Skip to main content

Ameliorating Salt Stress in Crops Through Plant Growth-Promoting Bacteria

  • Chapter
  • First Online:

Abstract

Abiotic stresses are emerging vicious environmental factors limiting agricultural productivity around the world, while food demand is increasing with growing population. Among these abiotic stresses, salt stress is a serious threat to put down crop production especially in arid and semiarid regions of the world. Therefore, some serious steps are required to stop or slow down the lethal effects of salinity for ensuring food security. Various strategies are adopted to tackle the deleterious impacts of salinity to crops including breeding techniques and genetic engineering, but these techniques have their level of significance and cannot satisfy the whole demand. However, some biological strategies are cost-effective, environment friendly, and easy to adopt/operate. In this scenario, the use of various microorganisms (bacteria, fungi, algae) to enhance salinity resilience in crops is encouraged due to their vital interactions with each other and crop plants. Bacteria are widely used to mitigate deleterious impacts of high salinity on crop plants because they possess various direct and indirect plant beneficial characteristics including exopolysaccharide and siderophore production, biofilm formation, phosphate solubilization, induced systemic resistance, and enhanced nutrient uptake, and they act as biocontrol agents to protect crop plants from many diseases by killing pathogens. This chapter focuses on the negative effects of high salinity on plants, bacterial survival in salt stress, and their mechanisms to mitigate salinity stress and the role of beneficial microbes to enhance crop tolerance against salinity stress.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ahmad M, Zahir ZA, Asghar HN et al (2011) Inducing salt tolerance in mung bean through co-inoculation with rhizobia and plant-growth-promoting rhizobacteria containing 1-aminocyclopropane-1-carboxylate-deaminase. Can J Microbiol 57:578–589

    Article  CAS  PubMed  Google Scholar 

  • Ahmad M, Zahir ZA, Khalid M (2013) Efficacy of Rhizobium and Pseudomonas strains to improve physiology, ionic balance and quality of mung bean under salt-affected conditions on farmer’s fields. Plant Physiol Biochem 63:170–176

    Article  CAS  PubMed  Google Scholar 

  • Ahmed M, Qamar I (2004) Productive rehabilitation and use of salt-affected land through afforestation (a review). Sci Vis 9:1–14

    Google Scholar 

  • Ahmedm E, Holmstrom SJ (2014) Siderophores in environmental research: roles and applications. Microb Biotechnol 7:196–208

    Article  CAS  Google Scholar 

  • Alamri SA, Mostafa YS (2009) Effect of nitrogen supply and Azospirillum brasilense Sp-248 on the response of wheat to seawater irrigation. Saudi J Biol Sci 16:101–107

    Article  PubMed  PubMed Central  Google Scholar 

  • Allakhverdiev SI, Sakamoto A, Nishiyama Y et al (2000) Ionic and osmotic effects of NaCl induced inactivation of photosystems I and II in Synechococcus sp. Plant Physiol 123:1047–1056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arshad M, Frankenberger WT Jr (2002) Ethylene: agricultural sources and applications. Kluwer Academic Publishers, New York, p 342

    Book  Google Scholar 

  • Ashraf M (2002) Salt tolerance of cotton: some new advances. Crit Rev Plant Sci 21:1–30

    Article  CAS  Google Scholar 

  • Ashraf M (2004) Some important physiological selection criteria for salt tolerance in plants. Flora 199:361–376

    Article  Google Scholar 

  • Ashraf M, Harris PJC (2004) Potential biochemical indicators of salinity tolerance in plants. Plant Sci 166:3–16

    Article  CAS  Google Scholar 

  • Ashraf M, Hasnain S, Berge O et al (2004) Inoculating wheat seedlings with exopolysaccharide-producing bacteria restricts sodium uptake and stimulates plant growth under salt stress. Biol Fertil Soils 40:157–162

    CAS  Google Scholar 

  • Ashraf M, Hassan S, Hussain F (2005) Exo-polysaccharides (EPS) producing bacteria in improving physic-chemical characteristics of the salt-affected soil. In: Iftikhar AR et al (eds) Proc int conf environmentally sustainable development (ESDew-2005), Abbottabad, Pakistan. COMSAT Institute of Information Technology, Abbottabad. 2005

    Google Scholar 

  • Ashraf M, Hasnain S, Berge O (2006) Effect of exo-polysaccharides producing bacterial inoculation on growth of roots of wheat (Triticum aestivum L.) plants grown in a salt-affected soil. Int J Environ Sci Technol 3:43–51

    Article  CAS  Google Scholar 

  • Ayers RS, Westcot DW (1985) Water quality for agriculture. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Azarbada H, Straalen NMV, Laskowskia R et al (2016) Susceptibility to additional stressors in metal-tolerant soil microbial communities from two pollution gradients. Appl Soil Ecol 98:233–242

    Article  Google Scholar 

  • Azarmi F, Mozafari V, Dahaji PA et al (2016) Biochemical, physiological and antioxidant enzymatic activity responses of pistachio seedlings treated with plant growth promoting rhizobacteria and Zn to salinity stress. Acta Physiol Plant 38:21

