Microbial Community Composition and Functions Through Metagenomics

  • Vivek Kumar
  • Anjali Singh
  • Madhu Bala Tyagi
  • Ashok KumarEmail author


Metagenomic approaches have provided a better understanding of microbial diversity and function across the terrestrial biome. Initial studies on soil metagenomics involved construction of libraries and sequencing of cloned genes to know the product encoded, but now a days direct sequence-based information plays an important role in functional profiling of environmental DNA. The rich information obtained from soil metagenome provides new insight into the taxonomic and functional diversity of soil microorganism. Some of the techniques of molecular biology research such as clone-based gene sequence analysis, molecular fingerprinting, next-generation sequencing, and many others have proved very useful in analyzing unknown environmental DNA sample and opened a flux gate of exciting research finding. Additionally, development of new environmental DNA isolation method as well as improved cloning systems has accelerated the pace of research. More importantly, metagenomic tools have resulted in discovery of several novel genes coding for protease, lipase, amylase, alcohol oxidoreductase, antibiotic resistance, etc., from ecological niches including meadows, crop fields, and others. With metagenomic approaches, new dimension in the characterization of complex microbial community has been attained. Surely, metagenomic approaches can be used to build a predictive understanding of how microbial diversity and function vary across terrestrial biome.


Microbial community Metagenomics Function Plant-microbe interaction 



VK is grateful to the Indian Council of Agricultural Research (ICAR), New Delhi, for the award of Senior Research Fellowship in a research project. Research in the area of PGPR is partly supported by a research grant sanctioned to AK by the Indian Council of Agricultural Research, Government of India, New Delhi (NBAIM/ AMAAS/2014-17/PF/4).


  1. Abubucker S, Segata N, Goll J (2012) Metabolic reconstruction for metagenomic data and its application to the human microbiome. PLoS Comput Biol 8:e1002358. doi: 10.1371/journal.pcbi.1002358 PubMedPubMedCentralCrossRefGoogle Scholar
  2. Altschul SF, Gish W, Miller W et al (1990) Basic local alignment search tool. J Mol Biol 215:403–410PubMedCrossRefGoogle Scholar
  3. Alvarez TM, Goldbeck R, CRd S et al (2013) Development and biotechnological application of a novel endoxylanase family GH10 identified from sugarcane soil metagenome. PLoS One 8:e70014. doi: 10.1371/journal.pone.0070014 PubMedPubMedCentralCrossRefGoogle Scholar
  4. Alvarez TM, Liberato MV, Cairo JPLF et al (2015) A novel member of GH16 family derived from sugarcane soil metagenome. Appl Biochem Biotechnol 177:304–317PubMedCrossRefGoogle Scholar
  5. Amann RI, Binder BJ, Olsen RJ et al (1990a) Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol 56:1919–1925PubMedPubMedCentralGoogle Scholar
  6. Amann RI, Krumholz L, Stahl DA (1990b) Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. J Bacteriol 172:762–770PubMedPubMedCentralCrossRefGoogle Scholar
  7. Araujo JF, de Castro AP, Costa MMC et al (2012) Characterization of soil bacterial assemblies in Brazilian Savanna-like vegetation reveals Acidobacteria dominance. Microb Ecol 64:760–770PubMedCrossRefGoogle Scholar
  8. Arwidsson Z, Elgh-Dalgrenb K, von Kronhelm T et al (2010) Remediation of heavy metal contaminated soil washing residues with amino polycarboxylic acids. J Hazard Mater 173:697–704PubMedCrossRefGoogle Scholar
  9. Aydemir U, Candolfi C, Ormeci A et al (2014) High temperature thermoelectric properties of the type-I clathrate Ba8 Nix Ge46-x-y-Οy square(y). J Phys Condens Matter 26:485801. doi: 10.1088/0953-8984/26/48/485801
