Beneficial Bacteria for Disease Suppression and Plant Growth Promotion



Beneficial plant-microbe interactions in the rhizosphere are major factors in determining soil fertility and thus plant productivity and health. Plant growth-promoting bacteria (PGPB) can establish intimate associations with host plants via a great variety of mechanisms, which enhance plant growth and protect them from various biotic (e.g., phytopathogens) and abiotic stresses (e.g., drought, extreme temperature, salinity, and heavy metals). To meet the needs of sustainable and eco-friendly approach of agriculture, the use of transgenic plants and PGPB has been recommended as a part of mainstream agricultural applications. Since PGPB inoculation is more easily manipulated compared to transgenic plants, the application of PGPB in agriculture has attracted increasing attention. This article reviews the importance of plant-microbe interactions to the development of efficient PGPB inoculants and progresses of the recent researches on the role of PGPB to improve plant growth and health for sustainable agriculture.


Plant-microbe interactions Plant growth-promoting bacteria (PGPB) Bacterial colonization Sustainable agriculture 



Y. Ma thankfully acknowledges the Portuguese Foundation for Science and Technology (FCT) for awarding a postdoctoral research grant (SFRH/BPD/76028/2011). This work is financed by National Funds through the FCT within the project UID/BIA/04004/2013.


  1. Abdallah RAB, Mokni-Tlili S, Nefzi A, Jabnoun-Khiareddine H, Daami-Remadi M (2016) Biocontrol of fusarium wilt and growth promotion of tomato plants using endophytic bacteria isolated from Nicotiana glauca organs. Biol Control 97:80–88CrossRefGoogle Scholar
  2. Ali S, Charles TC, Glick BR (2014) Amelioration of high salinity stress damage by plant growth-promoting bacterial endophytes that contain ACC deaminase. Plant Physiol Biochem 80:160–167CrossRefPubMedGoogle Scholar
  3. Aloni R, Aloni E, Langhans M, Ullrich CI (2006) Role of cytokinin and auxin in shaping root architecture: regulating vascular differentiation, lateral root initiation, root apical dominance and root gravitropism. Ann Bot 97:883–893CrossRefPubMedPubMedCentralGoogle Scholar
  4. Anitha A, Rebeeth M (2010) Degradation of fungal cell walls of phytopathogenic fungi by lytic enzyme of Streptomyces griseus. African J Plant Sci 4(3):61–66Google Scholar
  5. Arkhipova TN, Prinsen E, Veselov SU, Martinenko EV, Melentiev AI, Kudoyarova GR (2007) Cytokinin producing bacteria enhance plant growth in drying soil. Plant Soil 292:305–315CrossRefGoogle Scholar
  6. Arora NK, Kang SC, Kim MJ, Maheshwari DK (2007) Role of chitinases and beta 1.3-glucanases produced by fluorescent Pseudomonas and in vitro inhibition of Phytophthora capsici and Rhizoctonia solani. Can J Microbiol 53:207–212CrossRefPubMedGoogle Scholar
  7. Arora NK, Khare E, Verma A, Sahu RK (2008) In vivo control of Macrophomina phaseolina by a chitinase and β-1, 3-glucanase- producing pseudomonad NDN1. Symbiosis 46:129–135Google Scholar
  8. Avis TJ, Gravel V, Antoun H, Tweddell RJ (2008) Multifaceted beneficial effects of rhizosphere microorganisms on plant health and productivity. Soil Biol Biochem 40:1733–1740CrossRefGoogle Scholar
  9. Bacilio-Jiménez M, Aguilar-Flores S, Ventura-Zapata E, Pérez-Campos E, Bouquelet S, Zenteno E (2003) Chemical characterization of root exudates from rice (Oryza sativa) and their effects on the chemotactic response of endophytic bacteria. Plant Soil 249:271–277CrossRefGoogle Scholar
  10. Badri DV, Weir TL, van der Lelie D, Vivanco JM (2009) Rhizosphere chemical dialogues: plant-microbe interactions. Curr Opin Biotechnol 20:642–650CrossRefPubMedGoogle Scholar
