Sci 10:166–169

    Article  PubMed  CAS  Google Scholar 

  • Petrini O, Fisher PJ (1986) Fungal endophytes in Salicornia perennis. Trans Br Mycol Soc 87(4):647–651

    Article  Google Scholar 

  • Picone C (2003) Managing mycorrhizae for sustainable agriculture in the tropics. In: Vandermeer JH (ed) Tropical agroecosystems. CRC, Boca Raton, pp 95–132

    Google Scholar 

  • Powles SB (1984) Photoinhibition of photosynthesis induced by visible light. Annu Rev Plant Physiol 35:15

    Article  CAS  Google Scholar 

  • Pryor WA, Stanley JP (1975) Letter: a suggested mechanism for the production of malonaldehyde during the autoxidation of polyunsaturated fatty acids. Non-enzymatic production of prostaglandin endoperoxides during autoxidation. J Org Chem 40:3615–3617

    Article  CAS  PubMed  Google Scholar 

  • Purahong W, Hyde KD (2011) Effects of fungal endophytes on grass and non-grass litter decomposition rates. Fungal Divers 47:1–7

    Article  Google Scholar 

  • Rapparini F, Llusià J, Peñuelas J et al (2008) Effect of arbuscular mycorrhizal (AM) colonization on terpene emission and content of Artemisia annua. Plant Biol 10:108–122

    Article  CAS  PubMed  Google Scholar 

  • Redman RS, Dunigan DD, Rodriguez RJ (2001) Fungal symbiosis: from mutualism to parasitism, who controls the outcome, host or invader? New Phytol 151:705–716

    Article  Google Scholar 

  • Redman RS, Kim YO, Woodward CJDA, Greer C, Espino L, Doty S, Rodriguez RJ et al (2011) Increased fitness and adaptation of rice plants to cold, drought and salt stress via habitat adapted symbiosis: a strategy for mitigating impacts of climate change. PLoS One 6:E14823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Redman RS, Sheehan KB, Stout RG, Rodriguez RJ, Henson JM et al (2002) Thermotolerance generated by plant/fungal symbiosis. Science 298:1581

    Article  CAS  PubMed  Google Scholar 

  • Reid A, Greene SE (2012) How microbes can help feed the world. Report on an American Academy of Microbiology Colloquium. Washington, DC

    Google Scholar 

  • Ren A, Clay K (2008) Impact of a horizontally transmitted endophyte, Balansia henningsiana, on growth and drought tolerance of Panicum rigidulum. Int J Plant Sci 170:599e608

    Google Scholar 

  • Rodriguez RJ, Redman RS (1997) Fungal life-styles and ecosystem dynamics: biological aspects of plant pathogens, plant endophytes and saprophytes. In: Andrews JH, Tommerup L (eds) Advances in botanical research. Academic, London

    Google Scholar 

  • Rodriguez RJ, Redman RS, Henson JM et al (2004) The role of fungal symbioses in the adaptation of plants to high stress environments. Mitig Adapt Strateg Glob Chang 9(3):261–272

    Article  Google Scholar 

  • Rodriguez RJ, Henson J, Van Volkenburgh E, Hoy M, Wright L, Beckwith F et al (2008) Stress tolerance in plants via habitat-adapted symbiosis. ISME J 2:404–416

    Article  PubMed  Google Scholar 

  • Rodriguez RJ, White JF, Arnold AE, Redman RS et al (2009) Fungal endophytes: diversity and functional roles. New Phytol 182:314–330

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-Sánchez M, Aroca R, Muñoz Y, Armada E, Polón R, Ruiz-Lozano JM et al (2010) The arbuscular mycorrhizal symbiosis enhances the photosynthetic efficiency and the antioxidative response of rice plants subjected to drought stress. J Plant Physiol 167:862–869

    Article  PubMed  CAS  Google Scholar 

  • Sanchez-Marquez S, Bills GF, Herrero N, Zabalgogeazcoa I et al (2012) Nonsystemic fungal endophytes of grasses. Fungal Ecol 5:289–297

    Article  Google Scholar 

  • Sanders GJ, Arndt SK (2012) Osmotic adjustment under drought conditions. In: Aroca R (ed) Plant responses to drought stress. Springer, New York, pp 199–229

    Chapter  Google Scholar 

  • Schardl CL, Clay K (1997) Evolution of mutualistic endophytes from plant pathogens. In: Carroll, Tudzynski (eds) The mycota V: Part B. Springer, Berlin, pp 1–17

    Google Scholar 

  • Schardl CL, Leuchtmann A, Spiering MJ et al (2004a) Annu Rev Plant Biol 55:315–340

    Article  CAS  PubMed  Google Scholar 

  • Schardl CL, Leuchtmann A, Spiering MJ et al (2004b) Symbioses of grasses with seed borne fungal endophytes. Ann Rev Plant Biol 55:315–340

    Article  CAS  Google Scholar 

  • Scheibe R, Beck E (2011) Drought, desiccation, and oxidative stress. In: Lüttge U, Beck E, Bartels D (eds) Plant desiccation tolerance, Ecological studies, vol 215. Springer, Heidelberg, pp 209–232

    Chapter  Google Scholar 

  • Schenk PM, Carvalhais LC, Kazan K et al (2012) Unraveling plant–microbe interactions: can multi-species transcriptomics help? Trends Biotechnol 30(3):177–184

    Article  CAS  PubMed  Google Scholar 

  • Schulz B, Boyle C (2005) The endophytic continuum. Mycol Res 109:661–686

    Article  PubMed  Google Scholar 

  • Schulz B, Guske S, Dammann U, Boyle C et al (1998) Endophyte-host interactions. II Defining symbiosis of the endophyte-host interaction. Symbiosis 25:213–227

