Bacterial Endophytes: Potential Candidates for Plant Growth Promotion

  • Pramod Kumar SahuEmail author
  • Amrita Gupta
  • G. Lavanya
  • Rahul Bakade
  • Dhananjaya P. Singh


Decreasing resources and enhancing needs have made the situation imperative to boost the agricultural productivity. Agrochemical mediated improvement in productivity has reached to a phase where it has more disadvantages than benefits. Degrading soil quality, water quality, polluting food chain, etc. has driven the interest for the minimal use of these agrochemicals. The moment we think of reducing agrochemical use, one must have an alternative productivity enhancer and essentially sustainable enhancer. Microorganisms have promising roles in fulfilling this need. Microbes take part in enhancing nutrient mobilization, nutrient availability and nutrient use efficiency. This makes it potential agent for partially substituting agrochemicals. Endophytes are a class of microbes living inside the plants with a complex effect in plant growth. A lot of workers have reported significance of endophytic microbes in boosting crop production and minimizing agrochemical load. In this regard, this chapter focuses on various studies conferring the constructive role of bacterial endophytes. Endophytes have tremendous roles in stimulating plant growth, inducing systemic resistance, and alleviating abiotic stresses, nutrient use efficiency, and many more. Exploring the endophytic treasure can make sizable contribution in sustainable agriculture. Understanding, inducing, and/or inoculating these bacterial endophytes can enhance plant growth and health. This chapter also deals regarding the mode of entry, colonization, and isolation techniques of bacterial endophytes, which will widen the arena of understanding about bacterial endophytes.


Bacterial endophytes Surface sterilization Plant growth promotion Biocontrol Abiotic stress alleviation 



The ICAR-National Bureau of Agriculturally Important Microorganisms (ICAR-NBAIM) is gratefully acknowledged for its continuous support and guidance.


  1. Abeles FB, Morgan PW, Saltveit ME Jr (2012) Ethylene in plant biology, 2nd edn. Academic, San DiegoGoogle Scholar
  2. Ait BE, Nowak J, Clement C (2006) Enhancement of chilling resistance of inoculated grapevine plantlets with a plant growth-promoting rhizobacterium, Burkholderia phytofirmans strain PsJN. Appl Environ Microbiol 72(11):7246–7252CrossRefGoogle Scholar
  3. Ali S, Charles TC, Glick BR (2012) Delay of flower senescence by bacterial endophytes expressing ACC deaminase. J Appl Microbiol 113:1139–1144PubMedCrossRefGoogle Scholar
  4. Ali S, Charles TC, Glick BR (2014) Amelioration of high salinity stress damage by plant growth-promoting bacterial endophytes that contain ACC deaminase. Plant Physiol Biochem 80:160–167PubMedCrossRefGoogle Scholar
  5. Anand R, Paul L, Chanway C (2006) Research on endophytic bacteria: recent advances with forest trees. In: Schulz B, Boyle C, Sieber T (eds) Microbial root endophytes, vol 9. Springer-Verlag, Berlin, pp 89–103CrossRefGoogle Scholar
  6. Ashbolt NJ, Inkerman PA (1990) Acetic acid bacterial biota of the pink sugar cane mealybug Saccharococcus sacchari and its environment. Appl Environ Microbiol 56:707–712PubMedPubMedCentralGoogle Scholar
  7. Backman PA, Sikora RA (2008) Endophytes: an emerging tool for biological control. Biol Control 46:1–3CrossRefGoogle Scholar
  8. Bacon CW, Hinton NS (1996) Symptomless endophytic colonization of maize by Fusarium moniliforme. Can J Bot 74:1195–1202CrossRefGoogle Scholar