  11. Bais HP, Park SW, Weir TL, Callaway RM, Vivanco JM (2004) How plants communicate using the underground information superhighway? Trends Plant Sci 9:26–32CrossRefPubMedGoogle Scholar
  12. Bhatia S, Maheshwari DK, Dubey RC, Arora DS, Bajpai VK, Kang SC (2008) Beneficial effects of fluorescent Pseudomonas on seed germination, growth promotion and suppression of charcoal rot in groundnut. (Arachis hypogaea L). J Microbiol Biotechnol 18:1578–1583Google Scholar
  13. Chen YP, Rekha PD, Arun AB, Shen FT, Lai WA, Young CC (2006) Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Appl Soil Ecol 34:33–41CrossRefGoogle Scholar
  14. Cheng Z, Park E, Glick BR (2007) 1-aminocyclopropane-1-carboxylate deaminase from pseudomonas putida UW4 facilitates the growth of canola in the presence of salt. Can J Microbiol 53:912–918CrossRefPubMedGoogle Scholar
  15. Compant S, Duffy B, Nowak J, Clément C, Barka EA (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71(9):4951–4959CrossRefPubMedPubMedCentralGoogle Scholar
  16. Compant S, Clément C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678CrossRefGoogle Scholar
  17. de Boer M, Born P, Kindt F, Keurentjes JJB, van der Sluis I, van Loon LC, Bakker PAHM (2003) Control of Fusarium wilt of radish by combining Pseudomonas putida strains that have different diseases-suppressive mechanisms. Phytopathology 93:626–632CrossRefPubMedGoogle Scholar
  18. Dell’Amico E, Cavalca L, Andreoni V (2008) Improvement of Brassica napus growth under cadmium stress by cadmium-resistant rhizobacteria. Soil Biol Biochem 40:74–84CrossRefGoogle Scholar
  19. Duffy BK (2001) Competition. In: Maloy OC, Murray TD (eds) Encyclopedia of plant pathology. Wiley, New York, pp 243–244Google Scholar
  20. Duffy BK, Défago G (1999) Environmental factors modulating antibiotic and siderophore biosynthesis by Pseudomonas fluorescens biocontrol strains. Appl Environ Microbiol 65:2429–2438PubMedPubMedCentralGoogle Scholar
  21. Ehrlich HL (1990) Mikrobiologische und biochemische Verfahren stechnik. In: Einsele A, Finn RK, Samhaber W (eds) Geomicrobiology, Second edn. VCH Verlagsgesellschaft, WeinheimGoogle Scholar
  22. Ferrara FIS, Oliveira ZM, Gonzales HHS, Floh EIS, Barbosa HR (2012) Endophytic and rhizospheric enterobacteria isolated from sugar cane have different potentials for producing plant growth-promoting substances. Plant Soil 353:409–417CrossRefGoogle Scholar
  23. Glass ADM (1989) Plant nutrition: an introduction to current concepts. Jones and Bartlett Publishers, Boston, p 234Google Scholar
  24. Glick BR, Todorovic B, Czarny J, Cheng Z, Duan J, McConkey B (2007) Promotion of plant growth by bacterial ACC deaminase. Crit Rev Plant Sci 26:227–242CrossRefGoogle Scholar
  25. Gray EJ, Smith DL (2005) Intracellular and extracellular PGPR: commonalities and distinctions in the plant-bacterium signaling processes. Soil Biol Biochem 37:395–412CrossRefGoogle Scholar
  26. Grichko VP, Glick BR (2001) Amelioration of flooding stress by ACC deaminase-containing plant growth-promoting bacteria. Plant Physiol Biochem 39:11–17CrossRefGoogle Scholar
  27. Gupta G, Panwar J, Jha PN (2013) Natural occurrence of Pseudomonas aeruginosa, a dominant cultivable diazotrophic endophytic bacterium colonizing Pennisetum glaucum (L.) R. Br. Appl Soil Ecol 64:252–261CrossRefGoogle Scholar
  28. Gupta G, Parihar SS, Ahirwar NK, Snehi SK, Singh V (2015) Plant growth promoting rhizobacteria (PGPR): current and future prospects for development of sustainable agriculture. J Microb Biochem Technol 7:96–102Google Scholar
  29. Gutierrez-Manero FJ, Ramos B, Probanza A, Mehouachi J, Talon M (2001) The plant growth promoting rhizobacteria Bacillus pumilus and Bacillus licheniformis produce high amounts of physiologically active gibberellins. Physiol Plant 111:206–211CrossRefGoogle Scholar
