An Expedition to the Mechanism of Plant–Microbe Interaction by Utilization of Different Molecular Biology Tools

  • Bitupon Borah
  • Babita Joshi
  • Debojit Kumar Sarmah
  • Brijmohan Singh BhauEmail author


The global demand for food, animal feed, and plant-based products is increasing with the blast of population growth putting unprecedented pressure to the agriculture as the natural resources become diminished and the conventional system of cultivation is not sufficient to cope up with this. In addition to this, recent public concerns to the catastrophic effect of chemical fertilizer and pesticides to the livestocks and the environment led to the urgency of adopting sustainable agricultural practices. In sustainable agriculture, the plant–microbe interaction plays an imperative position which mainly confers the mechanism and utilization of beneficial microbes and their products for crop improvement, providing abiotic stress tolerance and control of plant diseases. The interaction between plants and microbes is a very complex and dynamic biological process which has evolved due to thousand years of coevolution between them. The plant–microbe interactions can provide the new imminent in various aspects of the mechanisms of how the microbes respond to perturbation, how chemical exudates released from plant roots, and how do they affect plant health and development. In the last two decades, molecular biology is being a powerful and precise tool becoming more commonly adopted and reliable for understanding of the plant–microbe interaction. For example, the introduction of next-generation sequencing giving multitude of nucleotide data in a very short duration also assists metagenomics which allows studying complete microbiota including non-culturable microbes. This book chapter is intended to chronicle the development of different molecular biology tools in studying the biosynthetic pathway secondary metabolites produced by microbes, diversity of microorganisms, and functional identification of induced genes in a plant–microbe interaction.


Rhizobacteria PGPR Next-generation sequencing Metagenomics Non-culturable Microbiota 


  1. Aakvik T, Degnes KF, Dahlsrud R et al (2009) A plasmid RK2-based broad-host-range cloning vector useful for transfer of metagenomic libraries to a variety of bacterial species. FEMS Microbial Let 296:149–158CrossRefGoogle Scholar
  2. Alvarez TM, Paiva JH, Ruiz DM et al (2003) Structure and function of a novel cellulase 5 from sugarcane soil metagenome. PLoS One 8(12):e83635. doi: 10.1371/journal.pone.0083635 CrossRefGoogle Scholar
  3. Angelov A, Liebl W (2010) Heterologous gene expression in the hyperthermophilic archaeon Sulfolobus solfataricus. Methods Mol Biol 668:109–116PubMedCrossRefGoogle Scholar
  4. Arabidopsis Interactome Mapping Consortium (2011) Evidence for network evolution in an Arabidopsis interactome map. Science 333:601–607PubMedCentralCrossRefGoogle Scholar
  5. Atamna-Ismaeel N, Finkel O, Glaser F, Von Mering C et al (2012) Bacterial anoxygenic photosynthesis on plant leaf surfaces. Environ Microbiol Rep 4:209–216PubMedCrossRefGoogle Scholar
  6. Bennett S (2004) Solexa Ltd. Pharmacogenomics 5:433–438PubMedCrossRefGoogle Scholar
  7. Bennett S, Barnes C, Cox A et al (2005) Towards the 1000 dollars human genome. Pharmacogenomics 6:373–382PubMedCrossRefGoogle Scholar
  8. Bentley DR (2006) Whole-genome re-sequencing. Curr Opin Genet Dev 16:545–552PubMedCrossRefGoogle Scholar
  9. Berendsen RL, Pieterse CMJ, Bakker PAHM et al (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17:478–486PubMedCrossRefGoogle Scholar