  10. Bates ST, Berg-Lyons D, Caporaso JG et al (2011) Examining the global distribution of dominant archaeal populations in soil. ISME J 5:908–917PubMedCrossRefGoogle Scholar
  11. Belnap J (2002) Nitrogen fixation in biological soil crusts from southeast Utah, USA. Biol Fertil Soils 35:128–135CrossRefGoogle Scholar
  12. Bengtson P, Sterngren AE, Rousk J (2012) Archaeal abundance across a pH gradient in an arable soil and its relationship to bacterial and fungal growth rates. Appl Environ Microbiol 78:5906–5911PubMedPubMedCentralCrossRefGoogle Scholar
  13. Berdy J (2012) Thoughts and facts about antibiotics: where we are now and where we are heading. J Antibiot (Tokyo) 65:385–395CrossRefGoogle Scholar
  14. Berlemont R, Jacquin O, Delsaute M et al (2013) Novel cold-adapted esterase MHlip from an Antarctic soil metagenome. Biology 2:177–188PubMedPubMedCentralCrossRefGoogle Scholar
  15. Bijtenhoorn P, Mayerhofer H, Muller-Dieckmann J et al (2011) A novel metagenomic short-chain dehydrogenase/reductase attenuates Pseudomonas aeruginosa biofilm formation and virulence on Caenorhabditis elegans. PLoS One 6:e26278. doi: 10.1371/journal.pone.0026278 PubMedPubMedCentralCrossRefGoogle Scholar
  16. Bomberg M, Timonen S (2009) Effect of tree species and mycorrhizal colonization on the archaeal population of boreal forest rhizospheres. Appl Environ Microbiol 75:308–315PubMedCrossRefGoogle Scholar
  17. Buchfink B, Xie C, Huson DH (2015) Fast and sensitive protein alignment using DIAMOND. Nat Methods 12:59–60PubMedCrossRefGoogle Scholar
  18. Buee M, Reich M, Murat C et al (2009) 454 pyrosequencing analyses of forest soils reveal an unexpectedly high fungal diversity. New Phytol 184:449–456PubMedCrossRefGoogle Scholar
  19. Burgmann H, Widmer F, Sigler WV et al (2004) New molecular screening tools for analysis of free-living diazotrophs in soil. Appl Environ Microbiol 70:240–247PubMedPubMedCentralCrossRefGoogle Scholar
  20. Cardinale M (2014) Scanning a microhabitat: plant-microbe interactions revealed by confocal laser microscopy. Front Microbiol 5:94. doi: 10.3389/fmicb.2014.00094 PubMedPubMedCentralCrossRefGoogle Scholar
  21. Chang FY, Brady SF (2013) Discovery of indolotryptoline antiproliferative agents by homology-guided metagenomic screening. Proc Natl Acad Sci U S A 110:2478–2483PubMedPubMedCentralCrossRefGoogle Scholar
  22. Chemerys A, Pelletier E, Cruaud C et al (2014) Characterization of novel polycyclic aromatic hydrocarbon dioxygenases from the bacterial metagenomic DNA of a contaminated soil. Appl Environ Microbiol 80:6591–6600PubMedPubMedCentralCrossRefGoogle Scholar
  23. Cheng J, Charles TC (2016) Novel polyhydroxyalkanoate copolymers produced in Pseudomonas putida by metagenomic polyhydroxyalkanoate synthases. Appl Microbiol Biotechnol 100:7611–7627PubMedCrossRefGoogle Scholar
  24. Choudhury SP, Schmid M, Hartmann A et al (2009) Diversity of 16S-rRNA and nifH genes derived from rhizosphere soil and roots of an endemic drought tolerant grass, Lasiurus sindicus. Eur J Soil Biol 45:114–122CrossRefGoogle Scholar
  25. Cretoiu MS, Kielak AM, Al-Soud WA et al (2012) Mining of unexplored habitats for novel chitinases-chiA as a helper gene proxy in metagenomics. Appl Microbiol Biotechnol 94:1347–1358PubMedPubMedCentralCrossRefGoogle Scholar
  26. Cretoiu MS, Berini F, Kielak AM et al (2015) A novel salt-tolerant chitobiosidase discovered by genetic screening of a metagenomic library derived from chitin-amended agricultural soil. Appl Microbiol Biotechnol 99:8199–8215PubMedPubMedCentralCrossRefGoogle Scholar
  27. Countinho PM, Stam M, Blanc E et al (2003) Why are there so many carbohydrate-active enzyme-related genes in plants? Trends Plant Sci 8:563–565CrossRefGoogle Scholar
  28. Daniel R (2005) The metagenomics of soil. Nat Rev Microbiol 3:470–478PubMedCrossRefGoogle Scholar
