Plant-Microbe Interactions: Current Perspectives of Mechanisms Behind Symbiotic and Pathogenic Associations

  • Muhammad Sohail Akram
  • Muhammad ShahidEmail author
  • Muhammad Tahir
  • Faisal Mehmood
  • Muhammad Ijaz


The phyllosphere and rhizosphere of plants have been a reservoir of microorganisms of both symbiotic and pathogenic nature. The interplay between plants and associated microbes involves complex and dynamic mechanisms, many of which are unexplored. The unraveling of these mechanisms is a big challenge for plant biologists. The consequence of such interactions may be beneficial, detrimental, or neutral for the hosts. There are many known mechanisms through which microorganisms especially bacteria support plant growth, i.e., fixation of atmospheric nitrogen, solubilization of inorganic phosphate, modulated phytohormones synthesis, production of stress-responsive enzymes like 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase, and biocontrol of many plant diseases. Both above- and underground plant organs are frequently exposed to a plethora of microorganisms, including viruses, bacteria, oomycetes, fungi, and eukaryotic protozoans. Phytopathogens defend their habitat and infect plants by a variety of compounds (toxins) that are broad spectrum in their activity. In response, plants initiate defensive mechanisms that resist pathogen penetration and subsequent infection. Thus, various events of molecular crosstalk take place between plants, and both friendly and hostile microbes trigger a series of highly dynamic plant cellular responses. Such mechanisms are very crucial for pathogen recognition and induction of adequate defense signal transduction cascades in the plant. More research insights are required to unravel the molecular basis behind these mechanisms. Also, to support the plant life, many complex mechanisms initiated after the association of symbiotic or pathogenic microorganisms need to be explored.


Mechanisms Plant-associated microbes Symbiosis Pathogenesis Defense responses 



We acknowledge Khadija Rafiq for critical reading and an anonymous reviewer for his/her suggestions to improve this chapter.


  1. Abhilash P, Powell JR, Singh HB, Singh BK (2012) Plant–microbe interactions: novel applications for exploitation in multipurpose remediation technologies. Trends Biotechnol 30:416–420PubMedCrossRefGoogle Scholar
  2. Abramovitch RB, Kim YJ, Chen S, Dickman MB, Martin GB (2003) Pseudomonas type III effector AvrPtoB induces plant disease susceptibility by inhibition of host programmed cell death. EMBO J 22:60–69PubMedPubMedCentralCrossRefGoogle Scholar
  3. Akram MS, Tariq M, Shahid M, Azeem M, Javed MT, Saleem S, Riaz S (2016) Deciphering Staphylococcus sciuri SAT-17 mediated anti-oxidative defense mechanisms and growth modulations in salt stressed maize (Zea mays L.) Front Microbiol 7:867PubMedPubMedCentralCrossRefGoogle Scholar
  4. Alfano JR, Collmer A (1996) Bacterial pathogens in plants: life up against the wall. Plant Cell 8:1683PubMedPubMedCentralCrossRefGoogle Scholar
  5. Ali A, Hameed S, Imran A, Iqbal M, Iqbal J, Oresnik IJ (2016) Functional characterization of a soybean growth stimulator Bradyrhizobium sp. strain SR-6 showing acylhomoserine lactone production. FEMS Microbiol Ecol 92(9)Google Scholar
  6. Arcand MM, Schneider KD (2006) Plant-and microbial-based mechanisms to improve the agronomic effectiveness of phosphate rock: a review. An Acad Bras Cienc 78:791–807PubMedCrossRefGoogle Scholar
  7. Armstrong MR et al (2005) An ancestral oomycete locus contains late blight avirulence gene Avr3a, encoding a protein that is recognized in the host cytoplasm. Proc Natl Acad Sci U S A 102:7766–7771PubMedPubMedCentralCrossRefGoogle Scholar
  8. Arshad M, Frankenberger WT (1991) Microbial production of plant hormones. Plant Soil 133:1–8CrossRefGoogle Scholar
  9. Ausubel FM (2005) Are innate immune signaling pathways in plants and animals conserved? Nat Immunol 6:973–979PubMedCrossRefGoogle Scholar
  10. Babu-Khan S, Yeo TC, Martin WL, Duron MR, Rogers RD, Goldstein AH (1995) Cloning of a mineral phosphate-solubilizing gene from Pseudomonas cepacia. Appl Environ Microbiol 61:972–978PubMedPubMedCentralGoogle Scholar
  11. Baca BE, Elmerich C (2007) Microbial production of plant hormones, in: associative and endophytic nitrogen-fixing bacteria and cyanobacterial associations. Springer, BerlinCrossRefGoogle Scholar
  12. Badri DV, Weir TL, van der Lelie D, Vivanco JM (2009) Rhizosphere chemical dialogues: plant–microbe interactions. Curr Opin Biotechnol 20:642–650PubMedCrossRefGoogle Scholar
  13. Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266PubMedCrossRefGoogle Scholar
  14. Bakker PAHM, Pieterse CMJ, Van Loon LC (2007) Induced systemic resistance by fluorescent Pseudomonas spp. Phytopathology 97:239–243PubMedCrossRefGoogle Scholar
  15. Ballvora A et al (2002) The R1 gene for potato resistance to late blight (Phytophthora infestans) belongs to the leucine zipper/NBS/LRR class of plant resistance genes. Plant J 30:361–371PubMedCrossRefGoogle Scholar
  16. Barazani OZ, Friedman J (1999) Is IAA the major root growth factor secreted from plant-growth-mediating bacteria? J Chem Ecol 25:2397–2406CrossRefGoogle Scholar
  17. Bent AF et al (1994) RPS2 of Arabidopsis thaliana: a leucine-rich repeat class of plant disease resistance genes. Sci-New York Then Washington 2:1856–1856CrossRefGoogle Scholar
  18. Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28:1327–1350PubMedCrossRefGoogle Scholar