  30. Haas D, Défago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3:307–319CrossRefPubMedGoogle Scholar
  31. Hardoim PR, van Overbeek LS, van Elsas JD (2008) Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol 16:463–471CrossRefPubMedGoogle Scholar
  32. Humphris SN, Bengough AG, Griffiths BS, Kilham K, Rodger S, Stubbs V, Valentine TA, Young IM (2005) Root cap influences root colonization by Pseudomonas fluorescens SBW25 on maize. FEMS Microbiol Ecol 54:123–130CrossRefPubMedGoogle Scholar
  33. Hung PQ, Kumar SM, Govindsamy V, Annapurna K (2007) Isolation and characterization of endophytic bacteria. Biol Fertil Soils 44:155–162CrossRefGoogle Scholar
  34. Hurek T, Reinhold-Hurek B (2003) Azoarcus sp. strain BH72 as a model for nitrogen-fixing grass endophytes. J Biotechnol 106:169–178CrossRefPubMedGoogle Scholar
  35. Hussain A, Hasnain S (2009) Cytokinin production by some bacteria: its impact on cell division in cucumber cotyledons. Afr J Microbiol Res 3(11):704–712Google Scholar
  36. Kang SM, Radhakrishnan R, You YH, Joo GJ, Lee IJ, Lee KE, Kim JH (2014) Phosphate solubilizing Bacillus megaterium mj1212 regulates endogenous plant carbohydrates and amino acids contents to promote mustard plant growth. Indian J Microbiol 54(4):427–433CrossRefPubMedPubMedCentralGoogle Scholar
  37. Khabbaz SE, Zhang L, Cáceres LA, Sumarah M, Wang A, Abbas PA (2015) Characterisation of antagonistic bacillus and pseudomonas strains for biocontrol potential and suppression of damping-off and root rot diseases. Ann App Biol 166:456–471CrossRefGoogle Scholar
  38. Khan AL, Halo BA, Elyassi A, Ali S, Al-Hosni K, Hussain J, Al-Harrasi A, Lee IJ (2016) Indole acetic acid and ACC deaminase from endophytic bacteria improves the growth of Solanum lycopersicum. Electron J Biotechnol 21:58–64CrossRefGoogle Scholar
  39. King RW, Evans LT (2003) Gibberellins and flowering of grasses and cereals: prizing open the lid of the “florigen” black box. Annu Rev Plant Biol 54:307–328CrossRefPubMedGoogle Scholar
  40. Kloepper, J.W., Schroth, M.N. (1978). Plant growth-promoting rhizobacteria on radishes. Proceedings of the 4th International Conference on Plant Pathogen Bacteria 2:879–882Google Scholar
  41. Knee EM, Gong FC, Gao M, Teplitski M, Jones AR, Foxworthy A, Mort AJ, Bauer WD (2001) Root mucilage from pea and its utilization by rhizosphere bacteria as a sole carbon source. Mol Plant-Microbe Interact 14:775–784CrossRefPubMedGoogle Scholar
  42. Kottb M, Gigolashvili T, Großkinsky DK, Piechulla B (2015) Trichoderma volatiles effecting Arabidopsis: from inhibition to protection against phytopathogenic fungi. Front Microbiol 6:995CrossRefPubMedPubMedCentralGoogle Scholar
  43. Kudoyarova GR, Melentiev AI, Martynenko EV, Timergalina LN, Arkhipova TN, Shendel GV, Kuz’mina LY, Dodd IC, Veselov SY (2014) Cytokinin producing bacteria stimulate amino acid deposition by wheat roots. Plant Physiol Biochem 83:285–291CrossRefPubMedGoogle Scholar
  44. Kuiper I, Bloemberg GV, Noreen S, Thomas-Oates JE, Lugtenberg BJJ (2001) Increased uptake of putrescine in the rhizosphere inhibits competitive root colonization by Pseudomonas fluorescens strain WCS365. Mol Plant-Microbe Interact 14:1096–1104CrossRefPubMedGoogle Scholar
  45. Kumar P, Dubey RC (2012) Plant growth promoting rhizobacteria for biocontrol of phytopathogens and yield enhancement of Phaseolus vulgaris. J Curr Pers Appl Microbiol 1:6–38Google Scholar
  46. Kumar P, Pandey P, Dubey RC, Maheshwari DK (2016) Bacteria consortium optimization improves nutrient uptake, nodulation, disease suppression and growth of the common bean (Phaseous vulgaris) in both pot and field studies. Rhizosphere 2:13–23CrossRefGoogle Scholar