  29. de Castro AP, Sartori da Silva MRS, Quirino BF et al (2016) Microbial diversity in Cerrado biome (Neotropical Savanna) soils. PLoS One 11:e0148785. doi: 10.1371/journal.pone.0148785 PubMedCrossRefGoogle Scholar
  30. Delmont TO, Malandain C, Prestat E et al (2011) Metagenomic mining for microbiologists. ISME J 5:1837–1843PubMedPubMedCentralCrossRefGoogle Scholar
  31. DeSantis TZ, Brodie EL, Moberg JP et al (2007) High-density universal 16S rRNA microarray analysis reveals broader diversity than typical clone library when sampling the environment. Microb Ecol 53:371–383PubMedCrossRefGoogle Scholar
  32. Dong L, Xu J, Feng G et al (2016) Soil bacterial and fungal community dynamics in relation to Panax notoginseng death rate in a continuous cropping system. Sci Rep 6:31802. doi: 10.1038/srep31802 PubMedPubMedCentralCrossRefGoogle Scholar
  33. Dorokhova MF, Kosheleva NE, Terskaya EV (2015) Algae and cyanobacteria in soils of Moscow. AJPS 6:2461–2471CrossRefGoogle Scholar
  34. Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461PubMedCrossRefGoogle Scholar
  35. Fierer N, Leff JW, Adams BJ et al (2012) Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. Proc Natl Acad Sci U S A 109:21390–21395PubMedPubMedCentralCrossRefGoogle Scholar
  36. Forsberg KJ, Patel S, Wencewicz TA et al (2015) The tetracycline destructases: a novel family of tetracycline-inactivating enzymes. Chem Biol 22:888–897PubMedPubMedCentralCrossRefGoogle Scholar
  37. Forsberg KJ, Patel S, Witt E et al (2016) Identification of genes conferring tolerance to lignocellulose-derived inhibitors by functional selections in soil metagenomes. Appl Environ Microbiol 82:528–537PubMedCentralCrossRefGoogle Scholar
  38. Foulon J, Zappelini C, Durand A et al (2016) Impact of poplar-based phytomanagement on soil properties and microbial communities in a metalcontaminated site. FEMS Microbiol Ecol 92:fiw163. doi: 10.1093/femsec/fiw163 PubMedCrossRefGoogle Scholar
  39. Franche C, Lindstrom K, Elmerich C (2009) Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants. Plant Soil 321:35–59CrossRefGoogle Scholar
  40. Francis CA, Roberts KJ, Beman JM et al (2005) Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proc Natl Acad Sci U S A 102:14683–14688PubMedPubMedCentralCrossRefGoogle Scholar
  41. Gentry TJ, Wickham GS, Schadt CW et al (2006) Microarray applications in microbial ecology research. Microb Ecol 52:159–175PubMedCrossRefGoogle Scholar
  42. Ghebremedhin B, Layer F, Konig W et al (2008) Genetic classification and distinguishing of Staphylococcus species based on different partial gap, 16S rRNA, hsp60, rpoB, sodA, and tuf gene sequences. J Clin Microbiol 46:1019–1025PubMedPubMedCentralCrossRefGoogle Scholar
  43. Gillespie DE, Brady SF, Bettermann AD et al (2002) Isolation of antibiotics turbomycin A and B from a metagenomic library of soil microbial DNA. Appl Environ Microbiol 68:4301–4306PubMedPubMedCentralCrossRefGoogle Scholar
  44. Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–114CrossRefGoogle Scholar
  45. Goodrich JK, Rienzi SCD, Poole AC et al (2014) Conducting a microbiome study. Cell 158:250–262PubMedPubMedCentralCrossRefGoogle Scholar
  46. Hacquard S, Garrido-Oter R, Gonzalez A et al (2015) Microbiota and host nutrition across plant and animal kingdoms. Cell Host Microbe 17:603–616PubMedCrossRefGoogle Scholar
  47. Handelsman J (2004) Metagenomics: application of genomics to uncultured microorganisms. Microbiol Mol Biol Rev 68:669–685PubMedPubMedCentralCrossRefGoogle Scholar
  48. Handelsman J, Rondon MR, Brady SF et al (1998) Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem Biol 5(R):245–249CrossRefGoogle Scholar
  49. He Z, Gentry TJ, Schadt CW et al (2007) GeoChip: a comprehensive microarray for investigating biogeochemical, ecological and environmental processes. ISME J 1:67–77PubMedCrossRefGoogle Scholar