  19. Bishop PE, Premakumar R (1992) Alternative nitrogen fixation systems. In: Stacey G, Burris RH, Evans HJ (eds) Biological nitrogen fixation. Chapman & Hall, New York, pp 736–762Google Scholar
  20. Bittner-Eddy PD, Crute IR, Holub EB, Beynon JL (2000) RPP13 is a simple locus in Arabidopsis thaliana for alleles that specify downy mildew resistance to different avirulence determinants in Peronospora parasitica. Plant J 21:177–188PubMedCrossRefGoogle Scholar
  21. Botella MA et al (1998) Three genes of the Arabidopsis RPP1 complex resistance locus recognize distinct Peronospora parasitica avirulence determinants. Plant Cell 10:1847–1860PubMedPubMedCentralCrossRefGoogle Scholar
  22. Brueggeman R et al (2002) The barley stem rust-resistance gene Rpg1 is a novel disease-resistance gene with homology to receptor kinases. Proc Natl Acad Sci 99:9328–9333PubMedPubMedCentralCrossRefGoogle Scholar
  23. Champouret N et al (2009) Phytophthora infestans isolates lacking class I ipiO variants are virulent on Rpi-blb1 potato. Mol Plant-Microbe Interact 22:1535–1545PubMedCrossRefGoogle Scholar
  24. Chandler D, Davidson G, Grant WP, Greaves J, Tatchell GM (2008) Microbial biopesticides for integrated crop management: an assessment of environmental and regulatory sustainability. Trends Food Sci Technol 19:275–283CrossRefGoogle Scholar
  25. Chen YP, Rekha PD, Arun AB, Shen FT, Lai WA, Young CC (2006) Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Appl Soil Ecol 34:33–41CrossRefGoogle Scholar
  26. Chisholm ST, Coaker G, Day B, Staskawicz BJ (2006) Host-microbe interactions: shaping the evolution of the plant immune response. Cell 124:803–814PubMedCrossRefGoogle Scholar
  27. Collins N, Drake J, Ayliffe M, Sun Q, Ellis J, Hulbert S, Pryor T (1999) Molecular characterization of the maize Rp1-D rust resistance haplotype and its mutants. Plant Cell 11:1365–1376PubMedPubMedCentralCrossRefGoogle Scholar
  28. Danhorn T, Hentzer M, Givskov M, Parsek MR, Fuqua C (2004) Phosphorus limitation enhances biofilm formation of the plant pathogen Agrobacterium tumefaciens through the PhoR-PhoB regulatory system. J Bacteriol 186:4492–4501PubMedPubMedCentralCrossRefGoogle Scholar
  29. Davies PJ (2010) The plant hormones: their nature, occurrence, and functions. In: Davies PJ (ed) Plant hormones physiology, biochemistry and molecular biology. Kluwer Academic Publishers, Dordrecht, pp 1–15Google Scholar
  30. de Jonge R et al (2010) Conserved fungal LysM effector Ecp6 prevents chitin-triggered immunity in plants. Science 329:953–955PubMedCrossRefGoogle Scholar
  31. Dean DR, Jacobson MR (1992) Biochemical genetics of nitrogenase. In: Stacey G, Burris RH, Evans DJ (eds) Biological nitrogen fixation. Chapman & Hall, New York, pp 763–834Google Scholar
  32. Deng S, Summers ML, Khan ML, McDermott TR (1998) Cloning and characterization of a Rhizobium meliloti nonspecific acid phosphatase. Arch Microbiol 170:18–26PubMedCrossRefGoogle Scholar
  33. Deng S, Elkins JG, Da LH, Botero LM, McDermott TR (2001) Cloning and characterization of a second acid phosphatase from Sinorhizobium meliloti strain 104A14. Arch Microbiol 176:255–263PubMedCrossRefGoogle Scholar
  34. Desbrosses G, Contesto C, Varoquaux F, Galland M, Touraine B (2009) PGPR-Arabidopsis interactions is a useful system to study signaling pathways involved in plant developmental control. Plant Signal Behav 4:321–323PubMedPubMedCentralCrossRefGoogle Scholar
  35. Deslandes L, Rivas S (2012) Catch me if you can: bacterial effectors and plant targets. Trends Plant Sci 17:644–655PubMedCrossRefGoogle Scholar
  36. Deslandes L et al (2003) Physical interaction between RRS1-R, a protein conferring resistance to bacterial wilt, and PopP2, a type III effector targeted to the plant nucleus. Proc Natl Acad Sci 100:8024–8029PubMedPubMedCentralCrossRefGoogle Scholar
  37. Dilworth MJ (1966) Acetylene reduction by nitrogen-fixing preparations from Clostridium pasteurianum. Biochim Biophys Acta 127:285–294PubMedCrossRefGoogle Scholar
  38. Dixon R, Kahn D (2004) Genetic regulation of biological nitrogen fixation. Nat Rev Microbiol 2:621–631PubMedCrossRefGoogle Scholar
  39. Dixon MS, Hatzixanthis K, Jones DA, Harrison K, Jones JD (1998) The tomato Cf-5 disease resistance gene and six homologs show pronounced allelic variation in leucine-rich repeat copy number. Plant Cell 10:1915–1925PubMedPubMedCentralCrossRefGoogle Scholar
  40. Dodds PN, Rathjen JP (2010) Plant immunity: towards an integrated view of plant–pathogen interactions. Nat Rev Genet 11:539–548PubMedCrossRefGoogle Scholar
  41. Dodds PN et al (2006) Direct protein interaction underlies gene-for-gene specificity and coevolution of the flax resistance genes and flax rust avirulence genes. Proc Natl Acad Sci 103:8888–8893PubMedPubMedCentralCrossRefGoogle Scholar
  42. Dong S, Qutob D, Tedman-Jones J, Kuflu K, Wang Y, Tyler BM, Gijzen M (2009) The Phytophthora sojae avirulence locus Avr3c encodes a multi-copy RXLR effector with sequence polymorphisms among pathogen strains. PLoS One 4:e5556PubMedPubMedCentralCrossRefGoogle Scholar
  43. Duan J, Müller KM, Charles TC, Vesely S, Glick BR (2009) 1-Aminocyclopropane-1-carboxylate (ACC) deaminase genes in rhizobia from southern Saskatchewan. Microb Ecol 57:423–436PubMedCrossRefGoogle Scholar
  44. Dubey RK, Tripathi V, Abhilash P (2015) Book review: principles of plant-microbe interactions: microbes for sustainable agriculture. Front Plant Sci 6Google Scholar
  45. Egamberdiyeva D (2005) Plant-growth-promoting rhizobacteria isolated from a Calcisol in a semi-arid region of Uzbekistan: biochemical characterization and effectiveness. J Plant Nutr Soil Sci 168:94–99CrossRefGoogle Scholar