  9. Barac T, Taghavi S, Borremans B, Provoost A, Oeyen L, Colpaert JV, Vangronsveld J, van der Lelie D (2004) Engineered endophytic bacteria improve phytoremediation of water soluble, volatile, organic pollutants. Nat Biotechnol 22:583–588PubMedCrossRefGoogle Scholar
  10. Barraquio WL, Revilla L, Ladha JK (1997) Isolation of endophytic diazotrophic bacteria from wetland rice. Plant Soil 194:15–24CrossRefGoogle Scholar
  11. Bhore SJ, Ravichantar N, Loh CY (2010) Screening of endophytic bacteria isolated from leaves of Sambung Nyawa [Gynura procumbens (Lour.) Merr.] for cytokinin-like compounds. Bioinform 5:191–197CrossRefGoogle Scholar
  12. Bleecker AB, Kende H (2000) Ethylene: a gaseous molecule in plants. Annu Rev Cell Dev Bio 16:1–18CrossRefGoogle Scholar
  13. Boddey RM, de Oliveira OC, Urquiaga S, Reis VM, Olivares FL, Baldani VLD, Döbereiner J (1995) Biological nitrogen fixation associated with sugar cane and rice: contributions and prospects for improvement. Plant Soil 174:195–209CrossRefGoogle Scholar
  14. Bong CFJ, Sikorowski PP (1991) Effects of cytoplasmic polyhedrosis virus and bacterial contamination on growth and development of the corn earworm, Helicoverpa zea. J Invert Pathol 57(3):406–412CrossRefGoogle Scholar
  15. Brader G, Compant S, Mitter B, Trognitz F, Sessitsch A (2014) Metabolic potential of endophytic bacteria. Curr Opin Biotechnol 27:30–37PubMedPubMedCentralCrossRefGoogle Scholar
  16. Burgdorf RJ, Laing MD, Morris CD, Jamal-Ally SF (2014) A procedure to evaluate the efficiency of surface sterilization methods in culture-independent fungal endophyte studies. Braz J Microbiol 45(3):977–983PubMedPubMedCentralCrossRefGoogle Scholar
  17. Campbell N (1995) In: Brady EB (ed) Prokaryotes and the origins of metabolic diversity, 5th edn. The Benjamin/Cummings Publishing Company, Reedwood City, pp 502–519Google Scholar
  18. Cao L, Qiu Z, You J, Tan H, Zhou S (2004) Isolation and characterization of endophytic Streptomyces strains from surface-sterilized tomato (Lycopersicon esculentum) roots. Lett Appl Microbiol 39:425–430PubMedCrossRefGoogle Scholar
  19. Chakraborty U, Chakraborty B, Basnet M (2006) Plant growth promotion and induction of resistance in Camellia sinensis by Bacillus megaterium. J Basic Microbiol 46:186–195PubMedCrossRefGoogle Scholar
  20. Christina A, Christapher V, Bhore SJ (2013) Endophytic bacteria as a source of novel antibiotics: an overview. Pharmacogn Rev 7(13):11–16PubMedPubMedCentralGoogle Scholar
  21. Cocking EC (2003) Endophytic colonization of plant roots by nitrogen-fixing bacteria. Plant Soil 252(1):169–175CrossRefGoogle Scholar
  22. Cohen AC, Travaglia CN, Bottini R, Piccoli PN (2009) Participation of abscisic acid and gibberellins produced by endophytic Azospirillum in the alleviation of drought effects in maize. Botany 87:455–462CrossRefGoogle Scholar
  23. Compant S, Reiter B, Sessitsch A, Nowak J, Clément C, Barka EA (2005) Endophytic colonization of Vitis vinifera L. by plant growth-promoting bacterium Burkholderia sp. strain PsJN. Appl Environ Microbiol 71(4):1685–1693PubMedPubMedCentralCrossRefGoogle Scholar
  24. Conn VM, Walker AR, Franco CMM (2008) Endophytic Actinobacteria induces defense pathways in Arabidopsis thaliana. MPMI 21:208–218PubMedCrossRefGoogle Scholar
  25. Costa JM, Loper JE (1994) Characterization of siderophore production by the biological control agent Enterobacter cloacae. MPMI 7(4):440–448CrossRefGoogle Scholar