  10. Bertrand H, Poly F, Van VT et al (2005) High molecular weight DNA recovery from soils prerequisite for biotechnological metagenomic library construction. J Microbiol Method 62:1–11CrossRefGoogle Scholar
  11. Binnie C, Cossar JD, Stewart DIH et al (1997) Heterologous biopharmaceutical protein expression in Streptomyces. Trends Biotechnol 15:315–320PubMedCrossRefGoogle Scholar
  12. Bollmann A, Lewis K, Epstein SS et al (2007) Incubation of environmental samples in a diffusion chamber increases the diversity of recovered isolates. Appl Environ Microbiol 73:6386–6390PubMedPubMedCentralCrossRefGoogle Scholar
  13. Breuillin F, Schramm J, Hajirezaei M et al (2010) Phosphate systemically inhibits development of arbuscular mycorrhiza in Petunia hybrida and represses genes involved in mycorrhizal functioning. Plant J 64:1002–1017PubMedCrossRefGoogle Scholar
  14. Brotman Y, Lisec J, Meret M et al (2012) Transcript and metabolite analysis of the Trichoderma-induced systemic resistance response to Pseudomonas syringae in Arabidopsis thaliana. Microbiology 158:139–146PubMedCrossRefGoogle Scholar
  15. Burke C, Kjelleberg S, Thomas T et al (2009) Selective extraction of bacterial DNA from the surfaces of macroalgae. Appl Environ Microbiol 75:252–256PubMedCrossRefGoogle Scholar
  16. Canard B, Sarfati S (1994) Novel derivatives usable for the sequencing of nucleic acids. CA Patent 2,158,975, 13 Oct 1994Google Scholar
  17. Chai T, Fadzillah M, Kusnan M et al (2005) Water stress-induced oxidative damage and antioxidant responses in micropropagated banana plantlets. Biol Planta 49:153–156CrossRefGoogle Scholar
  18. Chaparro JM, Badri DV, Vivanco JM et al (2014) Rhizosphere microbiome assemblage is affected by plant development. ISME J 8:790–803PubMedCrossRefGoogle Scholar
  19. Chhabra S, Brazil D, Morrissey J et al (2013) Characterization of mineral phosphate solubilization traits from a barley rhizosphere soil functional metagenome. Microbiology 2:717–724Google Scholar
  20. Clarke J, Wu HC, Jayasinghe L et al (2009) Continuous base identification for single-molecule nanopore DNA sequencing. Nat Nanotechnol 4:265–270PubMedCrossRefGoogle Scholar
  21. Cowan D, Meyer Q, Stafford W et al (2005) Metagenomic gene discovery: past, present and future. Trends Biotechnol 23(6):321–329PubMedCrossRefGoogle Scholar
  22. Craig JW, Chang FY, Kim JH et al (2010) Expanding small-molecule functional metagenomics through parallel screening of broad-host-range cosmid environmental DNA libraries in diverse proteobacteria. App Environ Microbiol 76:1633–1641CrossRefGoogle Scholar
  23. Cullen DW, Hirsch PR (1998) Simple and rapid method for direct extraction of microbial DNA from soil for PCR. Soil Biol Biochem 30:983–993CrossRefGoogle Scholar
  24. Demidov VV, Bukanov NO, Frank-Kamenetskii D (2000) Duplex DNA Capture. Curr Issues Mol Biol 2:31–35PubMedGoogle Scholar
  25. Eckardt NA (2000) Sequencing the rice genome. Plant Cell 12:2011–2017PubMedPubMedCentralCrossRefGoogle Scholar
  26. Eid J, Fehr A, Gray J et al (2009) Real-time DNA sequencing from single polymerase molecules. Science 323:133–138PubMedCrossRefGoogle Scholar
  27. Eyers L, George I, Schuler L et al (2004) Environmental genomics: exploring the unmined richness of microbes to degrade xenobiotics. Appl Microbiol Biotechnol 66:123–130PubMedCrossRefGoogle Scholar
  28. Fageria NK, Baligar VC, Jones CA et al (2011) Growth and mineral nutrition of field crops, 3rd edn. CRC Press, Boca RatonGoogle Scholar