  46. Eggenberger A, Hill J (1997) Analysis of resistance-breaking determinants of soybean mosaic virus. Phytopathology 87:S27Google Scholar
  47. Einsle O, Tezcan FA, Andrade SLA, Schmid B, Yoshida M, Howard JB, Rees DC (2002) Nitrogenase MoFe-protein at 1.16 a resolution: a central ligand in the FeMo-cofactor. Science 297:1696–1700PubMedCrossRefGoogle Scholar
  48. Falkowski PG (1997) Evolution of the nitrogen cycle and its influence on the biological sequestration of CO2 in the ocean. Nature 387:272–275CrossRefGoogle Scholar
  49. Fani R, Gallo R, Liò P (2000) Molecular evolution of nitrogen fixation: the evolutionary history of the nifD, nifK, nifE, and nifN genes. J Mol Evol 51:1–11PubMedCrossRefGoogle Scholar
  50. Fawke S, Doumane M, Schornack S (2015) Oomycete interactions with plants: infection strategies and resistance principles. Microbiol Mol Biol Rev 79:63–65CrossRefGoogle Scholar
  51. Fiore MF, Neilan BA, Copp JN, Rodrigues JLM, Tsai SM, Lee H, Trevors JT (2005) Characterization of nitrogen-fixing cyanobacteria in the Brazilian Amazon floodplain. Water Res 39:5017–5026CrossRefGoogle Scholar
  52. Franco-Correa M, Quintana A, Duque C, Suarez C, Rodríguez MX, Barea JM (2010) Evaluation of actinomycete strains for key traits related with plant growth promotion and mycorrhiza helping activities. Appl Soil Ecol 45:209–217CrossRefGoogle Scholar
  53. Gallois J-L et al (2010) Single amino acid changes in the turnip mosaic virus viral genome-linked protein (VPg) confer virulence towards Arabidopsis thaliana mutants knocked out for eukaryotic initiation factors eIF (iso) 4E and eIF (iso) 4G. J Gen Virol 91:288–293PubMedCrossRefGoogle Scholar
  54. Gao Z, Johansen E, Eyers S, Thomas CL, Noel Ellis T, Maule AJ (2004) The potyvirus recessive resistance gene, sbm1, identifies a novel role for translation initiation factor eIF4E in cell to cell trafficking. Plant J 40:376–385PubMedCrossRefGoogle Scholar
  55. Garrido-Ramirez E, Sudarshana M, Lucas W, Gilbertson R (2000) Bean dwarf mosaic virus BV1 protein is a determinant of the hypersensitive response and avirulence in Phaseolus vulgaris. Mol Plant-Microbe Interact 13:1184–1194PubMedCrossRefGoogle Scholar
  56. Gassmann W, Hinsch ME, Staskawicz BJ (1999) The Arabidopsis RPS4 bacterial resistance gene is a member of the TIR NBS LRR family of disease resistance genes. Plant J 20:265–277PubMedCrossRefGoogle Scholar
  57. Ghosh S, Penterman JN, Little RD, Chavez R, Glick BR (2003) Three newly isolated plant growth-promoting bacilli facilitate the seedling growth of canola, Brassica campestris. Plant Physiol Biochem 41:277–281CrossRefGoogle Scholar
  58. Gimenez-Ibanez S, Hann DR, Ntoukakis V, Petutschnig E, Lipka V, Rathjen JP (2009) AvrPtoB targets the LysM receptor kinase CERK1 to promote bacterial virulence on plants. Curr Biol 19:423–429PubMedCrossRefGoogle Scholar
  59. Glazebrook J (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43:205–227PubMedCrossRefGoogle Scholar
  60. Göhre V et al (2008) Plant pattern-recognition receptor FLS2 is directed for degradation by the bacterial ubiquitin ligase AvrPtoB. Curr Biol 18:1824–1832PubMedCrossRefGoogle Scholar
  61. Goldstein AH (1994) Involvement of the quinoprotein glucose dehydrogenase in the solubilization of exogenous mineral phosphates by gram-negative bacteria. In: Torriani-Gorini A, Yagil E, Silver S (eds) Phosphate in microorganisms: cellular and molecular biology. ASM Press, Washington, DC, pp 197–203Google Scholar
  62. Goldstein AH, Liu ST (1987) Molecular cloning and regulation of a mineral phosphate solubilizing gene from Erwinia herbicola. Nat Biotechnol 5:72–74CrossRefGoogle Scholar
  63. Golovan S, Wang G, Zhang J, Forsberg CW (1999) Characterization and overproduction of the Escherichia coli appA encoded bifunctional enzyme that exhibits both phytase and acid phosphatase activities. Can J Microbiol 46:59–71CrossRefGoogle Scholar
  64. Govindasamy V, Senthilkumar M, Gaikwad K, Annapurna K (2008) Isolation and characterization of ACC deaminase gene from two plant growth-promoting rhizobacteria. Curr Microbiol 57:312–317PubMedCrossRefGoogle Scholar
  65. Gulati A, Sharma N, Vyas P, Sood S, Rahi P, Pathania V, Prasad R (2010) Organic acid production and plant growth promotion as a function of phosphate solubilization by Acinetobacter rhizosphaerae strain BIHB 723 isolated from the cold deserts of the trans-Himalayas. Arch Microbiol 192:975–983PubMedCrossRefGoogle Scholar
  66. Gururani MA, Venkatesh J, Upadhyaya CP, Nookaraju A, Pandey SK, Park SW (2012) Plant disease resistance genes: current status and future directions. Physiol Mol Plant Pathol 78:51–65CrossRefGoogle Scholar
  67. Halbleib CM, Ludden PW (2000) Regulation of biological nitrogen fixation. J Nutr 130:1081–1084PubMedGoogle Scholar
  68. Hameed S, Yasmin S, Malik KA, Zafar Y, Hafeez FY (2004) Rhizobium, Bradyrhizobium and Agrobacterium strains isolated from cultivated legumes. Biol Fertil Soils 39:179–185CrossRefGoogle Scholar
  69. Hanif K, Hameed S, Imran A, Naqqash T, Shahid M, Van Elsas JD (2015) Isolation and characterization of a β-propeller gene containing phosphobacterium Bacillus subtilis strain KPS-11 for growth promotion of potato (Solanum tuberosum L.) Front Microbiol 6:1–12. doi: 10.3389/fmicb.2015.00583 CrossRefGoogle Scholar
  70. He P et al (2004) Activation of a COI1-dependent pathway in Arabidopsis by Pseudomonas syringae type III effectors and coronatine. Plant J 37:589–602PubMedCrossRefGoogle Scholar