    Article  CAS  Google Scholar 

  • Baath E, Diaz-Ravina M, Bakken LR (2005) Microbial biomass, community structure and metal tolerance of a naturally Pb-enriched forest soil. Microb Ecol 50:496–505

    Article  CAS  PubMed  Google Scholar 

  • Baniaghil N, Arzanesh MH, Ghorbanli M et al (2013) The effect of plant growth promoting rhizobacteria on growth parameters, antioxidant enzymes and microelements of canola under salt stress. J Appl Environ Biol Sci 3:17–27

    Google Scholar 

  • Bano A, Fatima M (2009) Salt tolerance in Zea mays (L.) following inoculation with Rhizobium and Pseudomonas. Biol Fertil Soils 45:405–413

    Article  Google Scholar 

  • Barea JM, Pozo M, Azcon R et al (2005) Microbial co-operation in the rhizosphere. J Exp Bot 56:1761–1778

    Article  CAS  PubMed  Google Scholar 

  • Batool R, Hasnain S (2005) Growth stimulatory effects of Enterobacter and Serratia isolated from biofilms on plant growth and soil aggregation. Biotechnology 4:347–353

    Article  Google Scholar 

  • Beresford Q, Bekle H, Phillips H et al (2001) The salinity crisis: landscapes, communities and politics. University of Western Australia Press, Crawley

    Google Scholar 

  • Bhatnagar M, Bhatnagar A (2001) Biotechnological potential of desert algae. In: Trivedi PC (ed) Algal biotechnology. Pointer Publ, Jaipur, pp 338–356

    Google Scholar 

  • Blaylock AD (1994) Soil salinity, salt tolerance and growth potential of horticultural and landscape plants. Co-operative Extension Service, University of Wyoming, Department of Plant, Soil and Insect Sciences, College of Agriculture, Laramie

    Google Scholar 

  • Boston RS, Viitanen PV, Vierling E (1996) Molecular chaperones and protein folding in plants. Plant Mol Biol 32:191–222

    Article  CAS  PubMed  Google Scholar 

  • Breedveld MW, Miller KJ (1994) Cyclic b-glucans of members of the family Rhizobiaceae. Microbiol Rev 58:145–161

    CAS  PubMed  PubMed Central  Google Scholar 

  • Breedveld MW, Miller KJ (1995) Synthesis of glycerophosphorylated cyclic (1,2)-b-glucans in Rhizobium meliloti strain 1021 after osmotic shock. Microbiology 141:583–588

    Article  CAS  PubMed  Google Scholar 

  • Bresler E, Dagan G, Hanks RJ (1982) Statistical analysis of crop yield under controlled line-source irrigation. Soil Sci Soc Am J 46:841–847

    Article  Google Scholar 

  • Bridgman H, Dragovish D, Dodson J (eds) (2008) The Australian physical environment. Oxford University Press, South Melbourne

    Google Scholar 

  • Cao Y, Tian Y, Gao L et al (2016) Attenuating the negative effects of irrigation with saline water on cucumber (Cucumis sativus L.) by application of straw biological-reactor. Agric Water Manag 163:169–179

    Article  Google Scholar 

  • Chen M, Wei H, Cao J et al (2007) Expression of Bacillus subtilis proAB genes and reduction of feedback inhibition of proline synthesis increases proline production and confers osmotolerance in transgenic Arabidopsis. J Biochem Mol Biol 40:396–403

    CAS  PubMed  Google Scholar 

  • Chinnusamy V, Zhu J, Zhu et al (2006) Gene regulation during cold acclimation in plants. Physiol Plant 126:52–61

    Article  CAS  Google Scholar 

  • Chookietwattana K, Maneewan K (2012) Selection of efficient salt-tolerant bacteria containing ACC deaminase for promotion of tomato growth under salinity stress. Soil Environ 31:30–36

    CAS  Google Scholar 

  • Creus CM, Sueldo RJ, Barassi CA (1997) Shoot growth and water status in Azospirillum-inoculated wheat seedlings grown under osmotic and salt stresses. Plant Physiol Biochem 35:939–944

    CAS  Google Scholar 

  • Da Costa MS, Santos H, Gallinski EA (1998) An overview of the role and diversity of compatible solutes in Bacteria and Archaea. Adv Biochem Eng Biotechnol 61:117–153

    PubMed  Google Scholar 

  • Dardanelli MS, Cordoba FJF, Espuny MR et al (2008) Effect of Azospirillum brasilense coinoculated with Rhizobium on Phaseolus vulgaris flavonoids and nod factor production under salt stress. Soil Biol Biochem 40:2713–2721

    Article  CAS  Google Scholar 

  • Davey ME, Toole GA (2000) Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev 64:847–867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Esringua A, Kaynarb D, Turanc M et al (2016) Ameliorative effect of humic acid and plant growth-promoting rhizobacteria (PGPR) on hungarian vetch plants under salinity stress. Commun Soil Sci Plant Anal 47:602–618