  26. Dimkpa C, Weinand T, Asch F (2009) Plant-rhizobacteria interactions alleviate abiotic stresses conditions. Plant Cell Environ 32:1682–1694PubMedCrossRefGoogle Scholar
  27. Dourado MN, Bogas AC, Pomini AM, Andreote FD, Quecine C, Marsaioli AJ, Araujo WL (2014) Methylobacterium-plant interaction genes regulated by plant exudate and quorum sensing molecules. Braz J Microbiol 44(4):1331–1339PubMedPubMedCentralCrossRefGoogle Scholar
  28. Elbeltagy A, Nishioka K, Sato T, Suzuki H, Ye B, Hamada T, Isawa T, Mitsui H, Minamisawa K (2001) Endophytic colonization and in planta nitrogen fixation by a Herbaspirillum sp. isolated from wild rice species. Appl Environ Microbiol 67(11):5285–5293PubMedPubMedCentralCrossRefGoogle Scholar
  29. Fernandez O, Theocharis A, Bordiec S, Feil R, Jacquens L, Clement C, Fontaine F, Barka EA (2012) Burkholderia phytofirmans PsJN acclimates grapevine to cold by modulating carbohydrate metabolism. MPMI 25(4):496–504PubMedCrossRefGoogle Scholar
  30. Gao Y, Liu Q, Zang P, Li X, Ji Q, He ZY, Yang H, Zhao X, Zhang L (2015) An endophytic bacterium isolated from Panax ginseng C.A. Meyer enhances growth, reduces morbidity, and stimulates ginsenoside biosynthesis. Phytochem Lett 11:132–138CrossRefGoogle Scholar
  31. Garcia de Salamone IE, Hynes RK, Nelson LM (2001) Cytokinin production by plant growth promoting rhizobacteria and selected mutants. Can J Microbiol 47(5):404–411PubMedCrossRefGoogle Scholar
  32. Germaine KJ, Liu X, Cabellos GG, Hogan JP, Ryan D, Dowling DN (2006) Bacterial endophyte-enhanced phytoremediation of the organochlorine herbicide 2, 4-dichlorophenoxyacetic acid. FEMS Microbiol Ecol 57:302–310PubMedCrossRefGoogle Scholar
  33. Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica 2012:1–15CrossRefGoogle Scholar
  34. Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169(1):30–39PubMedCrossRefGoogle Scholar
  35. Golinska P, Wypij M, Agarkar G, Rathod D, Dahm H, Rai M (2015) Endophytic actinobacteria of medicinal plants: diversity and bioactivity. Antonie Van Leeuwenhoek 108:267–289. doi: 10.1007/s10482-015-0502-7 PubMedPubMedCentralCrossRefGoogle Scholar
  36. Grichko VP, Glick BR (2001) Amelioration of flooding stress by ACC deaminase containing plant growth promoting bacteria. Plant Physiol Biochem 39:11–17CrossRefGoogle Scholar
  37. Hallmann J, Quadt Hallmann A, Mahaffe WF, Kloepper JW (1997) Bacterial endophytes in agricultural crops. Can J Microbiol 43:895–914CrossRefGoogle Scholar
  38. Hallmann J, Quadt-Hallmann A, Miller WG, Sikora RA, Lindow SE (2001) Endophytic colonization of plants by the biocontrol agent Rhizobium etli G12 in relation to Meloidogyne incognita infection. Phytopathology 91(4):415–422PubMedCrossRefGoogle Scholar
  39. Hardoim PR, van Overbeek LS, Berg G, Pirttilä AM, Compant S, Campisano A, Döring M, Sessitsch A (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79(3):293–320PubMedPubMedCentralCrossRefGoogle Scholar
  40. Harish S, Kavino M, Kumar N, Saravanakumar D, Soorianathasundaram K, Samiyappan R (2008) Biohardening with plant growth promoting rhizosphere and endophytic bacteria induces systemic resistance against banana bunchy top virus. Appl Soil Ecol 39(2):187–200CrossRefGoogle Scholar
  41. Hartmann A, Rothballer M, Hense BA, Schroder P (2014) Bacterial quorum sensing compound is important modulators of microbe-plant interactions. Front Plant Sci 5:131PubMedPubMedCentralCrossRefGoogle Scholar