  50. Henriques AC, De Marco P (2015) Methanesulfonate (MSA) catabolic genes from mrine and estuarine bacteria. PLoS One 10:e0125735. doi: 10.1371/journal.pone.0125735 PubMedPubMedCentralCrossRefGoogle Scholar
  51. Hjort K, Presti I, Elvang A et al (2014) Bacterial chitinase with phytopathogen control capacity from suppressive soil revealed by functional metagenomics. Appl Microbiol Biotechnol 98:2819–2828PubMedCrossRefGoogle Scholar
  52. Hu XP, Heath C, Taylor MP et al (2012) A novel, extremely alkaliphilic and cold-active esterase from Antarctic desert soil. Extremophiles 16:79–86PubMedCrossRefGoogle Scholar
  53. Hyatt D, LoCascio PF, Hauser LJ et al (2012) Gene and translation initiation site prediction in metagenomic sequences. Bioinformatics 28:2223–2230PubMedCrossRefGoogle Scholar
  54. Islam MS, Haque MS, Islam MM et al (2012) Tools to kill: genome of one of the most destructive plant pathogenic fungi Macrophomina phaseolina. BMC Genomics 13:493. doi: 10.1186/1471-2164-13-493 PubMedPubMedCentralCrossRefGoogle Scholar
  55. Jansson JK, Neufeld JD, Moran MA et al (2012) Omics for understanding microbial functional dynamics. Environ Microbiol 14:1–3PubMedCrossRefGoogle Scholar
  56. Jiang L, Lin M, Zhang Y et al (2013) Identification and characterization of a novel trehalose synthase gene derived from saline-alkali soil metagenomes. PLoS One 8:e77437. doi: 10.1371/journal.pone.0077437 PubMedPubMedCentralCrossRefGoogle Scholar
  57. Jimenez DJ, Chaves-Moreno D, van Elsas JD (2015) Unveiling the metabolic potential of two soil-derived microbial consortia selected on wheat straw. Sci Rep 5:13845. doi: 10.1038/13845 PubMedPubMedCentralCrossRefGoogle Scholar
  58. Johnston ER, Rodriguez RL, Luo C et al (2016) Metagenomics reveals pervasive bacterial populations and reduced community diversity across the Alaska tundra ecosystem. Front Microbiol 7:579. doi: 10.3389/fmicb.2016.00579 PubMedPubMedCentralCrossRefGoogle Scholar
  59. Jung J, Yeom J, Kim J et al (2011) Change in gene abundance in the nitrogen biogeochemical cycle with temperature and nitrogen addition in Antarctic soils. Res Microbiol 162:1018–1026PubMedCrossRefGoogle Scholar
  60. Kang HS, Brady SF (2014) Mining soil metagenomes to better understand the evolution of natural product structural diversity: pentangular polyphenols as a case study. J Am Chem Soc 136:18111–18119PubMedPubMedCentralCrossRefGoogle Scholar
  61. Kim YH, Kwon EJ, Kim SK et al (2010) Molecular cloning and characterization of a novel family VIII alkaline esterase from a compost metagenomic library. Biochem Biophys Res Commun 393:45–49PubMedCrossRefGoogle Scholar
  62. Kloepper JW, Lifshitz R, Zablotowicz RM (1989) Free-living bacterial inocula for enhancing crop productivity. Trends Biotechnol 7:39–44CrossRefGoogle Scholar
  63. Konneke M, Bernhard AE, de la Torre JR et al (2005) Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437:543–546PubMedCrossRefGoogle Scholar
  64. Ladha JK, Reddy PM (eds) (2000) The quest for nitrogen fixation in rice. IRRI, Los BanosGoogle Scholar
  65. Lam KN, Charles TC (2015) Strong spurious transcription likely contributes to DNA insert bias in typical metagenomic clone libraries. Microbiome 3:22. doi: 10.1186/s40168/015/0086/5 PubMedPubMedCentralCrossRefGoogle Scholar
  66. Le PT, Makhalanyane TP, Guerrero LD et al (2016) Comparative metagenomic analysis reveals mechanisms for stress response in hypoliths from extreme hyperarid deserts. Genome Biol Evol 8:2737–2747PubMedCrossRefGoogle Scholar
  67. Lee CM, Yeo YS, Lee JH et al (2008) Identification of a novel 4-hydroxyphenylpyruvate dioxygenase from the soil metagenome. Biochem Biophys Res Commun 370:322–326PubMedCrossRefGoogle Scholar