  47. Lanteigne C, Gadkar VJ, Wallon T, Novinscak A, Filion M (2012) Production of DAPG and HCN by Pseudomonas sp. LBUM3s00 contributes to the biological control of bacterial canker of tomato. Phytopathology 102:967–973CrossRefPubMedGoogle Scholar
  48. Leitão AL, Enguita FJ (2016) Gibberellins in Penicillium strains: challenges for endophyte-plant host interactions under salinity stress. Microbiol Res 183:8–18CrossRefPubMedGoogle Scholar
  49. Loper JE, Henkel MD (1999) Utilization of heterologous siderophores enhances levels of iron available to Pseudomonas putida in the rhizosphere. Appl Environ Microbiol 65:5357–5363PubMedPubMedCentralGoogle Scholar
  50. Lugtenberg BJJ, Dekkers LC (1999) What make Pseudomonas bacteria rhizosphere competent? Environ Microbiol 1:9–13CrossRefPubMedGoogle Scholar
  51. Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556CrossRefPubMedGoogle Scholar
  52. Lynch JM (1990) The rhizosphere. Wiley-Interscience, ChichesterGoogle Scholar
  53. Ma Y, Rajkumar M, Vicente J, Freitas H (2010) Inoculation of Ni-resistant plant growth promoting bacterium Psychrobacter sp. strain SRS8 for the improvement of nickel phytoextraction by energy crops. Int J Phytoremediation 13:126–139CrossRefGoogle Scholar
  54. Ma Y, Prasad MNV, Rajkumar M, Freitas H (2011a) Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnol Adv 29:248–258CrossRefPubMedGoogle Scholar
  55. Ma Y, Rajkumar M, Luo YM, Freitas H (2011b) Inoculation of endophytic bacteria on host and non-host plants – effects on plant growth and Ni uptake. J Hazard Mater 196:230–237CrossRefGoogle Scholar
  56. Maheshwari DK, Dubey RC, Aeron A, Kumar B, Kumar S, Tewari S, Arora NK (2012) Integrated approach for disease management and growth enhancement of Sesamum indicum L. utilizing Azotobacter chroococcum TRA2 and chemical fertilizer. World J Microbiol Biotechnol 28:3015–3024CrossRefPubMedGoogle Scholar
  57. Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol Biochem 42:565–572CrossRefPubMedGoogle Scholar
  58. Miche L, Battistoni F, Gemmer S, Belghazi M, Reinhold-Hurek B (2006) Up regulation of jasmonate-inducible defense proteins and differential colonization of roots of Oryza sativa cultivars with the endophyte Azoarcus sp. Mol Plant-Microbe Interact 19:502–511CrossRefPubMedGoogle Scholar
  59. Nadeem SM, Naveed M, Zahir ZA, Asghar HN (2013) Plant-microbe interactions for sustainable agriculture: fundamentals and recent advances. In: Arora NK (ed) Plant microbe symbiosis: fundamentals and advances. Springer, India, pp 51–103CrossRefGoogle Scholar
  60. Nagarajkumar M, Bhaskaran R, Velazhahan R (2004) Involvement of secondary metabolites and extracellular lytic enzymes produced by Pseudomonas fluorescensin inhibition of Rhizoctonia solani, the rice sheath blight pathogen. Microbiol Res 159:73–81CrossRefPubMedGoogle Scholar
  61. Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N, Estelle M, Voinnet O, Jones JDG (2006) A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312:436–439CrossRefPubMedGoogle Scholar
  62. Nielsen TH, Sørensen J (2003) Production of cyclic lipopeptides by Pseudomonas fluorescensstrains in bulk soil and in the sugar beet rhizosphere. Appl Environ Microb 69:861–868CrossRefGoogle Scholar
  63. Orhan F (2016) Alleviation of salt stress by halotolerant and halophilic plant growth-promoting bacteria in wheat (Triticum aestivum). Braz J Microbiol 47(3):621–627CrossRefPubMedPubMedCentralGoogle Scholar
  64. Patten CL, Glick BR (1996) Bacterial biosynthesis of indole-3-acetic acid. Can J Microbiol 42:207–220CrossRefPubMedGoogle Scholar