  71. Hébrard E et al (2010) Direct interaction between the Rice yellow mottle virus (RYMV) VPg and the central domain of the rice eIF (iso) 4G1 factor correlates with rice susceptibility and RYMV virulence. Mol Plant-Microbe Interact 23:1506–1513PubMedCrossRefGoogle Scholar
  72. Hilda R, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–359CrossRefGoogle Scholar
  73. Hill S (1992) Physiology of nitrogen fixation in free-living heterotrophs, vol 87. Chapman & Hall, New YorkGoogle Scholar
  74. Hinsch M, Staskawicz B (1996) Identification of a new Arabidopsis disease resistance locus, RPS4, and cloning of the corresponding avirulence gene, avrRps4, from Pseudomonas syringae pv. pisi. Mol Plant-Microbe Interact 9:55–61PubMedCrossRefGoogle Scholar
  75. Horvath H, Rostoks N, Brueggeman R, Steffenson B, von Wettstein D, Kleinhofs A (2003) Genetically engineered stem rust resistance in barley using the Rpg1 gene. Proc Natl Acad Sci 100:364–369PubMedCrossRefGoogle Scholar
  76. Hubert DA, Tornero P, Belkhadir Y, Krishna P, Takahashi A, Shirasu K, Dangl JL (2003) Cytosolic HSP90 associates with and modulates the Arabidopsis RPM1 disease resistance protein. EMBO J 22:5679–5689PubMedPubMedCentralCrossRefGoogle Scholar
  77. Hungria M, Vargas MAT (2000) Environmental factors affecting N2 fixation in grain legumes in the tropics, with an emphasis on Brazil. Field Crops Res 65:151–164CrossRefGoogle Scholar
  78. Idriss EE et al (2002) Extracellular phytase activity of Bacillus amyloliquefaciens FZB45 contributes to its plant-growth-promoting effect. Microbiology 148:2097–2109PubMedCrossRefGoogle Scholar
  79. Illmer P, Schinner F (1995) Solubilization of inorganic calcium phosphates – solubilization mechanisms. Soil Biol Biochem 27:257–263CrossRefGoogle Scholar
  80. Jaeger CH III, Lindow SE, Miller W, Clark E, Firestone MK (1999) Mapping of sugar and amino acid availability in soil around roots with bacterial sensors of sucrose and tryptophan. Appl Environ Microbiol 65:2685–2690PubMedPubMedCentralGoogle Scholar
  81. Jenner CE, Sanchez F, Nettleship S, Foster G, Ponz F, Walsh J (2000) The cylindrical inclusion gene of turnip mosaic virus encodes a pathogenic determinant to the Brassica resistance gene TuRB01. Mol Plant-Microbe Interact 13:1102–1108PubMedCrossRefGoogle Scholar
  82. Jenner CE, Wang X, Tomimura K, Ohshima K, Ponz F, Walsh JA (2003) The dual role of the potyvirus P3 protein of turnip mosaic virus as a symptom and avirulence determinant in brassicas. Mol Plant-Microbe Interact 16:777–784PubMedCrossRefGoogle Scholar
  83. Jia Y, McAdams SA, Bryan GT, Hershey HP, Valent B (2000) Direct interaction of resistance gene and avirulence gene products confers rice blast resistance. EMBO J 19:4004–4014PubMedPubMedCentralCrossRefGoogle Scholar
  84. Jiang RH, Weide R, van de Vondervoort PJ, Govers F (2006) Amplification generates modular diversity at an avirulence locus in the pathogen Phytophthora. Genome Res 16:827–840PubMedPubMedCentralCrossRefGoogle Scholar
  85. Jones JD, Dangl JL (2006) The plant immune system. Nature 444:323–329PubMedCrossRefGoogle Scholar
  86. Jones DA, Thomas CM, Hammond-Kosack KE, Balint-Kurti PJ, Jones JD (1994) Isolation of the tomato Cf-9 gene for resistance to Cladosporium fulvum by transposon tagging. Sci-New York Then Washington 3:789–789CrossRefGoogle Scholar
  87. Kamilova F, Kravchenko LV, Shaposhnikov AI, Azarova T, Makarova N, Lugtenberg B (2006) Organic acids, sugars, and L-tryptophane in exudates of vegetables growing on stonewool and their effects on activities of rhizosphere bacteria. Mol Plant-Microbe Interact 19:250–256PubMedCrossRefGoogle Scholar
  88. Kang BC, Yeam I, Frantz JD, Murphy JF, Jahn MM (2005) The pvr1 locus in Capsicum encodes a translation initiation factor eIF4E that interacts with tobacco etch virus VPg. Plant J 42:392–405PubMedCrossRefGoogle Scholar
  89. Kapoor R, Sharma D, Bhatnagar A (2008) Arbuscular mycorrhizae in micropropagation systems and their potential applications. Sci Hortic 116:227–239CrossRefGoogle Scholar
  90. Keller KE, Johansen E, Martin RR, Hampton R (1998) Potyvirus genome-linked protein (VPg) determines pea seed-borne mosaic virus pathotype-specific virulence in Pisum sativum. Mol Plant-Microbe Interact 11:124–130PubMedCrossRefGoogle Scholar
  91. Kerovuo J, Lauraeus M, Nurminen P, Kalkkinen N, Apajalahti J (1998) Isolation, characterization, molecular gene cloning, and sequencing of a novel phytase from Bacillus subtilis. Appl Environ Microbiol 64:2079–2085PubMedPubMedCentralGoogle Scholar
  92. Khalid A, Arshad M, Zahir ZA (2004) Screening plant growth-promoting rhizobacteria for improving growth and yield of wheat. J Appl Microbiol 96:473–480PubMedCrossRefGoogle Scholar
  93. Kim KY, McDonald GA, Jordan D (1997) Solubilization of hydroxypatite by Enterobacter agglomerans and cloned Escherichia coli in culture medium. Biol Fertil Soils 24:347–352CrossRefGoogle Scholar
  94. Kim KY, Jordan D, Krishnan HB (1998a) Expression of genes from Rahnella aquatilis that are necessary for mineral phosphate solubilization in Escherichia coli. FEMS Microbiol Lett 159:121–127PubMedCrossRefGoogle Scholar
  95. Kim YO, Lee JK, Kim HK, Yu JH, Oh TK (1998b) Cloning of the thermostable phytase gene (phy) from Bacillus sp. DS11 and its overexpression in Escherichia coli. FEMS Microbiol Lett 162:185–191PubMedCrossRefGoogle Scholar
  96. Kremer RJ, Kennedy AC (1996) Rhizobacteria as biocontrol agents of weeds. Weed Technol 10:601–609Google Scholar