  68. Lee MH, Hong KS, Malhotra S et al (2010) A new esterase EstD2 isolated from plant rhizosphere soil metagenome. Appl Microbiol Biotechnol 88:1125–1134PubMedCrossRefGoogle Scholar
  69. Lee SW, Won K, Lim HK et al (2004) Screening for novel lipolytic enzymes from uncultured soil microorganisms. Appl Microbiol Biotechnol 65:720–726PubMedCrossRefGoogle Scholar
  70. Leininger S, Urich T, Schloter M et al (2006) Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 442:806–809PubMedCrossRefGoogle Scholar
  71. Leveau JHJ (2007) The magic and menace of metagenomics-prospects for the study of plant growth promoting rhizobacteria. Eur J Plant Pathol 119:279–300CrossRefGoogle Scholar
  72. Li G, Wang K, Liu YH (2008) Molecular cloning and characterization of a novel pyrethroid-hydrolyzing esterase originating from the metagenome. Microb Cell Factories 7:38. doi: 10.1186/1475-2859-7-38 CrossRefGoogle Scholar
  73. Li YC, Li Z, Li ZW et al (2016) Variations of rhizosphere bacterial communities in tea (Camellia sinensis L.) continuous cropping soil by highthroughput pyrosequencing approach. J Appl Microbiol 121:787–799PubMedCrossRefGoogle Scholar
  74. Liu J, Wd L, Xl Z et al (2011) Cloning and functional characterization of a novel endo-β -1, 4-glucanase gene from a soil-derived metagenomic library. Appl Microbiol Biotechnol 89:1083–1092PubMedCrossRefGoogle Scholar
  75. Mai Z, Su H, Yang J et al (2014) Cloning and characterization of a novel GH44 family endoglucanase from mangrove soil metagenomic library. Biotechnol Lett 36:1701–1709PubMedCrossRefGoogle Scholar
  76. Manz W, Amann R, Ludwig W et al (1992) Phylogenetic oligodeoxynucleotide probes for the major subclasses of proteobacteria: problems and solutions. Syst Appl Microbiol 15:593–600CrossRefGoogle Scholar
  77. Matsuzawa T, Kimura N, Suenaga H et al (2016) Screening, identification, and characterization of α-xylosidase from a soil metagenome. J Biosci Bioeng 122:393–399PubMedCrossRefGoogle Scholar
  78. Mayumi D, Akutsu-Shigeno Y, Uchiyama H et al (2008) Identification and characterization of novel poly (DL-lactic acid) depolymerases from metagenome. Appl Microbiol Biotechnol 79:743–750PubMedCrossRefGoogle Scholar
  79. Mendes LW, Kuramae EE, Navarrete AA et al (2014) Taxonomical and functional microbial community selection in soybean rhizosphere. ISME J 8:1577–1587PubMedPubMedCentralCrossRefGoogle Scholar
  80. Mendes R, Raaijmakers JM (2015) Cross-kingdom similarities in microbiome functions. ISME J 9:1905–1907PubMedPubMedCentralCrossRefGoogle Scholar
  81. Meyer F, Paarmann D, D’Souza M (2008) The metagenomics RAST server – a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinf 9:386. doi: 10.1186/1471-2105-9-386 CrossRefGoogle Scholar
  82. Miyamoto T, Kawahara M, Minamisawa K (2004) Novel endophytic nitrogen-fixing clostridia from the grass Miscanthus sinensis as revealed by terminal restriction fragment length polymorphism analysis. Appl Environ Microbiol 70:6580–6586PubMedPubMedCentralCrossRefGoogle Scholar
  83. Mujumdar RB, Ernst LA, Mujumdar SR et al (1989) Cyanine dye labeling reagents containing isothiocyanate groups. Cytometry 10:11–19PubMedCrossRefGoogle Scholar
  84. Musilova L, Ridl J, Polivkova M et al (2016) Effects of secondary plant metabolites on microbial populations: changes in community structure and metabolic activity in contaminated environments. Int J Mol Sci 17:1205. doi: 10.3390/ijms17081205 PubMedCentralCrossRefGoogle Scholar
  85. Nacke H, Engelhaupt M, Brady S et al (2012) Identification and characterization of novel cellulolytic and hemicellulolytic genes and enzymes derived from German grassland soil metagenomes. Biotechnol Lett 34:663–675PubMedCrossRefGoogle Scholar