  29. Fitter AH, Gilligan CA, Hollingworth K et al (2005) The members of the Nerc soil biodiversity programme. Biodiversity and ecosystem function in soil. Funct Ecol 19: 369–377Google Scholar
  30. Fu YB, Peterson GW (2011) Genetic diversity analysis with 454 pyrosequencing and genomic reduction confirmed the eastern and western division in the cultivated barley gene pool. Plant Genome 4:226–237CrossRefGoogle Scholar
  31. Fullwood MJ, Wei CL, Liu ET et al (2009) Next generation DNA sequencing of paired end tags (PET) for transcriptome and genome analyses. Genome Res 19:521–532PubMedPubMedCentralCrossRefGoogle Scholar
  32. Gabor EM, Alkema WB, Janssen DB et al (2004) Quantifying the accessibility of the metagenome by random expression cloning techniques. Environ Microbiol 6:879–886PubMedCrossRefGoogle Scholar
  33. Goddard ME, Hayes BJ (2009) Mapping genes for complex traits in domestic animals and their use in breeding programmes. Nat Rev Genet 10:381–391PubMedCrossRefGoogle Scholar
  34. Goh CH, Veliz Vallejos DF, Nicotra AB et al (2013) The impact of beneficial plant-associated microbes on plant phenotypic plasticity. J Chem Ecol 39:826–839PubMedPubMedCentralCrossRefGoogle Scholar
  35. Gray JP, Herwig RP (1996) Phylogenetic analysis of the bacterial communities in marine sediments. Appl Environ Microbiol 62:4049–4059PubMedPubMedCentralGoogle Scholar
  36. Green BD, Keller M (2006) Capturing the uncultivated majority. Curr Opin Biotechnol 17:236–240PubMedCrossRefGoogle Scholar
  37. Haldar S, Sengupta S (2015) Plant-microbe cross-talk in the rhizosphere: insight and biotechnological potential. Open Microbiol J 9:1–7PubMedPubMedCentralCrossRefGoogle Scholar
  38. Handelsman J (2004) Metagenomics: application of genomics to uncultured microorganisms. Microbiol Mol Biol Rev 68:669–685PubMedPubMedCentralCrossRefGoogle Scholar
  39. Handelsman J, Rondon MR, Brady SF et al (1998) Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem Biol 5:245–249CrossRefGoogle Scholar
  40. Healy FG, Ray RM, Aldrich HC et al (1995) Direct isolation of functional genes encoding cellulases from the microbial consortia in a thermophilic, anaerobic digester maintained on lignocellulose. App Microbiol Biotechnol 43:667–674CrossRefGoogle Scholar
  41. Hua J (2013) Modulation of plant immunity by light, circadian rhythm, and temperature. Curr Opin Plant Biol 16:406–413PubMedCrossRefGoogle Scholar
  42. Huse SM, Huber JA, Morrison HG et al (2007) Accuracy and quality of massively parallel DNA pyrosequencing. Genome Biol 8(143):1–9Google Scholar
  43. Ishoey T, Woyke T, Stepanauskas R et al (2008) Genomic sequencing of single microbial cells from environmental samples. Curr Opin Microbiol 11:198–204PubMedPubMedCentralCrossRefGoogle Scholar
  44. Jarvie T, Harkins T (2007) Metagenomics analysis using the genome sequencer FLX system. Nat Method 4:3–5CrossRefGoogle Scholar
  45. Johnston CG, Aust SD (1994) Detection of Phanerochaete chrysosporium in soil by PCR and restriction enzyme analysis. Appl Environ Microbiol 60:2350–2354PubMedPubMedCentralGoogle Scholar
  46. Jonathan M, Rothberg HW et al (2011) An integrated semiconductor device enabling non-optical genome sequencing. Nature 475:348–352CrossRefGoogle Scholar
  47. Jones JD, Dangl JL (2006) The plant immune system. Nature 444:323–329PubMedCrossRefGoogle Scholar
  48. Kauffmann IM, Schmitt J, Schmid RD (2004) DNA isolation from soil samples for cloning in different hosts. Appl Microbiol Biotechnol 64:665–670PubMedCrossRefGoogle Scholar