    Article  CAS  Google Scholar 

  • Fan P, Chen D, He Y et al (2016) Alleviating salt stress in tomato seedlings using Arthrobacter and Bacillus megaterium isolated from the rhizosphere of wild plants grown on saline-alkaline lands. Int J Phytoremediation 18:1113–1121

    Article  CAS  PubMed  Google Scholar 

  • FAO (2009) High level expert forum – how to feed the world in 2050. Economic and Social Development Department, Food and Agricultural Organization of the United Nations, Rome

    Google Scholar 

  • Garcia-Fraile P, Menendez E, Rivas R (2015) Role of bacterial biofertilizers in agriculture and forestry. AIMS Bioeng 2:183–205

    Article  CAS  Google Scholar 

  • Geremia RA, Cavaignac S, Zorreguieta A et al (1987) A Rhizobium meliloti mutant that forms ineffective pseudonodules in alfalfa produces exopolysaccharide but fails to form b-(1,2)-glucan. J Bacteriol 169:880–884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghafoor A, Muhammed S, Rauf A (1985) Field studies on the reclamation of the Gandhra saline-sodic soil. Pak J Agric Sci 22:154–162

    Google Scholar 

  • Glick BR, Penrose DM, Li J (1998) A model for the lowering of plant ethylene concentration by plant growth promoting bacteria. J Theory Biol 190:63–68

    Article  CAS  Google Scholar 

  • Golpayegani A, Tilebeni HG (2011) Effect of biological fertilizers on biochemical and physiological parameters of basil (Ociumum basilicm L.) medicine plant. Am Eurasian J Agric Environ Sci 11:445–450

    Google Scholar 

  • Grover M, Ali SZ, Sandhya V et al (2011) Role of microorganisms in adaptation of agriculture crops to abiotic stresses. World J Microbiol Biotechnol 27:1231–1240

    Article  Google Scholar 

  • Guy CL (1990) Cold acclimation and freezing stress tolerance: role of protein metabolism. Annu Rev Plant Physiol Plant Mol Biol 41:187–223

    Article  CAS  Google Scholar 

  • Habib SH, Kausar H, Saud HM (2016) Plant growth-promoting rhizobacteria enhance salinity stress tolerance in okra through ros-scavenging enzymes. Bio Med Res Int. doi.org/10.1155/2016/6284547

    Google Scholar 

  • Halliwell B, Gutteridge JMC (1999) Free radicals in biology and medicine. Oxford University Press, Oxford

    Google Scholar 

  • Hamdali H, Bouizgarne B, Hafidi M (2008) Screening for rock phosphate solubilizing Actinomycetes from Moroccan phosphate mines. Appl Soil Ecol 38:12–19

    Article  Google Scholar 

  • Han HS, Lee KD (2005) Plant growth promoting rhizobacteria effect on antioxidant status, photosynthesis, mineral uptake and growth of lettuce under soil salinity. Res J Agric Biol Sci 1:210–215

    Google Scholar 

  • Hasanuzzaman M, Fujita M, Islam MN (2009) Performance of four irrigated rice varieties under different levels of salinity stress. Int J Integr Biol 6:85–90

    Google Scholar 

  • Hasegawa P, Bressan RA, Zhu JK (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51:463–499

    Article  CAS  PubMed  Google Scholar 

  • Hassan AA, Mahgoub SAM (2011) Salt inducible-proteins and conjugal gene transfer of halotolerant staphylococcus isolated from salinity soil. Egypt J Genet Cytol 40:263–280

    Google Scholar 

  • Haynes RJ, Swift RS (1990) Stability of soil aggregates in relation to organic constituents and soil water content. J Soil Sci 41:73–83

    Article  CAS  Google Scholar 

  • He YH, Peng YJ, Wu ZS (2015) Survivability of Pseudomonas putida RS-198 in liquid formulations and evaluation its growth-promoting abilities on cotton. Dang J Anim Plant Sci 3:180–189

    Google Scholar 

  • Hezayen FF, Younis MAM, Hagaggi NSA (2010) Oceanobacillus aswanensis strain FS10 sp. Nov., an extremely halotolerant bacterium isolated from salted fish sauce in Aswan City, Egypt. Glob J Mol Sci 5:1–6

    CAS  Google Scholar 

  • Horneck DA, Ellsworth JW, Hopkins BG (2007) Managing salt-affected soils for crop production. A Pacific Northwest Extension Publication. Oregon State University, Corvallis

    Google Scholar 

  • Hossain MM, Das KC, Yesmin S et al (2016) Effect of plant growth promoting rhizobacteria (PGPR) in seed germination and root-shoot development of chickpea (Cicer arietinum L.) under different salinity condition. Res Agric Livest Fish 3:105–113

    Article  Google Scholar 

  • Hua SST, Tsai VY, Lichens MGM et al (1982) Accumulation of amino acids in Rhizobium sp. strain wr1001 in response to sodium chloride salinity. Appl Environ Microbiol 44:135–140

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hulsebusch C, Wichern F, Hemann H et al (2007) Organic agriculture in the tropics and subtropics-status and perspectives, Supplement No. 89 to the Journal of Agriculture and Rural Development in the Tropics and Subtropics. Kassel University Press, Kassel