  86. Nagayama H, Sugawara T, Endo R et al (2015) Isolation of oxygenase genes for indigo-forming activity from an artificially polluted soil metagenome by functional screening using Pseudomonas putida strains as hosts. Appl Microbiol Biotechnol 99:4453–4470PubMedCrossRefGoogle Scholar
  87. Nelson KE (2013) Microbiomes. Microb Ecol 65:916–919PubMedCrossRefGoogle Scholar
  88. Noyce GL, Winsborough C, Fulthorpe R et al (2016) The microbiomes and metagenomes of forest biochars. Sci Rep 6:26425. doi: 10.1038/srep26425 PubMedPubMedCentralCrossRefGoogle Scholar
  89. Orellana LH, Rodriguez-R LM, Higgins S et al (2014) Detecting nitrous oxide reductase (nosZ) genes in soil metagenomes: method development and implications for the nitrogen cycle. MBio 5:e01193–e01114PubMedPubMedCentralCrossRefGoogle Scholar
  90. Ou Q, Liu Y, Deng J et al (2015) A novel D-amino acid oxidase from a contaminated agricultural soil metagenome and its characterization. Antonie Van Leeuwenhoek 107:1615–1623PubMedCrossRefGoogle Scholar
  91. Pace NR, Stahl DA, Lane DJ et al (eds) (1986) Analyzing natural microbial populations by rRNA sequences. ASM News 51:4–12Google Scholar
  92. Pang H, Zhang P, Duan CJ et al (2009) Identification of cellulase genes from the metagenomes of compost soils and functional characterization of one novel endoglucanase. Curr Microbiol 58:404–408PubMedCrossRefGoogle Scholar
  93. Parsley LC, Linneman J, Goode AM et al (2011) Polyketide synthase pathways identified from a metagenomic library are derived from soil Acidobacteria. FEMS Microbiol Ecol 78:176–187PubMedCrossRefGoogle Scholar
  94. Patel V, Sharma A, Lal R et al (2016) Response and resilience of soil microbial communities inhabiting in edible oil stress/contamination from industrial estates. BMC Microbiol 16:50. doi: 10.1186/s12866-016-0669-8 PubMedPubMedCentralCrossRefGoogle Scholar
  95. Perry JA, Wright GD (2013) The antibiotic resistance “mobilome”: searching for the link between environment and clinic. Front Microbiol 4:138. doi: 10.3389/00138 PubMedPubMedCentralCrossRefGoogle Scholar
  96. Petrovskaya LE, Novototskaya-Vlasova KA, Spirina EV et al (2016) Expression and characterization of a new esterase with GCSAG motif from a permafrost metagenomic library. FEMS Microbiol Ecol 92:fiw046. doi: 10.1093/femsec/fiw046 PubMedCrossRefGoogle Scholar
  97. Pindi PK, Srinath RR, Pavankumar TL et al (2014) Isolation and characterization of novel lipase gene LipHim1 from the DNA isolated from soil samples. J Microbiol 52:384–388PubMedCrossRefGoogle Scholar
  98. Purohit MK, Singh SP (2013) A metagenomic alkaline protease from saline habitat: cloning, over-expression and functional attributes. Int J Biol Macromol 53:138–143PubMedCrossRefGoogle Scholar
  99. Rastogi G, Stetler LD, Peyton BM et al (2009) Molecular analysis of prokaryotic diversity in the deep subsurface of the former Homestake gold mine, South Dakota, USA. J Microbiol 47:371–384PubMedCrossRefGoogle Scholar
  100. Richardson AE, Barea JM, McNeill AM et al (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321:305–339CrossRefGoogle Scholar
  101. Riesenfeld CS, Schloss PD, Handelsman J (2004) Metagenomics: genomic analysis of microbial communities. Annu Rev Genet 38:525–552PubMedCrossRefGoogle Scholar
  102. Roller C, Wagner M, Amann R et al (1994) In situ probing of gram-positive bacteria with a high DNA G+C content using 23S rRNA-targeted oligonucleotides. Microbiology 140:2849–2858PubMedCrossRefGoogle Scholar
  103. Rousk J, Baath E, Brookes PC et al (2010) Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J 4:1340–1351PubMedCrossRefGoogle Scholar
  104. Sait M, Hugenholtz P, Janssen PH (2002) Cultivation of globally distributed soil bacteria from phylogenetic lineages previously only detected in cultivation-independent surveys. Environ Microbiol 4:654–666PubMedCrossRefGoogle Scholar