  65. Paulsen IT, Press CM, Ravel J, Kobayashi DY, Myers GSA, Mavrodi DV, DeBoy RT, Seshadri R, Ren Q, Madupu R, Dodson RJ, Durkin AS, Brinkac LM, Daugherty SC, Sullivan SA, Rosovitz MJ, Gwinn ML, Zhou L, Schneider DJ, Cartinhour SW, Nelson WC, Weidman J, Watkins K, Tran K, Khouri H, Pierson EA, Pierson LS III, Thomashow LS, Loper JE (2005) Complete genome sequence of the plant commensal Pseudomonas fluorescens Pf-5. Nat Biotechnol 23:873–878CrossRefPubMedGoogle Scholar
  66. Penrose DM, Glick BR (2001) Levels of 1-aminocyclopropane-1-carboxylic acid (ACC) in exudates and extracts of canola seeds treated with plant growth-promoting bacteria. Can J Microbiol 47:368–372CrossRefPubMedGoogle Scholar
  67. Picard C, Di Cello F, Ventura M, Fani R, Guckert A (2000) Frequency and biodiversity of 2, 4-diacetylphloroglucinol-producing bacteria isolated from the maize rhizosphere at different stages of plant growth. Appl Environ Microbiol 66(3):948–955CrossRefPubMedPubMedCentralGoogle Scholar
  68. Ping L, Boland W (2004) Signals from the underground: bacterial volatiles promote growth in Arabidopsis. Trends Plant Sci 9:263–266CrossRefPubMedGoogle Scholar
  69. Pradhan N, Sukla LB (2005) Solubilization of inorganic phosphates by fungi isolated from agriculture soil. Afri J Biotechnol 5:850–854Google Scholar
  70. Radhakrishnan R, Lee IJ (2016) Gibberellins producing Bacillus methylotrophicus KE2 supports plant growth and enhances nutritional metabolites and food values of lettuce. Plant Physiol Biochem 109:181–189CrossRefPubMedGoogle Scholar
  71. Rajkumar M, Ae N, Prasad MNV, Freitas H (2010) Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol 28:142–149CrossRefPubMedGoogle Scholar
  72. Rojas-Tapias D, Moreno-Galván A, Pardo-Díaz S, Obando M, Rivera D, Bonilla R (2012) Effect of inoculation with plant growth-promoting bacteria (PGPB) on amelioration of saline stress in maize (Zea mays). Appl Soil Ecol 61:264–272CrossRefGoogle Scholar
  73. Ryu CM, Farag MA, Hu CH, Reddy MS, Kloepper JW, Paré PW (2004) Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol 134:1017–1026CrossRefPubMedPubMedCentralGoogle Scholar
  74. Samuelian S (2016) Potential of Trichoderma harzianum for control of banana leaf fungal pathogens when applied with a food source and an organic adjuvant. 3 Biotech 6(1):8CrossRefPubMedPubMedCentralGoogle Scholar
  75. Scagliola M, Pii Y, Mimmo T, Cesco S, Ricciuti P, Crecchio C (2016) Characterization of plant growth promoting traits of bacterial isolates from the rhizosphere of barley (Hordeum vulgare L.) and tomato (Solanum lycopersicon L.) grown under Fe sufficiency and deficiency. Plant Physiol Biochem 107:187–196CrossRefPubMedGoogle Scholar
  76. Schnider-Keel U, Seematter A, Maurhofer M, Blumer C, Duffy B, Gigot-Bonnefoy C, Reimmann C, Notz R, Défago G, Haas D, Keel C (2000) Autoinduction of 2, 4-diacetylphloroglucinol biosynthesis in the biocontrol agent Pseudomonas fluorescens CHA0 and repression by the bacterial metabolites salicylate and pyoluteorin. J Bacteriol 182:1215–1225CrossRefPubMedPubMedCentralGoogle Scholar
  77. Shahzad R, Waqas M, Khan AL, Asaf S, Khan MA, Kang SM, Yun BW, Lee IJ (2016) Seed-borne endophytic Bacillus amyloliquefaciens RWL-1 produces gibberellins and regulates endogenous phytohormones of Oryza sativa. Plant Physiol Biochem 106:236–243CrossRefPubMedGoogle Scholar
  78. Singh A, Sarma BK, Upadhyay RS, Singh HB (2013) Compatible rhizosphere microbes mediated alleviation of biotic stress in chickpea through enhanced antioxidant and phenylpropanoid activities. Microbiol Res 168:33–40CrossRefPubMedGoogle Scholar
  79. Srivastava LM (2002) Plant growth and development. hormones and the environment. Academic, OxfordGoogle Scholar