    Google Scholar 

  • Hussain MB, Mehboob I, Zahir ZA et al (2009) Potential of Rhizobium spp. for improving growth and yield of rice. Soil Environ 28:49–55

    Google Scholar 

  • Hussain MB, Zahir ZA, Asghar HN et al (2014a) Can catalase and EPS producing rhizobia ameliorate drought in wheat. Int J Agric Biol 16:3–13

    CAS  Google Scholar 

  • Hussain MB, Zahir ZA, Asghar HN et al (2014b) Scrutinizing rhizobia to rescue maize growth under reduced water conditions. Soil Sci Soc Am J 78:538–545

    Article  CAS  Google Scholar 

  • Hussain MB, Zahir ZA, Asghar HN et al (2016) Efficacy of rhizobia for improving photosynthesis, productivity and mineral nutrition of maize. Clean Soil Air Water 44:1–8

    Article  CAS  Google Scholar 

  • Ilyas N, Bano A, Iqbal S (2012) Physiological, biochemical and molecular characterization of Azospirillum spp. isolated from maize under water stress. Pak J Bot 44:71–80

    CAS  Google Scholar 

  • Ingram-smith C, Miller KJ (1998) Effects of ionic and osmotic strength on the glucosyltransferase of Rhizobium meliloti responsible for cyclic b-(1,2)-glucan biosynthesis. Appl Environ Microbiol 64:1290–1297

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jenkins MB, Virginia RA, Jarrel WM (1987) Rhizobial ecology of the woody legume mesquite (Prosopis glandulosa) in the Sonoran desert. Appl Environ Microbiol 33:36–40

    Google Scholar 

  • Jha CK, Saraf M (2015) Plant growth promoting Rhizobacteria (PGPR): a review. J Agric Res Dev 5:108–119

    Google Scholar 

  • Jha Y, Subramanian RB (2014) PGPR regulate caspase-like activity, programmed cell death, and antioxidant enzyme activity in paddy under salinity. Physiol Mol Biol Plants 20:201–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jha Y, Subramanian RB, Patel S (2011) Combination of endophytic and rhizospheric plant growth promoting rhizobacteria in Oryza sativa shows higher accumulation of osmoprotectant against saline stress. Acta Physiol Plant 33:797–802

    Article  Google Scholar 

  • Jittawuttipoka T, Planchon M, Spalla O et al (2013) Multidisciplinary evidences that Synechocystis PCC6803 exopolysaccharides operate in cell sedimentation and protection against salt and metal stresses. PLoS One 8:e55564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joshi P, Bhatt AB (2011) Diversity and function of plant growth promoting rhizobacteria associated with wheat rhizosphere in North Himalayan region. Int J Environ Sci 1:1135–1143

    Google Scholar 

  • Jouyban Z (2012) The effects of salt stress on plant growth. Tech J Eng Appl Sci 2:7–10

    CAS  Google Scholar 

  • Kalinowski BE, Liermann LJ, Brantley SL et al (2000) X-ray photoelectron evidence for bacteria-enhanced dissolution of hornblende. Geochim Cosmochim Acta 64:1331–1343

    Article  CAS  Google Scholar 

  • Karabal E, Yucel M, Oktem HA (2003) Antioxidant responses of tolerant and sensitive barley cultivars to boron toxicity. Plant Sci 164:925–933

    Article  CAS  Google Scholar 

  • Kiani MZ, Sultan T, Ali A et al (2016) Application of ACC-deaminase containing PGPR improves sunflower yield under natural salinity stress. Pak J Bot 1:53–56

    Google Scholar 

  • Kim JT, Kim SD (2008) Suppression of bacterial wilt with Bacillus subtilis SKU48-2 strain. Korean J Microbiol Biotechnol 36:115–120

    Google Scholar 

  • Kloepper JW, Lifshitz R, Zablotwicz RM (1989) Free-living bacterial inocula for enhancing crop productivity. Trends Biotechnol 7:39–43

    Article  Google Scholar 

  • Koca M, Bor M, Ozdemir F (2007) The effect of salt stress on lipid peroxidation, antioxidative enzymes and proline content of sesame cultivars. Environ. Exp Bot 60:344–351

    Article  CAS  Google Scholar 

  • Kohler J, Caravaca F, Roldan A (2010) An AM fungus and a PGPR intensify the adverse effects of salinity on the stability of rhizosphere soil aggregates of Lactuca sativa. Soil Biol Biochem 42:429–434

    Article  CAS  Google Scholar 

  • Kraemer SM (2004) Iron oxide dissolution and solubility in the presence of siderophores. Aquat Sci 66:3–18

    Article  CAS  Google Scholar 

  • Lewandowski Z (2000) In: Evans LV (ed) Biofilms: recent advances in their study and control. Harwood Academic Publishers, Amsterdam., 2000, pp 1–17

    Google Scholar 

  • Li P, Song A, Li Z et al (2008) Silicon ameliorates manganese toxicity by regulating manganese transport and antioxidant reactions in rice (Oryza sativa L.) Plant Soil 354:407–419