  97. Lawrence GJ, Finnegan EJ, Ayliffe MA, Ellis JG (1995) The L6 gene for flax rust resistance is related to the Arabidopsis bacterial resistance gene RPS2 and the tobacco viral resistance gene N. Plant Cell 7:1195–1206PubMedPubMedCentralCrossRefGoogle Scholar
  98. Leveau JHJ, Lindow SE (2005) Utilization of the plant hormone indole-3-acetic acid for growth by Pseudomonas putida strain 1290. Appl Environ Microbiol 71:2365–2371PubMedPubMedCentralCrossRefGoogle Scholar
  99. Li M, Osaki M, Rao IM, Tadano T (1997) Secretion of phytase from roots of several plant species under phosphorus-deficient conditions. Plant Soil 195:161–169CrossRefGoogle Scholar
  100. Li Y, Huang F, Lu Y, Shi Y, Zhang M, Fan J, Wang W (2013) Mechanism of plant–microbe interaction and its utilization in disease-resistance breeding for modern agriculture. Physiol Mol Plant Pathol 83:51–58CrossRefGoogle Scholar
  101. Liu ST et al (1992) Cloning of an Erwinia herbicola gene necessary for gluconic acid production and enhanced mineral phosphate solubilization in Escherichia coli HB101: nucleotide sequence and probable involvement in biosynthesis of the coenzyme pyrroloquinoline quinone. J Bacteriol 174:5814–5819PubMedPubMedCentralCrossRefGoogle Scholar
  102. Lokossou AA et al (2009) Exploiting knowledge of R/Avr genes to rapidly clone a new LZ-NBS-LRR family of late blight resistance genes from potato linkage group IV. Mol Plant-Microbe Interact 22:630–641PubMedCrossRefGoogle Scholar
  103. Lugtenberg BJJ, Chin-A-Woeng TFC, Bloemberg GV (2002) Microbe–plant interactions: principles and mechanisms. Antonie Leeuwenhoek 81:373–383PubMedCrossRefGoogle Scholar
  104. Lung S, Leung A, Kuang R, Wang Y, Leung P, Lim B (2008) Phytase activity in tobacco (Nicoana tobacum) root exudates is exhibited by purple acid phosphatase. Phytochemistry 69:365–373PubMedCrossRefGoogle Scholar
  105. Macaskie LE, Yong P, Doyle TC, Roig MG, Diaz M, Manzano T (1997) Bioremediation of uranium-bearing wastewater: biochemical and chemical factors affecting bioprocess application. Biotechnol Bioeng 53:100–109PubMedCrossRefGoogle Scholar
  106. Mao Y, Tyler BM (1996) The Phytophthora sojae genome contains tandem repeat sequences which vary from strain to strain. Fungal Genet Biol 20:43–51PubMedCrossRefGoogle Scholar
  107. Maria CT, Lombardi G, Berlutti F, Schippa S, Gian MR (1995) Cloning and characterization of the NapA acid phosphatase/phosphotransferase of Morganella morganii: identification of a new family of bacterial acid-phosphatase-encoding genes. Microbiology 141:147–154CrossRefGoogle Scholar
  108. McDowell JM, Dhandaydham M, Long TA, Aarts MG, Goff S, Holub EB, Dangl JL (1998) Intragenic recombination and diversifying selection contribute to the evolution of downy mildew resistance at the RPP8 locus of Arabidopsis. Plant Cell 10:1861–1874PubMedPubMedCentralCrossRefGoogle Scholar
  109. Mesarich CH et al (2016) A conserved proline residue in Dothideomycete Avr4 effector proteins is required to trigger a Cf4 dependent hypersensitive response. Mol Plant Pathol 17:84–95PubMedCrossRefGoogle Scholar
  110. Mestre P, Brigneti G, Baulcombe DC (2000) An Ry-mediated resistance response in potato requires the intact active site of the NIa proteinase from potato virus Y. Plant J 23:653–661PubMedCrossRefGoogle Scholar
  111. Meulenberg JJM, Sellink E, Riegman NH, Postma PW (1992) Nucleotide sequence and structure of the Klebsiella pneumoniae pqq operon. Mol Gen Genet 232:284–294PubMedGoogle Scholar
  112. Meyers BC, Shen KA, Rohani P, Gaut BS, Michelmore RW (1998) Receptor-like genes in the major resistance locus of lettuce are subject to divergent selection. Plant Cell 10:1833–1846PubMedPubMedCentralCrossRefGoogle Scholar
  113. Michelmore R, Wong J (2008) Classical and molecular genetics of Bremia lactucae, cause of lettuce downy mildew. Eur J Plant Pathol 122:19–30CrossRefGoogle Scholar
  114. Minsavage G, Dahlbeck D, Whalen M, Kearney B, Bonas U, Staskawicz B, Stall R (1990) Gene-for-gene relationships specifying disease resistance in Xanthomonas campestris pv. vesicatoria—pepper interactions. Mol Plant-Microbe Interact 3:41–47Google Scholar
  115. Moury B et al (2004) Mutations in potato virus Y genome-linked protein determine virulence toward recessive resistances in Capsicum annuum and Lycopersicon hirsutum. Mol Plant-Microbe Interact 17:322–329PubMedCrossRefGoogle Scholar
  116. Mullen MD (2005) Phosphorus in soils: biological interactions. In: Hillel D (ed) Encyclopedia of soils in the environment. Elsevier Ltd., Oxford, pp 210–215CrossRefGoogle Scholar
  117. Murphy DV, Recous S, Stockdale EA, Fillery IRP, Jensen LS, Hatch DJ, Goulding KWT (2003) Gross nitrogen fluxes in soil: theory, measurement and application of< sup> 15 N pool dilution techniques. Adv Agron 79:69–118Google Scholar
  118. Mysore KS, Ryu CM (2004) Non-host resistance: how much do we know? Trends Plant Sci 9:97–104PubMedCrossRefGoogle Scholar
  119. Nahas E (1996) Factors determining rock phosphate solubilization by microorganisms isolated from soil. World J Microbiol Biotechnol 12:567–572PubMedCrossRefGoogle Scholar
  120. Nicaise V et al (2003) The eukaryotic translation initiation factor 4E controls lettuce susceptibility to the potyvirus lettuce mosaic virus. Plant Physiol 132:1272–1282PubMedPubMedCentralCrossRefGoogle Scholar
  121. Nürnberger T, Brunner F, Kemmerling B, Piater L (2004) Innate immunity in plants and animals: striking similarities and obvious differences. Immunol Rev 198:249–266PubMedCrossRefGoogle Scholar
  122. Ori N et al (1997) The I2C family from the wilt disease resistance locus I2 belongs to the nucleotide binding, leucine-rich repeat superfamily of plant resistance genes. Plant Cell 9:521–532PubMedPubMedCentralCrossRefGoogle Scholar