  105. Schallmey M, Ly A, Wang C et al (2011) Harvesting of novel polyhydroxyalkanaote (PHA) synthase encoding genes from a soil metagenome library using phenotypic screening. FEMS Microbiol Lett 321:150–156PubMedCrossRefGoogle Scholar
  106. Segata N, Izard J, Waldron L et al (2011) Metagenomic biomarker discovery and explanation. Genome Biol 12:R60. doi:10.1186/gb-2011-12-6- r60 PubMedPubMedCentralCrossRefGoogle Scholar
  107. Segata N, Waldron L, Ballarini A et al (2012) Metagenomic microbial community profiling using unique clade-specific marker genes. Nat Methods 9:811–814PubMedPubMedCentralCrossRefGoogle Scholar
  108. Siles JA, Cajthaml T, Minerbi S et al (2016) Effect of altitude and season on microbial activity, abundance and community structure in alpine forest soils. FEMS Microbiol Ecol 92. doi: 10.1093/femsec/fiw008
  109. Sorensen J, Nicolaisen MH, Ron E et al (2009) Molecular tools in rhizosphere microbiology-from single-cell to whole-community analysis. Plant Soil 321:483–512CrossRefGoogle Scholar
  110. Souza RC, Mendes IC, Reis-Junior FB et al (2016) Shifts in taxonomic and functional microbial diversity with agriculture: how fragile is the Brazilian cerrado? BMC Microbiol 16:42. doi: 10.1186/s12866-016-0657-z PubMedPubMedCentralCrossRefGoogle Scholar
  111. Stahl DA, Amann RI (1991) Development and application of nucleic acid probes. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, New York, pp 205–248Google Scholar
  112. Staley JT, Konopka A (1985) Measurement of in situ activities of nonphotosynthetic microorganisms in aquatic and terrestrial habitats. Annu Rev Microbiol 39:321–346PubMedCrossRefGoogle Scholar
  113. Stein JL, Marsh TL, Wu KY et al (1996) Characterization of uncultivated prokaryotes: isolation and analysis of a 40-kilobase pair genome fragment front a planktonic marine archaeon. J Bacteriol 178:591–599PubMedPubMedCentralCrossRefGoogle Scholar
  114. Tao W, Lee MH, Yoon MY et al (2011) Characterization of two metagenome-derived esterases that reactivate chloramphenicol by counteracting chloramphenicol acetyltransferase. J Microbiol Biotechnol 21:1203–1210PubMedCrossRefGoogle Scholar
  115. Tan H, Mooij MJ, Barret M et al (2014) Identification of novel phytase genes from an agricultural soil-derived metagenome. J Microbiol Biotechnol 24:113–118PubMedCrossRefGoogle Scholar
  116. Tardy V, Chabbi A, Charrier X et al (2015) Land use history shifts in situ fungal and bacterial successions following wheat straw input into the soil. PLoS One 10:e0130672. doi:10.1371/ journal.pone.0130672Google Scholar
  117. Tsai YL, Olson BH (1992) Rapid method for separation of bacterial DNA from humic substances in sediments for polymerase chain reaction. Appl Environ Microbiol 58:2292–2295PubMedPubMedCentralGoogle Scholar
  118. van Hellemond EW, Janssen DB, Fraaije MW (2007) Discovery of a novel styrene monooxygenase originating from the metagenome. Appl Environ Microbiol 73:5832–5839PubMedPubMedCentralCrossRefGoogle Scholar
  119. Venieraki A, Dimou M, Pergalis P et al (2011) The genetic diversity of culturable nitrogen-fixing bacteria in the rhizosphere of wheat. Microb Ecol 61:277–285PubMedCrossRefGoogle Scholar
  120. Verma D, Kawarabayasi Y, Miyazaki K et al (2013) Cloning, expression and characteristics of a novel alkalistable and thermostable xylanase encoding gene (Mxyl) retrieved from compost-soil metagenome. PLoS One 8:e52459. doi: 10.1371/0052459 PubMedPubMedCentralCrossRefGoogle Scholar
  121. Vigliotta G, Matrella S, Cicatelli A et al (2016) Effects of heavy metals and chelants on phytoremediation capacity and on rhizobacterial communities of maize. J Environ Manag 179:93–102CrossRefGoogle Scholar
  122. Wang K, Li G, Yu SQ et al (2010) A novel metagenome-derived β -galactosidase: gene cloning, overexpression, purification and characterization. Appl Microbiol Biotechnol 88:155–165PubMedCrossRefGoogle Scholar