    Article  CAS  Google Scholar 

  • Li HW, Zang BS, Deng XW et al (2011) Overexpression of the trehalose-6-phosphate synthase gene OsTPS1 enhances abiotic stress tolerance in rice. Planta 234:1007–1018

    Article  CAS  PubMed  Google Scholar 

  • Liaqat I, Sumbal F, Sabri AN (2009) Tetracycline and chloramphenicol efficiency against selected biofilm forming bacteria. Curr Microbiol 59:212–220

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Luo Y, Mohamed OA et al (2014) Global transcriptome analysis of Mesorhizobium alhagi CCNWXJ12-2 under salt stress. BMC Microbiol. doi:10.1186/s12866-014-0319-y

  • Mahmood A, Turgay OC, Farooq M et al (2016) Seed biopriming with plant growth promoting rhizobacteria: a review. FEMS Microbiol Ecol 92:fiw112

    Article  PubMed  CAS  Google Scholar 

  • Manchanda G, Garg N (2008) Salinity and its effects on the functional biology of legumes. Acta Physiol Plant 30:595–618

    Article  CAS  Google Scholar 

  • Marino R, Ponnaiah M, Krajewski P et al (2009) Addressing drought tolerance in maize by transcriptional profiling and mapping. Mol Gen Genomics 218:163–179

    Article  CAS  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and peppers. Plant Sci 166:525–530

    Article  CAS  Google Scholar 

  • McDowell RW (ed) (2008) Environmental impacts of pasture-based farming. CAB International, Oxfordshire

    Google Scholar 

  • Metwali EMR, Abdelmoneim TS, Bakheit MA (2015) Alleviation of salinity stress in Faba bean (Vicia faba L.) plants by inoculation with plant growth promoting rhizobacteria (PGPR). Plant Omics J 8:449–460

    Google Scholar 

  • Miransaria M, Smith DL (2009) Alleviating salt stress on soybean (Glycine max L. Merr.) Bradyrhizobium japonicum symbiosis, using signal molecule genistein. Eur J Soil Biol 45:146–152

    Article  CAS  Google Scholar 

  • Moral AD, Prado B, Quesda E et al (1988) Numerical taxonomy of moderately halophilic Gram negative rods from an inland saltern. J Gen Microbiol 134:733–741

    Google Scholar 

  • Morgan PW, Drew MC (1997) Ethylene and plant responses to stress. Plant Physiol 100:620–630

    Article  CAS  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    Article  CAS  PubMed  Google Scholar 

  • Munns R (2005) Genes and salt tolerance: bringing them together. New Phytol 167:645–663

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Rawson HM (1999) Effect of salinity on salt accumulation and reproductive development in the apical meristem of wheat and barley. Aust J Plant Physiol 26:459–464

    Article  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Husain S, Rivelli AR et al (2002) Avenues for increasing salt tolerance of crops, and the role of physiologically based selection traits. Plant Soil 247:93–105

    Article  CAS  Google Scholar 

  • Nadeem SM, Zahir ZA, Naveed M et al (2009) Rhizobacteria containing ACC-deaminase confer salt tolerance in maize grown on salt-affected fields. Can J Microbiol 55:1302–1309

    Article  CAS  PubMed  Google Scholar 

  • Nadeem SM, Zahir ZA, Naveed M, Nawaz S (2013) Mitigation of salinity-induced negative impact on the growth and yield of wheat by plant growth-promoting rhizobacteria in naturally saline conditions. Ann Microbiol 63(1):225–232

    Google Scholar 

  • Nadeem SM, Ahmad M, Naveed M et al (2016) Relationship between in vitro characterization and comparative efficacy of plant growth-promoting rhizobacteria for improving cucumber salt tolerance. Arch Microbiol 198:379–387

    Article  CAS  PubMed  Google Scholar 

  • Naveed M, Hussain MB, Zahir ZA et al (2014a) Drought stress amelioration in wheat through inoculation with Burkholderia phytofirmans strain PsJN. Plant Growth Regul 73:121–131

    Article  CAS  Google Scholar 

  • Naveed M, Mitter B, Thomas G et al (2014b) Increased drought stress resilience of maize through endophytic colonization by Burkholderia phytofirmans PsJN and Enterobacter sp. FD 17. Environ Exp Bot 97:30–39

    Article  CAS  Google Scholar 

  • Naz I, Bano A, Tamoor-ul-Hassan (2009) Isolation of phytohormones producing plant growth promoting rhizobacteria from weeds growing in Khewra salt range, Pakistan and their implication in providing salt tolerance to Glycine max L. Afr J Biotechnol 8:5762–5766

    Article  CAS  Google Scholar 

  • Netondo GW, Onyango JC, Beck E (2004) Sorghum and salinity: II. Gas exchange and chlorophyll fluorescence of sorghum under salt stress. Crop Sci 44:806–811

    Article  Google Scholar 

  • Nia SH, Zarea MJ, Rejali F et al (2012) Yield and yield components of wheat as affected by salinity and inoculation with Azospirillum strains from saline or non-saline soil. J Saudi Soc Agric Sci 11:113–121