  49. Knief C (2014) Analysis of plant microbe interactions in the era of next generation sequencing technologies. Front Plant Sci 5(216):1–23Google Scholar
  50. Kojima M, Kamada-Nobusada T, Komatsu H et al (2009) Highly sensitive and high-throughput analysis of plant hormones using MS-probe modification and liquid chromatography–tandem mass spectrometry: an application for hormone profiling in Oryza sativa. Plant Cell Physiol 50:1201–1214PubMedPubMedCentralCrossRefGoogle Scholar
  51. Kothari R, Singh RP, Kothari V et al (2006) Application of next generation sequencing technologies in revealing plant-microbe interactions. J Next Gen Seq App 3(1):1–2Google Scholar
  52. Kozdroj J (2010) Isolation of nucleic acids from the environment. Kosmos 59:141–149Google Scholar
  53. Krsek M, Wellington EMH (1999) Comparison of different methods for the isolation and purification of total community DNA from soil. J Microbiol Method 39:1–16CrossRefGoogle Scholar
  54. Lander ES, Linton LM, Birren B et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921PubMedCrossRefGoogle Scholar
  55. Lasken RS (2009) Genomic DNA amplification by the multiple displacement amplification (MDA) method. Biochem Soc Trans 37:450–453PubMedCrossRefGoogle Scholar
  56. Lee S, Bollinger J, Bezdicek D et al (1996) Estimation of the abundance of an uncultured soil bacterial strain by a competitive quantitative PCR method. Appl Environ Microbiol 62:3787–3793PubMedPubMedCentralGoogle Scholar
  57. Levin SA (2006) Fundamental questions in biology. PLoS Biol. doi: 10.1371/journal. pbio.0040300
  58. Li X, Qin L (2005) Metagenomics-based drug discovery and marine microbial diversity. Trends Biotechnol 23:539–543PubMedCrossRefGoogle Scholar
  59. Liesack W, Stackebrandt E (1992) Occurrence of novel groups of the domain bacteria as revealed by analysis of genetic material isolated from an Australian terrestrial environment. J Bacteriol 174:5072–5078PubMedPubMedCentralCrossRefGoogle Scholar
  60. Lister R, Gregory BD, Ecker JR et al (2009) Next is now: new tech- nologies for sequencing of genomes, transcriptomes, and beyond. Curr Opin Plant Biol 12:107–118PubMedPubMedCentralCrossRefGoogle Scholar
  61. Liu L, Li Y, Li S et al (2012) Comparison of next-generation sequencing systems. J Biomed Biotechnol 2012:1–11PubMedGoogle Scholar
  62. Lorenz P, Eck J (2005) Metagenomics and industrial applications. Nat Rev Microbiol 3:510–516PubMedCrossRefGoogle Scholar
  63. Lorenz P, Schleper C (2002) Metagenome – a challenging source of enzyme discovery. J Mol Cat Ser B-Enzym 19:13–19CrossRefGoogle Scholar
  64. Mamanova L, Coffey AJ, Scott EC et al (2010) Target-enrichment strategies for next- generation sequencing. Nat Am 7:111–118Google Scholar
  65. Margulies M, Egholm M, Altman WE et al (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–380PubMedPubMedCentralGoogle Scholar
  66. McCarthy JJ, McLeod HL, Geoffrey S et al (2013) Ginsburg genomic medicine: a decade of successes, challenges, and opportunities science. Trans Med 5(189):1–4Google Scholar
  67. Memelink J (2009) Regulation of gene expression by jasmonate hormones. Phytochemistry 70:1560–1570PubMedCrossRefGoogle Scholar
  68. Mendes LW, Kuramae EE, Navarrete AA et al (2014) Taxonomical and functional microbial community selection in soybean rhizosphere. ISME J 8:1577–1587PubMedPubMedCentralCrossRefGoogle Scholar
  69. Milos P (2008) Helicos BioSciences. Pharmacogenomics 9:477–480PubMedCrossRefGoogle Scholar
  70. Mosquera G, Giraldo MC, Khang CH et al (2009) Interaction transcriptome analysis identifies Magnaporthe oryzae BAS1-4 as biotrophy-associated secreted proteins in rice blast disease. Plant Cell 21:1273–1290PubMedPubMedCentralCrossRefGoogle Scholar