  123. Osorio NW, Habte M (2015) Effect of a phosphate-solubilizing fungus and an arbuscular mycorrhizal fungus on leucaena seedlings in tropical soils with contrasting phosphate sorption capacity. Plant Soil 389:375–385CrossRefGoogle Scholar
  124. Parker JE et al (1997) The Arabidopsis downy mildew resistance gene RPP5 shares similarity to the toll and interleukin-1 receptors with N and L6. Plant Cell 9:879–894PubMedPubMedCentralCrossRefGoogle Scholar
  125. Perez E, Sulbaran M, Ball MM, Yarzabal LA (2007) Isolation and characterization of mineral phosphate-solubilizing bacteria naturally colonizing a limonitic crust in the south-eastern Venezuelan region. Soil Biol Biochem 39:2905–2914CrossRefGoogle Scholar
  126. Postgate JR (1982) The fundamentals of nitrogen fixation. Cambridge University Press, CambridgeGoogle Scholar
  127. Qutob D et al (2009) Copy number variation and transcriptional polymorphisms of Phytophthora sojae RXLR effector genes Avr1a and Avr3a. PLoS One 4:e5066PubMedPubMedCentralCrossRefGoogle Scholar
  128. Rajendran G, Patel MH, Joshi SJ (2012) Isolation and characterization of nodule-associated Exiguobacterium sp. from the root nodules of fenugreek (Trigonella foenum-graecum) and their possible role in plant growth promotion. Int J Microbiol 2012:256–261CrossRefGoogle Scholar
  129. Reed MLE, Glick BR (2005) Growth of canola (Brassica napus) in the presence of plant growth-promoting bacteria and either copper or polycyclic aromatic hydrocarbons. Can J Microbiol 51:1061–1069PubMedCrossRefGoogle Scholar
  130. Rehmany AP et al (2005) Differential recognition of highly divergent downy mildew avirulence gene alleles by RPP1 resistance genes from two Arabidopsis lines. Plant Cell 17:1839–1850PubMedPubMedCentralCrossRefGoogle Scholar
  131. Reilly TJ, Baron GS, Nano FE, Kuhlenschmidt MS (1996) Characterization and sequencing of a respiratory burst-inhibiting acid phosphatase from Francisella tularensis. J Biol Chem 271:10973–10983PubMedCrossRefGoogle Scholar
  132. Richardson AE (1994) Soil microorganisms and phosphorous availability. In: Pankhurst CE, Doube BM, Gupta VVSR (eds) Soil biota: Management in sustainable farming systems. CSIRO, East Melbourne, pp 50–62Google Scholar
  133. Richardson AE, Hadobas PA, Hayes JE (2001a) Extracellular secretion of Aspergillus phytase from Arabidopsis roots enables plants to obtain phosphorus from phytate. Plant J 25:641–649PubMedCrossRefGoogle Scholar
  134. Richardson AE, Hadobas PA, Hayes JE, O'Hara CP, Simpson RJ (2001b) Utilization of phosphorus by pasture plants supplied with myo-inositol hexaphosphate is enhanced by the presence of soil micro-organisms. Plant Soil 229:47–56CrossRefGoogle Scholar
  135. Rinaldi A, Comandini O, Kuyper TW (2008) Ectomycorrhizal fungal diversity: seperating the wheat from the chaff fungal divers. Fungal Divers 33:1–45Google Scholar
  136. Rodriguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339PubMedCrossRefGoogle Scholar
  137. Rodriguez E, Han Y, Lei XG (1999) Cloning, sequencing, and expression of an Escherichia coli acid phosphatase/phytase gene (appA2) isolated from pig colon. Biochem Biophys Res Commun 257:117–123PubMedCrossRefGoogle Scholar
  138. Rodriguez H, Gonzalez T, Selman G (2000) Expression of a mineral phosphate solubilizing gene from Erwinia herbicola in two rhizobacterial strains. J Biotechnol 84:155–161CrossRefGoogle Scholar
  139. Rodriguez H, Gonzalez T, Goire I, Bashan Y (2004) Gluconic acid production and phosphate solubilization by the plant growth-promoting bacterium Azospirillum spp. Naturwissenschaften 91:552–555PubMedCrossRefGoogle Scholar
  140. Rooney HC, van't Klooster JW, van der Hoorn RA, Joosten MH, Jones JD, de Wit PJ (2005) Cladosporium Avr2 inhibits tomato Rcr3 protease required for Cf-2-dependent disease resistance. Science 308:1783–1786PubMedCrossRefGoogle Scholar
  141. Rossolini GM, Schippa S, Riccio ML, Berlutti F, Macaskie LE, Thaller MC (1998) Bacterial nonspecific acid phosphohydrolases: physiology, evolution and use as tools in microbial biotechnology. Cell Mol Life Sci 54:833–850PubMedCrossRefGoogle Scholar
  142. Rovira AD (1991) Rhizosphere research-85 years of progress and frustration. In: Kleister DL, Cregan PB (eds) The rhizosphere and plant growth. Kluwer Academic Publishers, Amsterdam, pp 3–13CrossRefGoogle Scholar
  143. Ryu RJ, Patten CL (2008) Aromatic amino acid-dependent expression of indole-3-pyruvate decarboxylase is regulated by TyrR in Enterobacter cloacae UW5. J Bacteriol 190:7200–7208PubMedPubMedCentralCrossRefGoogle Scholar
  144. Saharan BS, Nehra V (2011) Plant growth promoting rhizobacteria: a critical review. Life Sci Med Res 21:1–30Google Scholar
  145. Saleem M, Moe LA (2014) Multitrophic microbial interactions for eco-and agro-biotechnological processes: theory and practice. Trends Biotechnol 32:529–537PubMedCrossRefGoogle Scholar
  146. Saleem M, Arshad M, Hussain S, Bhatti AS (2007) Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. J Ind Microbiol Biotechnol 34:635–648PubMedCrossRefGoogle Scholar
  147. Senthil-Kumar M, Mysore KS (2013) Non-host resistance against bacterial pathogens: retrospectives and prospects. Annu Rev Phytopathol 51:407–427PubMedCrossRefGoogle Scholar
  148. Seo PJ, Park CM (2009) Auxin homeostasis during lateral root development under drought condition. Plant Signal Behav 4:1002–1004PubMedPubMedCentralCrossRefGoogle Scholar
