An Insight into Genetically Modified Crop-Mycorrhizal Symbiosis

  • D. Mohandass
  • T. MuthukumarEmail author


Genetically modified crops (GMCs) are currently widely used in agricultural biotechnology where plants are engineered to express characters that defend them against different abiotic and biotic stresses. Many studies have revealed that GMCs have sequential benefits for the environment, human well-being, and farmers’ economic growth, especially in densely populated countries. Several studies revealed that GMCs can significantly affect the soil microorganisms even their symbiosis with plants. Of these, arbuscular mycorrhizal fungi (AMF) are a good example for the widespread symbiotic relationship as they are associated with maximum crop species and provide several benefits in various agroecosystems. The AMF association can show an imperative functional character in the acquisition of nutrients by the crop plants. In this case, the associated response of transgenic crops and soil microorganisms in relation with AMF may be positive, negative, and neutral. Moreover, GMCs may influence AMF either directly and indirectly through modifications in root exudation or through discrepancies in the variety and action of soil microorganisms. Although Bacillus thuringiensis (Bt) corn is extensively cultivated, a limited number of studies have investigated the interaction of altered lines of Bt corn with symbiotic AMF. These studies pointed out that AMF colonization of genetically modified Bt corn lines differs with quantity and kind of engineered traits. Many research studies reported that GMCs do not affect AMF and failed to find any variations between non-Bt and Bt crops. In contrast, some studies reported a substantial decrease in AMF colonization levels. Therefore, we gathered the information available on the influence of GMCs on AMF in this chapter and consider that it will explore interesting insights on mycorrhizal symbioses in the modern agroecosystems.


Arbuscular mycorrhizal fungi (AMF) Agroecosystems Bacillus thuringiensis (Bt) Rhizosphere Soil fungi 


  1. Ali A, Wani TA, Wani IA, Masoodi FA (2016) Comparative study of the physico-chemical properties of rice and corn starches grown in Indian temperate climate. J Saudi Soc Agri Sci 15:75–82Google Scholar
  2. Anderson C (2001) The GM food potential. Strategic Analysis Paper. Published by Future Directions International Pty. Ltd. AustraliaGoogle Scholar
  3. Andreote FD, Mendes R, Dini-Andreote F, Rossetto PB, Labate CA, Pizzirani-Kleiner AA, van Elsas JD, Azevedo JL, Araújo WL (2008) Transgenic tobacco revealing altered bacterial diversity in the rhizosphere during early plant development. Antonie Van Leeuwenhoek 93:415–424PubMedCrossRefGoogle Scholar
  4. Andreote FD, Carneiro RT, Salles JF, Marcon J, Labate CA, Azevedo JL, Araújo WL (2009) Culture-independent assessment of Rhizobiales-related Alphaproteobacteria and the diversity of Methylobacterium in the rhizosphere and rhizoplane of transgenic eucalyptus. Microbial Ecol 57:82–93CrossRefGoogle Scholar
  5. Azcon R, Ocampo JA (1981) Factors affecting the vesicular-arbuscular infection and mycorrhizal dependency of thirteen wheat cultivars. New Phytol 87:677–685CrossRefGoogle Scholar
  6. Bakhsh A, Khabbazi SD, Baloch FS, Demirel U, Caliskan ME, Hatipoglu R, Ozcan S, Ozkan H (2015) Insect-resistant transgenic crops: retrospect and challenges. Turk J Agri For 39:531–548CrossRefGoogle Scholar
  7. Baumgarte S, Tebbe C (2005) Field studies on the environmental fate of the Cry1Ab Bt toxin produced by transgenic maize (MON810) and its effect on bacterial communities in the maize rhizosphere. Mol Ecol 14:2539–2551PubMedCrossRefGoogle Scholar