    Google Scholar 

  • Nicolaus B, Manca M, Lama L et al (2001) Lipid modulation by environmental stresses in two models of extremophiles isolated from Antarctica. Polar Biol 24:1–8

    Article  Google Scholar 

  • Nishma KS, Adrisyanti B, Anusha SH et al (2014) Induced growth promotion under in vitro salt stress tolerance on Solanum lycopersicum by Fluorescent pseudomonads associated with rhizosphere. Int J Appl Sci Eng Res 3:422–430

    Google Scholar 

  • Oster JD, Shainberg I, Abrol IP (1996) Reclamation of salt-affected soil. In: Agassi M (ed) Soil erosion, conservation, and rehabilitation, vol 414. Marcel Dekker, New York, pp 315–352

    Google Scholar 

  • Palaniyandi SA, Damodharan K, Yang SH et al (2014) Streptomyces sp. strain PGPA39 alleviates salt stress and promotes growth of ‘Micro Tom’ tomato plants. J Appl Microbiol 117:766–773

    Article  CAS  PubMed  Google Scholar 

  • Pandit A, Rai V, Bal S et al (2010) Combining QTL mapping and transcriptome profiling of bulked RILs for identification of functional polymorphism for salt tolerance genes in rice (Oryza sativa L.) Mol Gen Genomics 284:121–136

    Article  CAS  Google Scholar 

  • Parida AK, Das AB (2005) Salt tolerance and salinity effect on plants: a review. Ecotoxicol Environ Saf 60:324–349

    Article  CAS  PubMed  Google Scholar 

  • Parvaiz A, Satyawati S (2008) Salt stress and phytobiochemical responses of plants: a review. Plant Soil Environ 54:89–99

    CAS  Google Scholar 

  • Patten CL, Glick BR (2002) Role of Pseudomonas putida indole acetic acid in development of the host plant root system. Appl Environ Microbiol 68:3795–3801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paul D, Nair S (2008) Stress adaptations in a plant growth promoting rhizobacterium (PGPR) with increasing salinity in the coastal agricultural soils. J Basic Microbiol 48:378–384

    Article  CAS  PubMed  Google Scholar 

  • Pereira S, Zille A, Micheletti E et al (2009) Complexity of cyanobacterial exopolysaccharides: composition, structures, inducing factors and putative genes involved in their biosynthesis and assembly. FEMS Microbiol Rev 33:917–941

    Article  CAS  PubMed  Google Scholar 

  • Pratt LA, Kolter R (1998) Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili. Mol Microbiol 30:285–293

    Article  CAS  PubMed  Google Scholar 

  • Qadir M, Schubert S (2002) Degradation processes and nutrient constraints in sodic soils. Land Degrad Dev 13:275–294

    Article  Google Scholar 

  • Qadir M, Quillerou, Nangia V et al (2014) Economics of salt-induced land degradation and restoration. Nat Res Forum 38:282–295

    Article  Google Scholar 

  • Qurashi AW, Sabri AN (2011) Osmoadaptation and plant growth promotion by salt tolerant bacteria under salt stress. Afr J Microbiol Res 5:3546–3554

    CAS  Google Scholar 

  • Qurashi AW, Sabri AN (2012) Bacterial exopolysaccharide and biofilm formation stimulate chickpea growth and soil aggregation under salt stress. Braz J Microbiol:1183–1191. ISSN 1517-8382

    Google Scholar 

  • Qurashi AW, Sabri AN (2016) Induction of Osmotolerance by Staphylococcus sciuri HP3 in Lens esculenta Var. Masoor 93 under NaCl stress. Pak J Life Soc Sci 14:42–51

    Google Scholar 

  • Rajput L, Imran A, Mubeen F et al (2013) Salt-tolerant PGPR strain Planococcus rifietoensis promotes the growth and yield of wheat (Triticum aestivum L.) cultivated in saline soil. Pak J Bot 45:1955–1962

    Google Scholar 

  • Ramadoss D, Lakkineni VK, Bose P (2013) Mitigation of salt stress in wheat seedlings by halotolerant bacteria isolated from saline habitats. Springer Plus 2:1–7

    Google Scholar 

  • Reddy PS, Thirulogachandar V, Vaishnavi CS et al (2011) Molecular characterization and expression of a gene encoding cytosolic Hsp90 from Pennisetum glaucum and its role in abiotic stress adaptation. Gene 474:29–38

    Article  CAS  PubMed  Google Scholar 

  • Rekha PD, Lai WA, Arun AB et al (2007) Effect of free and encapsulated Pseudomonas putida CC-FR2-4 and Bacillus subtilis CC-pg104 on plant growth under gnotobiotic conditions. Bioresour Technol 98:447–451

    Article  CAS  PubMed  Google Scholar 

  • Roohi A, Ahmed I, Iqbal M et al (2012) Preliminary isolation and characterization of halotolerant and halophilic bacteria from salt mines of Karak. Pakistan. Pak J Bot 44:365–370