  149. Shahid M, Hameed S, Imran A, Ali S, van Elsas JD (2012) Root colonization and growth promotion of sunflower (Helianthus annuus L.) by phosphate solubilizing Enterobacter sp. Fs-11. World J Microbiol Biotechnol 28:2749–2758. doi: 10.1007/s11274-012-1086-2 PubMedCrossRefGoogle Scholar
  150. Shahid M, Hameed S, Tariq M, Zafar M, Ali A, Ahmad N (2015) Characterization of mineral phosphate-solubilizing bacteria for enhanced sunflower growth and yield-attributing traits. Ann Microbiol 65:1525–1536. doi: 10.1007/s13213-014-0991-z CrossRefGoogle Scholar
  151. Shang Y et al (2006) RAR1, a central player in plant immunity, is targeted by Pseudomonas syringae effector AvrB. Proc Natl Acad Sci 103:19200–19205PubMedPubMedCentralCrossRefGoogle Scholar
  152. Shoda M (2000) Bacterial control of plant diseases. J Biosci Bioeng 89:515–521PubMedCrossRefGoogle Scholar
  153. Siddiqui Z (2006) PGPR: prospective biocontrol agents of plant pathogens. In: Siddiqui Z (ed) PGPR: biocontrol and biofertilization. Springer, Dordrecht, pp 111–142CrossRefGoogle Scholar
  154. Simons G et al (1998) Dissection of the Fusarium I2 gene cluster in tomato reveals six homologs and one active gene copy. Plant Cell 10:1055–1068PubMedPubMedCentralCrossRefGoogle Scholar
  155. Somers E, Vanderleyden J, Srinivasan M (2004) Rhizosphere bacterial signalling: a love parade beneath our feet. Crit Rev Microbiol 30:205–240PubMedCrossRefGoogle Scholar
  156. Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev 31:425–448PubMedCrossRefGoogle Scholar
  157. Stergiopoulos I, de Wit PJ (2009) Fungal effector proteins. Annu Rev Phytopathol 47:233–263PubMedCrossRefGoogle Scholar
  158. Stevenson FJ, Cole MA (1999) Cycles of soil: carbon, nitrogen, phosphorus, sulfur, micronutrients. Wiley, ChichesterGoogle Scholar
  159. Streeter TC, Bol R, Bardgett RD (2000) Amino acids as a nitrogen source in temperate upland grasslands: the use of dual labelled (13C, 15N) glycine to test for direct uptake by dominant grasses. Rapid Commun Mass Spectrom 14:1351–1355PubMedCrossRefGoogle Scholar
  160. Strop P, Takahara PM, Chiu HJ, Angove HC, Burgess BK, Rees DC (2001) Crystal structure of the all-ferrous [4Fe-4S] 0 form of the nitrogenase iron protein from Azotobacter vinelandii. Biochemistry 40:651–656PubMedCrossRefGoogle Scholar
  161. Swiderski MR, Innes RW (2001) The Arabidopsis PBS1 resistance gene encodes a member of a novel protein kinase subfamily. Plant J 26:101–112PubMedCrossRefGoogle Scholar
  162. Sy A et al (2001) Methylotrophic methylobacterium bacteria nodulate and fix nitrogen in symbiosis with legumes. J Bacteriol 183:214–220PubMedPubMedCentralCrossRefGoogle Scholar
  163. Takahashi H et al (2001) Mapping the virus and host genes involved in the resistance response in cucumber mosaic virus-infected Arabidopsis thaliana. Plant Cell Physiol 42:340–347PubMedCrossRefGoogle Scholar
  164. Tao Y et al (2003) Quantitative nature of Arabidopsis responses during compatible and incompatible interactions with the bacterial pathogen Pseudomonas syringae. Plant Cell 15:317–330PubMedPubMedCentralCrossRefGoogle Scholar
  165. Tariq M, Hameed S, Yasmeen T, Ali A (2012) Non-rhizobial bacteria for improved nodulation and grain yield of mung bean [Vigna radiata (L.) Wilczek]. Afr J Biotechnol 11:15012–15019Google Scholar
  166. Teixeira DA, Alfenas AC, Mafia RG, Ferreira EM, Siqueira L, Maffia LA, Mounteer AH (2007) Rhizobacterial promotion of eucalypt rooting and growth. Braz J Microbiol 38:118–123CrossRefGoogle Scholar
  167. Thaller MC, Berlutti F, Schippa S, Lombardi G, Rossolini GM (1994) Characterization and sequence of PhoC, the principal phosphate-irrepressible acid phosphatase of Morganella morganii. Microbiology 140:1341–1350PubMedCrossRefGoogle Scholar
  168. Thaller MC, Berlutti F, Schippa S, Iori P, Passariello C, Rossolini GM (1995) Heterogeneous patterns of acid phosphatases containing low-molecular-mass polypeptides in members of the family Enterobacteriaceae. Int J Syst Bacteriol 45:255–261CrossRefGoogle Scholar
  169. Thilmony R, Underwood W, He SY (2006) Genome wide transcriptional analysis of the Arabidopsis thaliana interaction with the plant pathogen Pseudomonas syringae pv. tomato DC3000 and the human pathogen Escherichia coli O157: H7. Plant J 46:34–53PubMedCrossRefGoogle Scholar
  170. Thomas CM, Jones DA, Parniske M, Harrison K, Balint-Kurti PJ, Hatzixanthis K, Jones J (1997) Characterization of the tomato Cf-4 gene for resistance to Cladosporium fulvum identifies sequences that determine recognitional specificity in Cf-4 and Cf-9. Plant Cell 9:2209–2224PubMedPubMedCentralCrossRefGoogle Scholar
  171. Thordal-Christensen H (2003) Fresh insights into processes of non-host resistance. Curr Opin Plant Biol 6:351–357PubMedCrossRefGoogle Scholar
  172. Tien TM, Gaskins MH, Hubbell DH (1979) Plant growth substances produced by Azospirillum brazilense and their effect on the growth of pearl millet. Appl Environ Microbiol 37:1016–1024PubMedPubMedCentralGoogle Scholar
  173. Tilak K et al (2005) Diversity of plant growth and soil health supporting bacteria. Curr Sci 89:136–150Google Scholar
  174. Triplett EW, Roberts GP, Ludden PW, Handelsman J (1989) What’s new in nitrogen fixation. ASM News 55:15–21Google Scholar
  175. Trivedi P, Sa T (2008) Pseudomonas corrugata (NRRL B-30409) mutants increased phosphate solubilization, organic acid production, and plant growth at lower temperatures. Curr Microbiol 56:140–144PubMedCrossRefGoogle Scholar
  176. Truman W, Zabala MT, Grant M (2006) Type III effectors orchestrate a complex interplay between transcriptional networks to modify basal defence responses during pathogenesis and resistance. Plant J 46:14–33PubMedCrossRefGoogle Scholar