  42. Hosni T, Moretti C, Devescovi G, Suarez-Moreno ZR, Fatmi MB, Guarnaccia C, Pongor S, Onofri A, Buonaurio R, Venturi V (2011) Sharing of quorum-sensing signals and role of interspecies communities in a bacterial plant disease. ISME J 5(12):1857–1870PubMedPubMedCentralCrossRefGoogle Scholar
  43. Hung PQ, Annapurna K (2004) Isolation and characterization of endophytic bacteria in soybean (Glycine sp.) Omonrice 12:92–101Google Scholar
  44. James EK, Olivares FL (1998) Infection and colonization of sugarcane and other graminaceous plants by endophytic diazotrophs. Crit Rev Plant Sci 17:77–119CrossRefGoogle Scholar
  45. Jha Y, Subramanian RB, Patel S (2011) Combination of endophytic and rhizospheric plant growth promoting rhizobacteria in Oryza sativa shows higher accumulation of osmoprotectant against saline stress. Acta Physiol Plant 33:797–802CrossRefGoogle Scholar
  46. Karthikeyan B, Joe MM, Islam R, Sa T (2012) ACC deaminase containing diazotrophic endophytic bacteria ameliorate salt stress in Catharanthus roseus through reduced ethylene levels and induction of antioxidative defense systems. Symbiosis 56(2):77–86CrossRefGoogle Scholar
  47. Kloepper JW, Ryu CM (2006) Bacterial endophytes as elicitors of induced systemic resistance. In: Schulz et al (eds) Microbial root endophytes, vol 9. Springer-Verlag, Berlin, pp 33–52CrossRefGoogle Scholar
  48. Kloepper JW, Tuzun S, Liu L, Wei G (1993) Plant growth-promoting rhizobacteria as inducers of systemic disease resistance. Pest management: biologically based technologies. American Chemical Society Books, Washington, DC, pp 156–165Google Scholar
  49. Kluepfel DA (1993) The behavior and tracking of bacteria in the rhizosphere. Annu Rev Phytopathol 31:441–472CrossRefGoogle Scholar
  50. Kobayashi DY, Palumbo JD (2000) Bacterial endophytes and their effects on plants and uses in agriculture. In: Bacon CW, White JF (eds) Microbial endophytes. Marcel Dekker, New York, pp 199–233Google Scholar
  51. Kuklinsky-Sobral K, Araujo WL, Mendonca C, Geran LC, Piskala A, Azevedo JL (2004) Isolation and characterization of soybean-associated bacteria and their potential for plant growth promotion. Environ Microbiol 6:1244–1251PubMedCrossRefGoogle Scholar
  52. Kumar A, Singh R, Yadav A, Giri DD, Singh PK, Pandey KD (2016) Isolation and characterization of bacterial endophytes of Curcuma longa L. 3 Biotech 6(1):1–8PubMedCrossRefGoogle Scholar
  53. Lee S, Flores-Encarnacion M, Contreras-Zentella M, Garcia-Flores L, Escamilla JE, Kennedy C (2004) Indole-3-acetic acid biosynthesis is deficient in Gluconacetobacter diazotrophicus strains with mutations in cytochrome c biogenesis genes. J Bacteriol 186(16):5384–5391PubMedPubMedCentralCrossRefGoogle Scholar
  54. Li J, Zhao G, Chen H, Wang H, Qin S, Zhu W, Xu L, Jiang C, Li W (2008) Antitumour and antimicrobial activities of endophytic Streptomycetes from pharmaceutical plants in rainforest. Lett Appl Microbiol 47:574–580PubMedCrossRefGoogle Scholar
  55. Lodewyckx C, Taghavi S, Mergeay M, Vangronsveld J, Clijsters H, van der Lelie D (2001) The effect of recombinant heavy metal resistant endophytic bacteria in heavy metal uptake by their host plant. Int J Phytoremediation 3:173–187CrossRefGoogle Scholar
  56. Macedo CL, Martins ES, Macedo LLP, Santos AC, Praça LB, Góis LAB, Monnerat RG (2012) Selection and characterization of Bacillus thuringiensis strains effective against Diatraea saccharalis (Lepidoptera: Crambidae). Pesq Agrop Braz 47(12):1759–1765CrossRefGoogle Scholar