    Google Scholar 

  • Schulze ED (1986) Carbon dioxide and water vapor exchange in response to drought in the atmosphere and the soil. Ann Rev Plant Physiol 37:247–274

    Article  Google Scholar 

  • Sherameti I, Tripathi S, Varma A, Oelmuller R et al (2008) The root-colonizing endophyte Piriformospora indica confers drought tolerance in Arabidopsis by stimulating the expression of drought stress-related genes in leaves. Mol Plant-Microbe Interact 21:799–807. doi:10.1094/MPMI-21-6-0799

    Article  CAS  PubMed  Google Scholar 

  • Sherrard ME, Maherali H, Latta RG et al (2009) Water stress alters the genetic architecture of functional traits associated with drought adaptation in Avena barbata. Evolution 63:702–715

    Article  CAS  PubMed  Google Scholar 

  • Singh LP, Gill SS, Tuteja N (2011) Unraveling the role of fungal symbionts in plant abiotic stress tolerance. Plant Signal Behav 6:175–191

    Google Scholar 

  • Smirnoff N (1993) The role of active oxygen in the response of plants to water deficit and desiccation. New Phytol 125:27–58

    Article  CAS  Google Scholar 

  • Sun CA, Johnson J, Cai DG, Sherameti I, Oelmuller R, Lou BG et al (2010) Piriformosapora indica confers drought tolerance in Chinese cabbage leaves by stimulating antioxidant enzymes, the expression of drought-related genes and the plastid-localized CAS protein. J Plant Physiol 167:1009–1017. doi:10.1016/j.jplph.2010.02.013

    Article  CAS  PubMed  Google Scholar 

  • Swarthout D, Harper E, Judd S, Gonthier D, Shyne R, Stowe T, Bultman T et al (2009) Measures of leaf-level water-use efficiency in drought stressed endophyte infected and non-infected tall fescue grasses. Environ Exp Bot 66(1):88–93

    Article  Google Scholar 

  • Taiz L, Zeiger E (2010) Plant physiology, 5th edn. Sinauer Associates, Sunderland

    Google Scholar 

  • Vadassery J, Ranf S, Drzewiecki C, Mithöfer A, Mazars C, Scheel D, Lee J, Oelmüller R (2009) A cell wall extract from the endophytic fungus Piriformospora indica promotes growth of Arabidopsis seedlings and induces intracellular calcium elevation in roots. Plant J 59:193–206

    Google Scholar 

  • Vassey TL, Sharkey TD (1989) Mild water stress leads to reduced extractable sucrose-phosphate synthase activity in leaves of Phaseolus vulgaris L. Plant Physiol 89:1066–1070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vickers CE, Gershenzon J, Lerdau MT, Loreto F et al (2009) A unified mechanism of action for volatile isoprenoids in plant abiotic stress. Nat Chem Ecol 5:283–291

    Article  CAS  Google Scholar 

  • Waller F, Achatz B, Baltruschat H, Fodor J, Becker K, Fischer M, Heier T, Huckelhoven R, Neumann C, Wettstein D, Franken P, Kogel KH et al (2005) The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proc Natl Acad Sci U S A 102:13386–13391. doi:10.1073/pnas.0504423102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walter MH, Strack D (2011) Carotenoids and their cleavage products: biosynthesis and functions. Nat Prod Rep 28:663–692

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Frei M (2011) Stressed food—the impact of abiotic environmental stresses on crop quality. Agric Ecosyst Environ 141:271–286

    Article  Google Scholar 

  • Waqas M, Khan AL, Kamran M, Hamayun M, Kang SM, Kim YH, Lee IJ et al (2012) Endophytic fungi produce gibberellins and indole acetic acid and promotes host-plant growth during stress. Molecules 17:10754–10773. doi:10.3390/molecules170910754

    Article  CAS  PubMed  Google Scholar 

  • Xu P, Chen F, Mannas JP, Feldman T, Sumner LW et al (2008) Virus infection improves drought tolerance. New Phytol 180:911–921

    Article  PubMed  Google Scholar 

  • Xu ZZ, Zhou GS, Shimizu H (2009) Effects of soil drought with nocturnal warming on leaf stomatal traits and mesophyll cell ultrastructure of a perennial grass. Crop Sci 49:1843–1851

    Article  Google Scholar 

  • Yue B, Xue W, Xiong L, Yu X, Luo L, Cui K, Jin D et al (2006) Genetic basis of drought resistance at reproductive stage in rice: separation of drought tolerance from drought avoidance. Genetics 172(2):1213–1228

    Article  PubMed  PubMed Central  Google Scholar 

  • Zabalgogeazcoa I (2008) Fungal endophytes and their interaction with plant pathogens. Span J Agric Res 6:138–146

    Article  Google Scholar 

  • Zaurov DE, Bonos S, Murphy JA, Richardson M, Belanger FC et al (2001) Endophyte infection can contribute to aluminium tolerance in fine fescues. Crop Sci 41:1981–1984

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khondoker M. G. Dastogeer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Dastogeer, K.M.G., Wylie, S.J. (2017). Plant–Fungi Association: Role of Fungal Endophytes in Improving Plant Tolerance to Water Stress. In: Singh, D., Singh, H., Prabha, R. (eds) Plant-Microbe Interactions in Agro-Ecological Perspectives. Springer, Singapore. https://doi.org/10.1007/978-981-10-5813-4_8

Download citation

Publish with us

Policies and ethics