  177. Tye A, Siu F, Leung T, Lim B (2002) Molecular cloning and the biochemical characterization of two novel phytases from B. subtilis 168 and B. licheniformis. Appl Microbiol Biotechnol 59:190–197PubMedCrossRefGoogle Scholar
  178. Van Der Biezen EA, Freddie CT, Kahn K, Jones JD (2002) Arabidopsis RPP4 is a member of the RPP5 multigene family of TIR-NB-LRR genes and confers downy mildew resistance through multiple signalling components. Plant J 29:439–451PubMedCrossRefGoogle Scholar
  179. van Esse HP et al (2008) The Cladosporium fulvum virulence protein Avr2 inhibits host proteases required for basal defense. Plant Cell 20:1948–1963PubMedPubMedCentralCrossRefGoogle Scholar
  180. van Rhijn P, Vanderleyden J (1995) The Rhizobium-plant symbiosis. Microbiol Rev 59:124–142PubMedPubMedCentralGoogle Scholar
  181. van West P, de Jong AJ, Judelson HS, Emons AMC, Govers F (1998) TheipiO gene of Phytophthora infestans is highly expressed in invading hyphae during infection. Fungal Genet Biol 23:126–138PubMedCrossRefGoogle Scholar
  182. Vassilev N, Vassileva M, Nikolaeva I (2006) Simultaneous P-solubilizing and biocontrol activity of microorganisms: potentials and future trends. Appl Microbiol Biotechnol 71:137–144PubMedCrossRefGoogle Scholar
  183. Venieraki A et al (2011) Characterization of nitrogen-fixing bacteria isolated from field-grown barley, oat, and wheat. J Microbiol 49:525–534PubMedCrossRefGoogle Scholar
  184. Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586CrossRefGoogle Scholar
  185. Vleeshouwers VG et al (2008) Effector genomics accelerates discovery and functional profiling of potato disease resistance and Phytophthora infestans avirulence genes. PLoS One 3:e2875PubMedPubMedCentralCrossRefGoogle Scholar
  186. Vossen EA et al (2005) The Rpi-blb2 gene from Solanum bulbocastanum is an Mi-1 gene homolog conferring broad spectrum late blight resistance in potato. Plant J 44:208–222PubMedCrossRefGoogle Scholar
  187. Weller DM (1988) Biological control of soil borne plant pathogens in the rhizosphere with bacteria. Annu Rev Phytopathol 26:379–407CrossRefGoogle Scholar
  188. Weller DM, Raaijmakers JM, Gardener BBMS, Thomashow LS (2002) Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annu Rev Phytopathol 40:309–348PubMedCrossRefGoogle Scholar
  189. Whalen MC, Innes RW, Bent AF, Staskawicz BJ (1991) Identification of Pseudomonas syringae pathogens of Arabidopsis and a bacterial locus determining avirulence on both Arabidopsis and soybean. Plant Cell 3:49–59PubMedPubMedCentralCrossRefGoogle Scholar
  190. Whitelaw MA (1999) Growth promotion of plants inoculated with phosphate-solubilizing fungi. Adv Agron 69:99–151CrossRefGoogle Scholar
  191. Wittmann S, Chatel H, Fortin MG, Laliberté J-F (1997) Interaction of the viral protein genome linked of turnip mosaic potyvirus with the translational eukaryotic initiation factor (iso) 4E ofArabidopsis thalianaUsing the yeast two-hybrid system. Virology 234:84–92PubMedCrossRefGoogle Scholar
  192. Xiang T et al (2008) Pseudomonas syringae effector AvrPto blocks innate immunity by targeting receptor kinases. Curr Biol 18:74–80PubMedCrossRefGoogle Scholar
  193. Xu CW et al (2012) Changes in non-symbiotic nitrogen-fixing bacteria inhabiting rhizosphere soils of an invasive plant Ageratina adenophora. Appl Soil Ecol 54:32–38CrossRefGoogle Scholar
  194. Yasmeen T, Hameed S, Tariq M, Iqbal J (2012) Vigna radiata root associated mycorrhizae and their helping bacteria for improving crop productivity. Pak J Bot 44:87–94Google Scholar
  195. Yoshii M, Nishikiori M, Tomita K, Yoshioka N, Kozuka R, Naito S, Ishikawa M (2004) The Arabidopsis cucumovirus multiplication 1 and 2 loci encode translation initiation factors 4E and 4G. J Virol 78:6102–6111PubMedPubMedCentralCrossRefGoogle Scholar
  196. Yoshimura S et al (1998) Expression of Xa1, a bacterial blight-resistance gene in rice, is induced by bacterial inoculation. Proc Natl Acad Sci 95:1663–1668PubMedPubMedCentralCrossRefGoogle Scholar
  197. Young JPW (1992) Phylogenetic classification of nitrogen-fixing organisms. In: Stacey G, Burris RH, Evans HJ (eds) Biological nitrogen fixation. Chapman & Hall, New York, pp 43–86Google Scholar
  198. Zeng W, Melotto M, He SY (2010) Plant stomata: a checkpoint of host immunity and pathogen virulence. Curr Opin Biotechnol 21:599–603PubMedPubMedCentralCrossRefGoogle Scholar
  199. Zhang X, Shen A, Wang Q, Chen Y (2012) Identification and nitrogen fixation effects of symbiotic Frankia isolated from Casuarina spp. in Zhejiang, China. Afr J Biotechnol 11:4022–4029CrossRefGoogle Scholar
  200. Zhou F et al (2001) Cell-autonomous expression of barley Mla1 confers race-specific resistance to the powdery mildew fungus via a Rar1-independent signaling pathway. Plant Cell 13:337–350PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • Muhammad Sohail Akram
    • 1
  • Muhammad Shahid
    • 2
    Email author
  • Muhammad Tahir
    • 3
  • Faisal Mehmood
    • 4
  • Muhammad Ijaz
    • 5
  1. 1.Department of BotanyGovernment College UniversityFaisalabadPakistan
  2. 2.Department of Bioinformatics and BiotechnologyGovernment College UniversityFaisalabadPakistan
  3. 3.Department of Environmental SciencesCOMSATS Institute of Information TechnologyIslamabadPakistan
  4. 4.Department of Environmental Sciences and EngineeringGovernment College UniversityFaisalabadPakistan
  5. 5.College of AgricultureBahauddin Zakariya UniversityLayyahPakistan

Personalised recommendations