  57. Manter D, Delgado J, Holm D, Stong R (2010) Pyrosequencing reveals a highly diverse and cultivar-specific bacterial endophyte community in potato roots. Microbial Ecol 60:157–166CrossRefGoogle Scholar
  58. Martínez L, Caballero J, Orozco J, Martínez-Romero E (2003) Diazotrophic bacteria associated with banana (Musa spp.) Plant Soil 257:35–47CrossRefGoogle Scholar
  59. Mayak S, Triosh T, Glick BR (2004) Plant growth promoting bacteria that confer resistance to water stress in tomatoes and peppers. Plant Sci 166:525–530CrossRefGoogle Scholar
  60. Melatti VM, Praça LB, Martins ES, Sujii E, Berry C, Monnerat RG (2010) Selection of Bacillus thuringiensis strains toxic against cotton aphid, Aphis gossypii Glover (Hemiptera: Aphididae). Bio Assay 5(2):1–4Google Scholar
  61. Mirza MS, Ahmad W, Latif F, Haurat J, Bally R, Normand P, Malik KA (2001) Isolation partial characterization and the effect of plant growth-promoting bacteria (PGPB) on micro propagated sugarcane in vitro. Plant Soil 237(1):47–54CrossRefGoogle Scholar
  62. Murphy JF, Reddy MS, Ryu C-M, Kloepper JW, Li R (2003) Rhizobacteria-mediated growth promotion of tomato leads to protection against Cucumber mosaic virus. Phytopathology 93:1301–1307PubMedCrossRefGoogle Scholar
  63. Naveed M, Hussain MB, Zahir ZA, Mitter B, Sessitsch A (2014) Drought stress amelioration in wheat through inoculation with Burkholderia phytofirmans strain PsJN. Plant Growth Regul 73:121–131CrossRefGoogle Scholar
  64. Naveed M, Qureshi MA, Zahir ZA, Hussain MB, Sessitsch A, Mitter B (2015) L-Tryptophan- dependent biosynthesis of indole-3-acetic acid (IAA) improves plant growth and colonization of maize by Burkholderia phytofirmans PsJN. Ann Microbiol 65:1391–1389CrossRefGoogle Scholar
  65. Newman L, Reynolds C (2005) Bacteria and phyto-remediation: new uses for endophytic bacteria in plants. Trends Biotechnol 23:6–8PubMedCrossRefGoogle Scholar
  66. Nowak J (1998) Benefits of in vitro “biotization” of plant tissue cultures with microbial inoculants. In Vitro Cell Dev Biol-Plant 34(2):122–130CrossRefGoogle Scholar
  67. Praca LB, Gomes ACMM, Cabral G, Martins ES, Sujii EH, Monnerat RG (2012) Endophytic colonization by Brazilian strains of Bacillus thuringiensis on cabbage seedlings grown in vitro. Bt Res 3(1)Google Scholar
  68. Parsek MR, Greenberg EP (2000) Acyl homoserine lactone quorum sensing in Gram-negative bacteria: a signaling mechanism involved in associations with higher organisms. Proc Natl Acad Sci U S A 97(16):8789–8793PubMedPubMedCentralCrossRefGoogle Scholar
  69. Phillips LA, Germida JJ, Farrell RE, Greer CW (2008) Hydrocarbon degradation potential and activity of endophytic bacteria associated with prairie plants. Soil Biol Biochem 40(12):3054–3064CrossRefGoogle Scholar
  70. Pieterse CM, Zamioudis C, Berendsen RL, Weller DM, Van Wees SC, Bakker PA (2014) Induced systemic resistance by beneficial microbes. Ann Rev Phytopathol 52:347–375CrossRefGoogle Scholar
  71. Pillay VK, Nowak J (1997) Inoculum density, temperature, and genotype effects on in vitro growth promotion and epiphytic and endophytic colonization of tomato (Lycopersicon esculentum L.) seedlings inoculated with a pseudomonad bacterium. Can J Microbiol 43:354–361CrossRefGoogle Scholar
  72. Pirttila AM, Joensuu P, Pospiech H, Jalonen J, Hohtola A (2004) Bud endophytes of Scots pine produce adenine derivatives and other compounds that affect morphology and mitigate browning of callus cultures. Physiol Plant 121(2):305–312PubMedCrossRefGoogle Scholar