  71. Newton AC, Fitt BD, Atkins SD et al (2010) Pathogenesis, parasitism and mutualism in the trophic space of microbe-plant interactions. Trends Microbiol 18:365–373PubMedCrossRefGoogle Scholar
  72. Nikolaki S, Tsiamis G (2013) Microbial diversity in the era of omic technologies. Biomed Res Int 2013:1–15CrossRefGoogle Scholar
  73. Hutchison CA (2007) DNA sequencing: bench to bedside and beyond. Nucleic Acids Res 35:6227–6237Google Scholar
  74. Oldroyd GE (2013) Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants. Nat Rev Microbiol 11:252–263PubMedCrossRefGoogle Scholar
  75. Parachin NS, Gorwa-Grauslund MF (2011) Isolation of xylose isomerases by sequence- and function-based screening from a soil metagenomic library. Biotechnol Biofuels 4:1–9CrossRefGoogle Scholar
  76. Poinar HN, Schwarz C, Qi J et al (2006) Metagenomics to paleogenomics: large-scale sequencing of mammoth DNA. Science 20:392–394CrossRefGoogle Scholar
  77. Purohit MK, Singh SP (2009) Assessment of various methods for extraction of metagenomic DNA from saline habitats of coastal Gujarat (India) to explore molecular diversity. Lett Appl Microbiol 49:338–344PubMedCrossRefGoogle Scholar
  78. Rees HC, Grant WD, Jones BE et al (2004) Diversity of Kenyan soda lake alkaliphiles assessed by molecular methods. Extremophiles 8:63–71PubMedCrossRefGoogle Scholar
  79. Riesenfeld CS, Goodman RM, Handelsman J et al (2004) Uncultured soil bacteria are a reservoir of new antibiotic resistance genes. Environ Microbiol 6:981–989PubMedCrossRefGoogle Scholar
  80. Rinke C, Schwientek P, Sczyrba A et al (2013) Insights into the phylogeny and coding potential of microbial dark matter. Nature 25:431–437CrossRefGoogle Scholar
  81. Robe P, Nalin R, Capellano C et al (2003) Extraction of DNA from soil. Europ J Soil Biol 39:183–190CrossRefGoogle Scholar
  82. Ronald PC, Shirasu K (2012) Front-runners in plant-microbe interactions. Curr Opin Plant Biol 15:345–348PubMedCrossRefGoogle Scholar
  83. Sagerstrom CG, Sun BI, Sive HL et al (1997) Subtractive cloning: past, present, and future. Annu Rev Biochem 66:751–783PubMedCrossRefGoogle Scholar
  84. Saito K, Matsuda F (2010) Metabolomics for functional genomics, systems biology, and biotechnology. Annu Rev Plant Biol 61:463–489PubMedCrossRefGoogle Scholar
  85. Sanger F, Nicklen S, Coulson AR et al (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74:5463–5467PubMedPubMedCentralCrossRefGoogle Scholar
  86. Schenk PM, Remans T, Sagi L et al (2001) Promoters for pregenomic RNA of banana streak badnavirus are active for transgene expression in monocot and dicot plants. Plant Mol Biol 47:399–412PubMedCrossRefGoogle Scholar
  87. Sharma S, Vakhlu J (2014) Metagenomics as advanced screening methods for novel microbial metabolite. In: Harzevili FD, Chen H (eds) Microbial biotechnology progress and trends. CRC Press, Boca Raton, pp 43–62Google Scholar
  88. Shendure J, Porreca GJ, Nikos B et al (2005) Accurate multiplex polony sequencing of an evolved bacterial genome. Science 309:1728–1732PubMedCrossRefGoogle Scholar
  89. Shizuya H, Birren B, Kim UJ et al (1992) Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA in Escherichia coli using an F-factor-based vector. Proc Nat Aca Sci USA 89:8794–8797CrossRefGoogle Scholar
  90. Simon C, Daniel R (2011) Metagenomic analyses: past and future trends. App Environ Microbial 77:1153–1161CrossRefGoogle Scholar
  91. Stacey G, Libault M, Brechenmacher L et al (2006) Genetics and functional genomics of legume nodulation. Curr Opin P Biol 9:110–121CrossRefGoogle Scholar