  8. Beckie HJ, Hall LM (2014) Genetically-modified herbicide resistant (GMHR) crops a two-edged sword? An Americas perspective on development and effect on weed management. Crop Protect 66:40–45CrossRefGoogle Scholar
  9. Blackwood CB, Buyer JS (2004) Soil microbial communities associated with Bt and non-Bt corn in three soils. J Environ Qual 33:832–836PubMedCrossRefGoogle Scholar
  10. Boisson-Dernier A, Chabaud M, Garcia F, Becard G, Rosenberg C, Barker DG (2001) Agrobacterium rhizogenes-transformed roots of Medicago truncatula for the study of nitrogen-fixing and endomycorrhizal symbiotic associations. Mol Plant-Microbe Interact 14:695–700Google Scholar
  11. Carpenter JE (2011) Impacts of GM crops on biodiversity. GM Crops 2:1–17CrossRefGoogle Scholar
  12. Castaldini M, Turrini A, Sbrana C, Benedetti A, Marchionni M, Mocali S, Fabiani A, Landi S, Santomassimo F, Pietrangeli B, Nuti MP, Miclaus N, Giovannetti M (2005) Impact of Bt corn on rhizospheric and soil eubacterial communities and on beneficial mycorrhizal symbiosis in experimental microcosms. Appl Environ Microbiol 71:6719–6729PubMedPubMedCentralCrossRefGoogle Scholar
  13. Cellini F, Chesson A, Colquhoun I, Constable A, Davies HV, Engel KH, Gatehouseg AMR, Karenlamph S, Koki EJ, Leguayi J-J, Lehesrantah S, Noteborni HPJM, Pedersenk J, Smith M (2004) Unintended effects and their detection in genetically modified crops. Food Chem Toxicol 42:1089–1125PubMedCrossRefGoogle Scholar
  14. Cheeke TE, Pace BA, Rosenstiel TN, Cruzan MB (2011) The influence of fertilizer level and spore density on arbuscular mycorrhizal colonization of transgenic Bt 11 maize (Zea mays) in experimental microcosms. FEMS Microbiol Ecol 75:304–312PubMedCrossRefGoogle Scholar
  15. Cheeke TE, Coleman DC, Wall DH (2012a) Microbial ecology in sustainable agroecosystems. CRC Press. Taylor & Francis Group, UKGoogle Scholar
  16. Cheeke TE, Rosenstiel TN, Cruzan MB (2012b) Evidence of reduced arbuscular mycorrhizal fungal colonization in multiple lines of Bt maize. Am J Bot 99:700–707PubMedCrossRefGoogle Scholar
  17. Cheeke TE, Cruzan MB, Rosenstiel TN (2013) Field evaluation of arbuscular mycorrhizal fungal colonization in Bacillus thuringiensis toxin-expressing (Bt) and non-Bt maize. Appl Environ Microbiol 79:4078–4086PubMedPubMedCentralCrossRefGoogle Scholar
  18. Chelius MK, Triplett EW (2001) The diversity of archaea and bacteria in association with the roots of Zea mays L. Microb Ecol 41:252–263PubMedCrossRefGoogle Scholar
  19. Chun Y, Kim H-J, Park K, Jeong S-C, Lee B, Back K, Kim H, Kim C-G (2012) Two-year field study shows little evidence that PPO transgenic rice affects the structure of soil microbial communities. Biol Fertil Soils 48(4):453–461CrossRefGoogle Scholar
  20. Cortet J, Andersen MN, Caul S, Griffiths B, Joffre R, Lacroix B, Sausse C, Thompson J, Krogh PH (2006) Decomposition processes under Bt (Bacillus thuringiensis) maize: results of a multi-site experiment. Soil Biol Biochem 38:195–199CrossRefGoogle Scholar
  21. Cotton TEA, Fitter AH, Miller RM, Dumbrell AJ, Helgason T (2015) Fungi in the future: inter-annual variation and effects of atmospheric change on arbuscular mycorrhizal fungal communities. New Phytol 205:1598–1607PubMedPubMedCentralCrossRefGoogle Scholar
  22. Cowgill SE, Bardgett RD, Kiezebrink DT, Atkinson HJ (2002) The effect of transgenic nematode resistance on non-target organisms in the potato rhizosphere. J Appl Ecol 39:915–923CrossRefGoogle Scholar
  23. Crecchio C, Stotzky G (1998) Insecticidal activity and biodegradation of the toxin from Bacillus thuringiensis subsp. kurstaki bound to humic acids from soil. Soil Biol Biochem 30:463–470CrossRefGoogle Scholar
  24. de Souza Vieira PD, de Souza Motta CM, Lima D, Torres JB, Quecine MC, Azevedo JL, de Oliveira NT (2011) Endophytic fungi associated with transgenic and non-transgenic cotton. Mycology 2:91–97CrossRefGoogle Scholar