  73. Podolich O, Ardanov P, Zaets I, Pirttilä AM, Kozyrovska N (2015) Reviving of the endophytic bacterial community as a putative mechanism of plant resistance. Plant Soil 388(1–2):367–377CrossRefGoogle Scholar
  74. Polanczyk RA, Silva RFP, Fiuza LM (2003) Screening of Bacillus thuringiensis isolates to Spodoptera frugiperda (J.E Smith) (Lepidoptera: Noctuidae). Arq Inst Biol 70(1):69–72Google Scholar
  75. Qin S, Zhang YJ, Yuan B, Xu PY, Xing K, Wang J, Jiang JH (2014) Isolation of ACC deaminase-producing habitat-adapted symbiotic bacteria associated with halophyte Limonium sinense (Girard) Kuntze and evaluating their plant growth-promoting activity under salt stress. Plant Soil 374:753–766CrossRefGoogle Scholar
  76. Quadt-Hallmann A, Kloepper JW, Benhamou N (1997) Bacterial endophytes in cotton: mechanisms of entering the plant. Can J Microbiol 43(6):577–582CrossRefGoogle Scholar
  77. Raaijmakers JM, Mazzola M (2012) Diversity and natural functions of antibiotics produced by beneficial and plant pathogenic bacteria. Ann Rev Phytopathol 50:403–424CrossRefGoogle Scholar
  78. Reinhold-Hurek B, Hurek T (2011) Living inside plants: bacterial endophytes. Curr Opin Plant Biol 14(4):435–443PubMedCrossRefGoogle Scholar
  79. Reinhold-Hurek B, Krause A, Leyser B, Miche L, Hurek T (2007) The rice apoplast as a habitat for endophytic N2-fixing bacteria. In: Sattelmacher B, Horst WJ (eds) The apoplast of higher plants compartment of storage, transport and reactions. Springer, Berlin, pp 427–443CrossRefGoogle Scholar
  80. Reiter B, Bürgmann H, Burg K, Sessitsch A (2003) Endophytic nifH gene diversity in African sweet potato. Can J Microbiol 49:549–555PubMedCrossRefGoogle Scholar
  81. Rosconi F, Davyt D, Martinez V, Martinez M, Abin-Carriquiry JA, Zane H, Butler A, de Souza EM, Fabiano E (2013) Identification and structural characterization of serobactins, a suite of lipopeptide siderophores produced by the grass endophyte Herbaspirillum seropedicae. Environ Microbiol 15:916–927PubMedCrossRefGoogle Scholar
  82. Ryan RP, Germaine K, Franks A, Ryan DJ, Dowling DN (2008) Bacterial endophytes: recent developments and applications. FEMS Microbiol Lett 278(1):1–9PubMedCrossRefGoogle Scholar
  83. Sattelmacher B (2001) The apoplast and its significance for plant mineral nutrition. New Phytol 149:167–192CrossRefGoogle Scholar
  84. Schaefer AL, Lappala CR, Morlen RP, Pelletier DA, Lu TY, Lankford PK, Harwood CS, Greenberg EP (2013) LuxR- and luxI-type quorum-sensing circuits are prevalent in members of the Populus deltoides microbiome. Appl Environ Microbiol 79(18):5745–5752PubMedPubMedCentralCrossRefGoogle Scholar
  85. Schulz B, Boyle C (2006) In: BJE S, CJC B, Sieber TN (eds) What are endophytes? Microbial root endophytes. Springer-Verlag, Berlin, pp 1–13CrossRefGoogle Scholar
  86. Sessitsch A, Reiter B, Pfeifer U, Wilhelm E (2002) Cultivation- independent population analysis of bacterial endophytes in three potato varieties based on eubacterial and Actinomycetes-specific PCR of 16S rRNA genes. FEMS Microbiol Ecol 39:23–32PubMedCrossRefGoogle Scholar
  87. Sessitsch A, Hardoim P, Doring J, Weilharter A, Krause A, Woyke T, Mitter B, Hauberg-Lotte L, Friedrich F, Rahalkar M, Hurek T, Sarkar A, Bodrossy L, van Overbeek L, Brar D, van Elsas JD, Reinhold-Hurek B (2012) Functional characteristics of an endophyte community colonizing rice roots as revealed by metagenomic analysis. MPMI 25(1):28–36PubMedCrossRefGoogle Scholar