    CAS  Google Scholar 

  • Rubiano-Labrador C, Bland C, Miotello G (2015) Salt stress induced changes in the exoproteome of the halotolerant bacterium Tistlia consotensis deciphered by proteogenomics. PLoS One. doi:10.1371/journal.pone.0135065

  • Sahi C, Singh A, Kumar K et al (2006) Salt stress response in rice: genetics, molecular biology, and comparative genomics. Funct Integr Genomics 6:263–284

    Article  CAS  PubMed  Google Scholar 

  • Sairam RK, Tyagi A (2004) Physiology and molecular biology of salinity stress tolerance in plants. Curr Sci 86:407–421

    CAS  Google Scholar 

  • Salta M, Warton JA, Blache Y et al (2013) Marine biofilms on artificial surfaces: structure and dynamics. Environ Microbiol 15:2879–2893

    PubMed  Google Scholar 

  • Salvi S, Tuberosa R (2005) To clone or not to clone plant QTLs: present and future challenges. Trends Plant Sci 10:297–304

    Article  CAS  PubMed  Google Scholar 

  • Sandhya V, Ali SZ, Grover M et al (2009) Alleviation of drought stress effects in sunflower seedlings by exopolysaccharides producing Pseudomonas putida strain P45. Biol Fertil Soils 46:17–26

    Article  CAS  Google Scholar 

  • Santos H, da Costa MS (2002) Compatible solutes of organisms that live in hot saline environments. Environ Microbiol 4:501–509

    Article  CAS  PubMed  Google Scholar 

  • Santoyoa G, Hagelsiebb GM, Mosquedac MDCO et al (2016) Plant growth-promoting bacterial endophytes. Microbiol Res 183:92–99

    Article  CAS  Google Scholar 

  • Scotter DR (1978) Preferential solute movement through larger soil voids. I. Some computations using simple theory. Soil Res 16:257–267

    Article  CAS  Google Scholar 

  • See-Too WS, Convey P, Pearce DA et al (2016) Complete genome of Planococcus rifietoensis M8T, a halotolerant and potentially plant growth promoting bacterium. J Biotechnol 221:114–115

    Article  CAS  PubMed  Google Scholar 

  • Sen S, Chandrasekhar CN (2015) Effect of PGPR on enzymatic activities of rice (Oryza sativa L.) under salt stress. Asian J Plant Sci Res 5:44–48

    Google Scholar 

  • Shainberg I, Letey J (1984) Response of soils to sodic and saline conditions. Hilgardia 52:1–57

    Article  Google Scholar 

  • Shanker AK, Venkateswarlu B (2011) Abiotic stress in plants–mechanisms and adaptations. In Tech, Rijeka, p ix

    Book  Google Scholar 

  • Shrivastava P, Kumar R (2015) Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J Biol Sci 22:123–131

    Article  CAS  PubMed  Google Scholar 

  • Singh RP, Jha PN (2016) Alleviation of salinity-induced damage on wheat plant by an ACC deaminase-producing halophilic bacterium Serratia sp. SL-12 isolated from a salt lake. Symbiosis 69:101–111

    Article  CAS  Google Scholar 

  • Singh RP, Jha P, Jha PN (2015) The plant-growth-promoting bacterium Klebsiella sp. SBP-8 confers induced systemic tolerance in wheat (Triticum aestivum) under salt stress. J Plant Physiol 184:57–67

    Article  CAS  PubMed  Google Scholar 

  • Song JQ, Fujiyama H (1996) Ameliorative effects of potassium on rice and tomato subjected to sodium salinization. Soil Sci Plant Nutr 42:493–501

    Article  Google Scholar 

  • Southard RJ, Buol SW (1988) Subsoil saturated hydraulic conductivity in relation to soil properties in the North Carolina Coastal Plain. Soil Sci Soc Am J 52:1091–1094

    Article  Google Scholar 

  • Stajner D, Kevresan S, Gasic O et al (1997) Nitrogen and Azotobacter chroococcum enhance oxidative stress tolerance in sugar beet. Biol Plant 39:441–445

    Article  CAS  Google Scholar 

  • Sutherland IW (2001) Biofilm exopolysaccharides: a strong and sticky framework. Microbiology 147:3–9

    Article  CAS  PubMed  Google Scholar 

  • Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Ann Bot 91:503–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tiwari S, Singh P, Tiwari R et al (2011) Salt-tolerant rhizobacteria-mediated induced tolerance in wheat (Triticum aestivum) and chemical diversity in rhizosphere enhance plant growth. Biol Fertil Soils 47:907–916

    Article  CAS  Google Scholar 

  • Turan S, Cornish K, Kumar S (2012) Salinity tolerance in plants: breeding and genetic engineering. AJCS 6:1337–1348

    Google Scholar 

  • Upadhyay SK, Singh DP, Saikia R (2009) Genetic diversity of plant growth promoting rhizobacteria isolated from rhizosphere soils of wheat under saline condition. Curr Microbiol 59:489–496

    Article  CAS  PubMed  Google Scholar 

  • Valko M, Rhodes CJ, Moncol J et al (2006) Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 160:1–40

    Article  CAS  PubMed  Google Scholar 

  • Van BF, Vranova E, Dat JF et al (2001) The role of active oxygen species in plant signal transduction. Plant Sci 161:405–414