  123. Wang Q, Quensen JF, Fish JA et al (2013) Ecological patterns of nifH genes in four terrestrial climatic zones explored with targeted metagenomics using Framebot, a new informatics tool. mBio 4(5):e00592–13. doi: 10.1128/mBio.00592-13 PubMedPubMedCentralCrossRefGoogle Scholar
  124. Wang Q, Fish JA, Gilman M et al (2015) Xander: employing a novel method for efficient gene-targeted metagenomic assembly. Microbiome 3:32. doi: 10.1186/s40168-015-0093-6 PubMedPubMedCentralCrossRefGoogle Scholar
  125. Wei P, Bai L, Song W et al (2009) Characterization of two soil metagenome-derived lipases with high specificity for p-nitrophenyl palmitate. Arch Microbiol 191:233–240PubMedCrossRefGoogle Scholar
  126. Werner J, Ferrer M, Michel G et al (2014) Halorhabdus tiamatea: proteogenomics and glycosidase activity measurements identify the first cultivated euryarchaeon from a deep-sea anoxic brine lake as potential polysaccharide degrader. Environ Microbiol 16:2525–2537PubMedPubMedCentralCrossRefGoogle Scholar
  127. White JR, Nagarajan N, Pop M (2009) Statistical methods for detecting differentially abundant features in clinical metagenomic samples. PLoS Comput Biol 5:e1000352. Scholar
  128. Wolińska A, Kuźniar A, Zielenkiewicz U et al (2017) Metagenomic analysis of some potential nitrogen-fixing bacteria in arable soils at different formation processes. Microb Ecol 73:162–176PubMedCrossRefGoogle Scholar
  129. Xun W, Xu Z, Li W et al (2016) Long-term organic-inorganic fertilization ensures great soil productivity and bacterial diversity after natural-to-agricultural ecosystem conversion. J Microbiol 54:611–617PubMedCrossRefGoogle Scholar
  130. Yang Y, Gao Y, Wang S et al (2014) The microbial gene diversity along an elevation gradient of the Tibetan grassland. ISME J 8:430–440PubMedCrossRefGoogle Scholar
  131. Yasir M, Azhar EI, Khan I et al (2015) Composition of soil microbiome along elevation gradients in southwestern highlands of Saudi Arabia. BMC Microbiol 15:65. doi: 10.1186/s12866-015-0398-4 PubMedPubMedCentralCrossRefGoogle Scholar
  132. Ye M, Li G, Liang WQ et al (2010) Molecular cloning and characterization of a novel metagenome-derived multicopper oxidase with alkaline laccase activity and highly soluble expression. Appl Microbiol Biotechnol 87:1023–1031PubMedCrossRefGoogle Scholar
  133. Yergeau E, Schoondermark-Stolk SA, Brodie EL et al (2009) Environmental microarray analyses of Antarctic soil microbial communities. ISME J 3:340–351PubMedCrossRefGoogle Scholar
  134. Yin H, Niu J, Ren Y et al (2015) An integrated insight into the response of sedimentary microbial communities to heavy metal contamination. Sci Rep:5. doi: 10.1038/srep14266
  135. Yun J, Kang S, Park S, Yoon H, Kim MJ et al (2004) Characterization of a novel amylolytic enzyme encoded by a gene from a soil-derived metagenomic library. Appl Environ Microbiol 70:7229–7235PubMedPubMedCentralCrossRefGoogle Scholar
  136. Zaprasis A, Liu YJ, Liu SJ et al (2010) Abundance of novel and diverse tfdA-like genes, encoding putative phenoxyalkanoic acid herbicide-degrading dioxygenases, in soil. Appl Environ Microbiol 76:119–128PubMedCrossRefGoogle Scholar
  137. Zhou Y, Wang X, Wei W et al (2016) A novel efficient β-glucanase from a paddy soil microbial metagenome with versatile activities. Biotechnol Biofuels 9:36. doi: 10.1186/s13068-016-0449-6
  138. Zwolinski MD (2007) DNA sequencing: strategies for soil microbiology. Soil Sci Soc Am J 71:592–600CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • Vivek Kumar
    • 1
  • Anjali Singh
    • 1
  • Madhu Bala Tyagi
    • 2
  • Ashok Kumar
    • 1
    Email author
  1. 1.School of BiotechnologyInstitute of Science, Banaras Hindu UniversityVaranasiIndia
  2. 2.Botany Department, MMVBanaras Hindu UniversityVaranasiIndia

Personalised recommendations