  88. Sharma PK, Sarita S, Prell J (2005) Isolation and characterization of an endophytic bacterium related to Rhizobium/Agrobacterium from wheat (Triticum aestivum L.) roots. Curr Sci 89(4):608–610Google Scholar
  89. Sharrock KR, Parkes SL, Jack HK, Rees-George J, Hawthorne BT (1991) Involvement of bacterial endophytes in storage rots of buttercup squash (Cucurbita maxima D. hybrid ‘Delica’). NZJ Crop Hortic Sci 19:157–165CrossRefGoogle Scholar
  90. Sheng XF, Xia JJ, Jiang CY, He LY, Qian M (2008) Characterization of heavy metal-resistant endophytic bacteria from rape (Brassica napus) roots and their potential in promoting the growth and lead accumulation of rape. Environ Pollut 156(3):1164–1170PubMedCrossRefGoogle Scholar
  91. Siciliano S, Fortin N, Himoc N et al (2001) Selection of specific endophytic bacterial genotypes by plants in response to soil contamination. Appl Environ Microbiol 67:2469–2475PubMedPubMedCentralCrossRefGoogle Scholar
  92. Smith KP, Goodman RM (1999) Host variation for interactions with beneficial plant-associated microbes. Ann Rev Phytopathol 37:473–491CrossRefGoogle Scholar
  93. Sprent JI, De Faria SM (1998) Mechanisms of infection of plants by nitrogen fixing organisms. Plant Soil 110(2):157–165CrossRefGoogle Scholar
  94. Strobel G, Daisy B (2003) Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev 67(4):491–502PubMedPubMedCentralCrossRefGoogle Scholar
  95. Strobel G, Daisy B, Castillo U, Harper J (2004) Natural products from endophytic microorganisms. J Nat Prod 67:257–268PubMedCrossRefGoogle Scholar
  96. Sturz AV, Christie BR, Matheson BG, Nowak J (1997) Biodiversity of endophytic bacteria which colonize red clover nodules, roots, stems and foliage and their influence on host growth. Biol Fertil Soils 25:13–19CrossRefGoogle Scholar
  97. Sturz AV, Christie BR, Nowak J (2000) Bacterial endophytes: potential role in developing sustainable systems of crop production. Crit Rev Plant Sci 19:1–30CrossRefGoogle Scholar
  98. Suhandono S, Kusumawardhani MK, Aditiawati P (2016) Isolation and molecular identification of endophytic bacteria from Rambutan fruits (Nephelium lappaceum L.) cultivar Binjai. HAYATI J Biosci 23(1):39–44CrossRefGoogle Scholar
  99. Sun LN, Zhang YF, He LY, Chen ZJ, Wang QY, Qian M, Sheng XF (2010) Genetic diversity and characterization of heavy metal-resistant-endophytic bacteria from two copper-tolerant plant species on copper mine wasteland. Bioresour Technol 101(2):501–509PubMedCrossRefGoogle Scholar
  100. Taghavi S, Barac T, Greenberg B, Borremans B, Vangronsveld J, van der Lelie D (2005) Horizontal gene transfer to endogenous endophytic bacteria from poplar improves phytoremediation of toluene. Appl Environ Microbiol 71:8500–8505PubMedPubMedCentralCrossRefGoogle Scholar
  101. Tan Z, Hurek T, Reinhold-Hurek B (2003) Effect of N-fertilization, plant genotype and environmental conditions on nifH gene pools in roots of rice. Environ Microbiol 5:1009–1015PubMedCrossRefGoogle Scholar
  102. Thomas P, Upreti R. (n.d.) Testing of bacterial endophytes from non-host sources as potential antagonistic agents against tomato wilt pathogen Ralstonia solanacearum. Adv Microbiol 4:656–666. doi:  10.4236/aim.2014.410071
  103. Turner TR, James EK, Poole PS (2013) The plant microbiome. Genome Biol 14:209PubMedPubMedCentralCrossRefGoogle Scholar
  104. Tuteja N (2007) Abscisic acid and abiotic stress signaling. Plant Signal Behav 2(3):135–138PubMedPubMedCentralCrossRefGoogle Scholar