    Article  Google Scholar 

  • Vassileva M, Azcon R, Barea JM et al (1999) Effect of encapsulated cells of Enterobacter sp. on plant growth and phosphate uptake. Bioresour Technol 67:229–232

    Article  CAS  Google Scholar 

  • Vejan P, Abdullah R, Khadiran T et al (2016) Role of plant growth promoting rhizobacteria in agricultural sustainability-a review. Molecules 21:1–17

    Article  CAS  Google Scholar 

  • Ventosa A, Ramose A, Kocur M (1983) Moderately halophilic gram-positive cocci from hyper-saline environment. Syst Appl Microbiol 4:564–570

    Article  CAS  PubMed  Google Scholar 

  • Volker U, Engelmann S, Maul B et al (1994) Analysis of the induction of general stress proteins of Bacillus subtilis. Microbiology 140:741–752

    Article  PubMed  Google Scholar 

  • Walia H, Wilson C, Zeng L et al (2007) Genome-wide transcriptional analysis of salinity stressed japonica and indica rice genotypes during panicle initiation stage. Plant Mol Biol 63:609–623

    Article  CAS  PubMed  Google Scholar 

  • Wang SY, Wang CY, Welburn AR (1990) Role of ethylene under stress conditions. In: Alscher R, Cumming J (eds) Stress responses in plants adaptation and acclimation mechanisms. Wiley-Liss, New York, pp 147–173

    Google Scholar 

  • Wang Q, Dodd IC, Belimov AA et al (2016) Rhizosphere bacteria containing 1-aminocyclopropane-1- carboxylate deaminase increase growth and photosynthesis of pea plants under salt stress by limiting Na+ accumulation. Funct Plant Biol 43:161–172

    Article  CAS  Google Scholar 

  • Wu ZS, Zhao YF, Kaleem I et al (2011) Preparation of calcium-alginate microcapsuled microbial fertilizer coating Klebsiella oxytoca Rs-5 and its performance under salinity stress. Eur J Soil Biol 47:152–159

    Article  CAS  Google Scholar 

  • Wu ZS, Guo LN, Qin SH et al (2012) Encapsulation of R. planticola Rs-2 from alginate-starch-bentonite and its controlled release and swelling behavior under simulated soil conditions. J Ind Microbiol Biotechnol 39:317–327

    Article  CAS  PubMed  Google Scholar 

  • Wu Z, Peng Y, Guo L et al (2014) Root colonization of encapsulated Klebsiella oxytoca Rs-5 on cotton plants and its promoting growth performance under salinity stress. Eur J Soil Biol 60:81–87

    Article  CAS  Google Scholar 

  • Yang J, Kloepper, Ryu CM (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14:1–4

    Article  CAS  PubMed  Google Scholar 

  • Yao L, Wu Z, Zheng Y et al (2010) Growth promotion and protection against salt stress by Pseudomonas putida Rs-198 on cotton. Eur J Soil Biol 46:49–54

    Article  CAS  Google Scholar 

  • Yuan-yuan Z, Hai-tao Y, Zai-qiang S et al (2008) Physiochemical characters and ability to promote cotton germination of bacteria strains Rs-5 and Rs-198 under salt stress. Sci Agric Sin 41:1326–1332

    Google Scholar 

  • Zahran HH (1999) Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol Mol Biol Rev 63:968–989

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang JH, Liu YP, Pan QH et al (2006) Changes in membrane associated H+ − ATPase activities and amounts in young grape plants during the cross adaptation to temperature stresses. Plant Sci 170:768–777

    Article  CAS  Google Scholar 

  • Zhang H, Kim MS, Sun Y et al (2008) Soil bacteria confer plant salt tolerance by tissue-specific regulation of the sodium transporter HKT1. Mol Plant-Microbe Interact 21:737–744

    Google Scholar 

  • Zheng X, Chen B, Lu G et al (2009) Overexpression of a NAC transcription factor enhances rice drought and salt tolerance. Biochem Biophys Res Commun 379:985–989

    Article  CAS  PubMed  Google Scholar 

  • Zhong-hong W, Ma J et al (2009) Identification of salt tolerant promoting growth bacteria Rs-198 and study on co-culture with Rs-5. Biotechnology 19:63–66

    Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Bol 53:247–273

    Article  CAS  Google Scholar 

  • Zou N, Dort PJ, Marcar NE (1995) Interaction of salinity and rhizobial strains on growth and N2 fixation by Acacia ampliceps. Soil Biol Biochem 27:409–413

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful for the support and encouragement by the colleagues from the Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hafiz Naeem Asghar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Ullah, S., Hussain, M.B., Khan, M.Y., Asghar, H.N. (2017). Ameliorating Salt Stress in Crops Through Plant Growth-Promoting Bacteria. In: Singh, D., Singh, H., Prabha, R. (eds) Plant-Microbe Interactions in Agro-Ecological Perspectives. Springer, Singapore. https://doi.org/10.1007/978-981-10-5813-4_28

Download citation

Publish with us

Policies and ethics