  80. Steenhoudt O, Vanderleyden J (2000) Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. FEMS Microbiol Rev 24:487–506CrossRefPubMedGoogle Scholar
  81. Subramanian P, Krishnamoorthy R, Chanratana M, Kim K, Sa T (2015) Expression of an exogenous 1-aminocyclopropane-1-carboxylate deaminase gene in psychrotolerant bacteria modulates ethylene metabolism and cold induced genes in tomato under chilling stress. Plant Physiol Biochem 89:18–23CrossRefPubMedGoogle Scholar
  82. Szurmant H, Ordal GW (2004) Diversity in chemotaxis mechanisms among the bacteria and archaea. Microbiol Mol Biol Rev 68:301–319CrossRefPubMedPubMedCentralGoogle Scholar
  83. Taghavi S, Garafola C, Monchy S, Newman L, Hoffman A, Weyens N, Barac T, Vangronsveld J, van der Lelie D (2009) Genome survey and characterization of endophytic bacteria exhibiting a beneficial effect on growth and development of poplar. Appl Environ Microbiol 75:748–757CrossRefPubMedGoogle Scholar
  84. Tewari S, Arora NK (2016) Fluorescent Pseudomonas sp. PF17 as an efficient plant growth regulator and biocontrol agent for sunflower crop under saline conditions. Symbiosis 68:99–108CrossRefGoogle Scholar
  85. Timper P, Koné D, Yin J, Ji P, McSpadden Gardener BB (2009) Evaluation of an antibiotic-producing strain of Pseudomonas fluorescens for suppression of plant-parasitic nematodes. J Nematol 41(3):234–240PubMedPubMedCentralGoogle Scholar
  86. Tomprefa N, Hill R, Whipps J, McQuilken M (2011) Some environmental factors affect growth and antibiotic production by the mycoparasite Coniothyrium minitans. Biocontrol Sci Tech 21:721–731CrossRefGoogle Scholar
  87. Trivedi P, Kumar B, Pandey A, Palni LMS (2007) Growth promotion of rice by phosphate solubilizing bioinoculants in a Himalayan location. In: Velazquez E, Rodriguez-barrueco C (eds) Plant and soil, developments in plant and soil sciences, first international meeting on microbial phosphate solubilization. Springer, Salamanca, pp 291–299Google Scholar
  88. Upadyay SK, Maurya SK, Singh DP (2012) Salinity tolerance in free living plant growth promoting rhizobacteria. Ind J Sci Res 3:73–78Google Scholar
  89. van Loon LC (2000) Systemic induced resistance. In: Slusarenko AJ, Fraser RSS, van Loon LC (eds) Mechanisms of resistance to plant diseases. Kluwer, Dordrecht, pp 521–574CrossRefGoogle Scholar
  90. van Loon LC, Bakker PAHM (2005) Induced systemic resistance as a mechanism of disease suppression by rhizobacteria. In: Siddiqui ZA (ed) PGPR: biocontrol and biofertilization. Springer, Dordrecht, pp 39–66CrossRefGoogle Scholar
  91. Walker TS, Bais HP, Grotewold E, Vivanco JM (2003) Root exudation and rhizosphere biology. Plant Physiol 132:44–51CrossRefPubMedPubMedCentralGoogle Scholar
  92. Yasmeen S, Bano A (2014) Combined effect of phosphate-solubilizing microorganisms, rhizobium and enterobacter on root nodulation and physiology of soybean (Glycine max L.) Soil Sci Plan 45:2373–2384CrossRefGoogle Scholar
  93. Yim W, Seshadri S, Kim K, Lee G, Sa T (2013) Ethylene emission and PR protein synthesis in ACC deaminase producing Methylobacterium spp. inoculated tomato plants (Lycopersicon esculentum Mill.) challenged with Ralstonia solanacearum under greenhouse conditions. Plant Physiol Biochem 67:95–104CrossRefPubMedGoogle Scholar
  94. Yu X, Ai C, Xin L, Zhou G (2011) The siderophore-producing bacterium, Bacillus subtilis CAS15, has a biocontrol effect on fusarium wilt and promotes the growth of pepper. Eur J Soil Biol 47:138–145CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Centre for Functional Ecology, Department of Life Sciences, Faculty of Sciences and TechnologyUniversity of CoimbraCoimbraPortugal

Personalised recommendations