  105. Upreti R, Thomas P (2015) Root associated bacterial endophytes from Ralstonia solanacearum resistant and susceptible tomato cultivars and their pathogen antagonistic effects. Front Microbiol 6:255. doi: 10.3389/fmicb.2015.00255 PubMedPubMedCentralCrossRefGoogle Scholar
  106. Van Aken B, Peres C, Doty S, Yoon J, Schnoor J (2004) Methylobacterium populi sp. nov., a novel aerobic, pink pigmented, facultatively methylotrophic, methane-ultilising bacterium isolated from poplar trees (Populus deltoides x nigra DN34). Evol Microbiol 54:1191–1196CrossRefGoogle Scholar
  107. Wakelin SA, Warren RA, Harvey PR, Ryder MH (2004) Phosphate solubilization by Penicillium spp. closely associated with wheat roots. Biol Fert Soils 40(1):36–43CrossRefGoogle Scholar
  108. Wang M, Xing Y, Wang JXY, Wang G (2014) The role of the chi1 gene from the endophytic bacteria Serratia proteamaculans 336x in the biological control of wheat take all. Can J Microbiol 60(8):533–540PubMedCrossRefGoogle Scholar
  109. Webster G, Jain V, Davey MR, Gough C, Vasse J, Denarie J, Cocking EC (1998) The flavonoid naringenin stimulates the intercellular colonization of wheat roots by Azorhizobium caulinodans. Plant Cell Environ 21:373–383CrossRefGoogle Scholar
  110. Wei L, Kloepper JW, Tuzun S (1996) Induced systemic resistance to cucumber diseases and increased plant growth by plant growth promoting rhizobacteria under field conditions. Phytopathology 86:221–224CrossRefGoogle Scholar
  111. Weyens N, van der Lelie D, Taghavi S, Vangronsveld J (2009) Phytoremediation: plant–endophyte partnerships take the challenge. Curr Opin Biotechnol 20(2):248–254PubMedCrossRefGoogle Scholar
  112. Wilson D (1995) Endophyte: the evolution of a term, and clarification of its use and definition. Oikos 73:274–276CrossRefGoogle Scholar
  113. Yang J, Kloepper JW, Ryu CM (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14:1–4PubMedCrossRefGoogle Scholar
  114. Yanni YG, Rizk RY, Corich V et al (1997) Natural endophytic association between Rhizobium leguminosarum bv. trifolii and rice roots and assessment of potential to promote rice growth. Plant Soil 194:99–114CrossRefGoogle Scholar
  115. Zehnder GW, Yao C, Murphy JF, Sikora EJ, Kloepper JW (2000) Induction of resistance in tomato against cucumber mosaic cucumovirus by plant growth-promoting rhizobacteria. Biol Control 45:127–137Google Scholar
  116. Zehnder GW, Murphy JF, Sikora EJ, Kloepper JW (2001) Application of rhizobacteria for induced resistance. Eur J Plant Pathol 107:39–50CrossRefGoogle Scholar
  117. Zhang S, Reddy MS, Kloepper JW (2004) Tobacco growth enhancement and blue mold disease protection by rhizobacteria: relationship between plant growth promotion and systemic disease protection by PGPR strain 90–166. Plant Soil 262:277–288CrossRefGoogle Scholar
  118. Zinniel DK, Lambrecht P, Harris NB (2002) Isolation and characterization of endophytic colonizing bacteria from agronomic crops and prairie plants. Appl Environ Microbiol 68:2198–2208. doi:10.1128/AEM.68.5.2198- 2208.2002PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • Pramod Kumar Sahu
    • 1
    Email author
  • Amrita Gupta
    • 1
  • G. Lavanya
    • 2
  • Rahul Bakade
    • 3
  • Dhananjaya P. Singh
    • 1
  1. 1.ICAR-National Bureau of Agriculturally Important MicroorganismsKushmaur, Maunath BhanjanIndia
  2. 2.Department of Agricultural MicrobiologyUniversity of Agricultural SciencesBangaluruIndia
  3. 3.ICAR-Research Complex for Eastern Region (ICAR-RCER)PatnaIndia

Personalised recommendations