  92. Steele H, Streit WR (2006) Metagenomics for the study of soil microbial communities. In: Cooper JE, Rao JR (eds) Molecular approaches this soil rhizosphere and plant microorganism analysis. CAB Inter-national, Wallingford, pp 42–54CrossRefGoogle Scholar
  93. Steele HL, Jaeger KE, Daniel R et al (2009) Advances in recovery of novel biocatalysts from metagenomes. J Mol Microbial Biotechnol 16:25–37CrossRefGoogle Scholar
  94. Strohl WR (1992) Compilation and analysis of DNA sequences associated with apparent Streptomyces promoters. Nucleic Acids Res 20:961–974PubMedPubMedCentralCrossRefGoogle Scholar
  95. Suenaga H (2012) Targeted metagenomics: a high-resolution metagenomics approach for specific gene clusters in complex microbial communities. Environ Microbiol 14:13–22PubMedCrossRefGoogle Scholar
  96. Thomas T, Rusch D, DeMaere MZ et al (2010) Functional genomic signatures of sponge bacteria reveal unique and shared features of symbiosis. ISME J 4:1557–1567PubMedCrossRefGoogle Scholar
  97. Tringe SG, Rubin EM (2005) Metagenomics: DNA sequencing of environmental samples. Nat Rev Gen 6:805–814CrossRefGoogle Scholar
  98. Tsai Y, Olson BH (1991) Rapid method for direct extraction of DNA from soil and sediment. Appl Environ Microbiol 57:1070–1074PubMedPubMedCentralGoogle Scholar
  99. Tuffin M, Anderson D, Heath C et al (2009) Metagenomic gene discovery: how far have we moved into novel sequence space. Biotechnol J 4:1671–1683PubMedCrossRefGoogle Scholar
  100. Unno Y, Shinano T (2013) Metagenomic analysis of the rhizosphere soil microbiome with respect to phytic acid utilization. Microbes Environ 28:120–127PubMedCrossRefGoogle Scholar
  101. Van Borm S, Belak S, Freimanis G et al (2015) Next-generation sequencing in veterinary medicine: how can the massive amount of information arising from high-throughput technologies improve diagnosis, control, and management of infectious diseases? In: Veterinary infection biology: molecular diagnostics and high-throughput strategies. Springer, Berlin, pp 415–36Google Scholar
  102. Venter JC, Adams MD, Myers EW et al (2001) The sequence of the human genome. Science 291:1304–1351PubMedCrossRefGoogle Scholar
  103. Weber-Lehmann J, Schilling E, Gradl G et al (2014) Finding the needle in the haystack: differentiating “identical” twins in paternity testing and forensics by ultra-deep next generation sequencing. Forensic Sci Inter Genet 9:42–46CrossRefGoogle Scholar
  104. Wheeler DA, Srinivasan M, Egholm M et al (2008) The complete genome of an individual by massively parallel DNA sequencing. Nature 452:872–876PubMedCrossRefGoogle Scholar
  105. Yeates C, Gillings MR, Davison D et al (1998) Methods for microbial DNA extraction from soil for PCR amplification. Biol Proced Online 1:40–47PubMedPubMedCentralCrossRefGoogle Scholar
  106. Zhao J, Ohsumi TK, Kung JT et al (2010) Genome-wide identification of polycomb-associated RNAs by RIP-seq. Mol Cell 40(6):939–953PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • Bitupon Borah
    • 1
    • 2
  • Babita Joshi
    • 1
    • 2
  • Debojit Kumar Sarmah
    • 1
  • Brijmohan Singh Bhau
    • 1
    • 2
    Email author
  1. 1.Plant Genomic Laboratory, Medicinal Aromatic & Economic Plants (MAEP) Group, Biological Sciences & Technology Division (BSTD)CSIR-North East Institute of Science and TechnologyJorhatIndia
  2. 2.Academy of Scientific and Innovative Research (AcSIR)CSIR-North East Institute of Science and TechnologyJorhatIndia

Personalised recommendations