  25. de Vaufleury A, Kramarz PE, Binet P, Cortet J, Caul S, Andersen MN, Plumey E, Coeurdassier M, Krogh PH (2007) Exposure and effects assessments of Bt-maize on non-target organisms (gastropods, microarthropods, mycorrhizal fungi) in microcosms. Pedobiologia 51:185–194CrossRefGoogle Scholar
  26. Dinel H, Schnitzer M, Saharinen M, Meloche F, Pare T, Dumontet S, Lemee L, Ambles A (2003) Extractable soil lipids and microbial activity as affected by Bt and non-Bt maize grown on a silty clay loam soil. J Environ Sci Health 38:211–219CrossRefGoogle Scholar
  27. Donegan KK, Palm CJ, Fieland VJ, Porteous LA, Ganio LM, Schaller DL (1995) Changes in levels, species, and DNA fingerprints of soil microorganisms associated with cotton expressing the Bacillus thuringiensis var. kurstaki endotoxin. Appl Soil Ecol 2:111–124CrossRefGoogle Scholar
  28. Donegan KK, Schaller DL, Stone JK, Ganio LM, Reed G, Hamm PB, Seidler RJ (1996) Microbial populations, fungal species diversity and plant pathogen levels in field plots of potato plants expressing the Bacillus thuringiensis var tenebrionis endotoxin. Transgenic Res 5:25–35CrossRefGoogle Scholar
  29. Donegan KK, Seidler RJ, Doyle JD, Porteous LA, Digiovanni G, Widmer F, Watrud LS (1999) A field study with genetically engineered alfalfa inoculated with recombinant Sinorhizobium meliloti: effects on the soil ecosystem. J Appl Ecol 36:920–936CrossRefGoogle Scholar
  30. Dumas-Gaudot E, Asselin A, Gianinazzi-Pearson V, Gollotte A, Gianinazzi S (1994) Chitinase isoforms in roots of various pea genotypes infected with arbuscular mycorrhizal fungi. Plant Sci 88:27–37CrossRefGoogle Scholar
  31. Dunfield KE, Germida JJ (2001) Diversity of bacterial communities in the rhizosphere and root interior of field-grown genetically modified Brassica napus. FEMS Microbiol Ecol 38:1–9CrossRefGoogle Scholar
  32. Edwards CA, Madden RLP, Miller RH, House G (1990) Sustainable agricultural systems. Soil and Water Conservation Society, IowaGoogle Scholar
  33. Escher N, Kach B, Nentwig W (2000) Decomposition of transgenic Bacillus thuringiensis maize by microorganisms and woodlice Porcellio scaber (Crustacea: Isopoda). Basic Appl Entomol 1:161–169CrossRefGoogle Scholar
  34. Ferreira L, Molina J, Brasil C, Andrade G (2003) Evaluation of Bacillus thuringiensis bioinsecticidal protein effects on soil microorganisms. Plant Soil 256:161–168CrossRefGoogle Scholar
  35. Fließbach A, Messmer M, Nietlispach B, Infante V, Mader P (2012) Effects of conventionally bred and Bacillus thuringiensis (Bt) maize varieties on soil microbial biomass and activity. Biol Fertil Soils 48:315–324CrossRefGoogle Scholar
  36. Flores S, Saxena D, Stotzky G (2005) Transgenic Bt plants decompose less in soil than non-Bt plants. Soil Biol Biochem 37:1073–1082CrossRefGoogle Scholar
  37. Gao X, Kuyper TW, Zou C, Zhang F, Hoffland E (2007) Mycorrhizal responsiveness of aerobic rice genotypes is negatively correlated with their zinc uptake when nonmycorrhizal. Plant Soil 290:283–291CrossRefGoogle Scholar
  38. GeneWatch (2016) GM crops: current situation–Worldwide commercial growing. Accessed on 10 Oct, 2016
  39. Giovannetti M, Sbrana C, Turrini A (2005) The impact of genetically modified crops on soil microbial communities. Riv Biol 98:393–417PubMedGoogle Scholar
  40. Gips (1987) Breaking the pesticide habit: alternative to twelve hazardous pesticides. International Alliance for Sustainable Agriculture, MinneapolisGoogle Scholar
  41. Girlanda M, Bianciotto V, Cappellazzo GA, Casieri L, Bergero R, Martino E, Luppi AM, Perotto S (2008) Interactions between engineered tomato plants expressing antifungal enzymes and nontarget fungi in the rhizosphere and phyllosphere. FEMS Microbiol Lett 288:9–18PubMedCrossRefGoogle Scholar
  42. Glinka C, Hawkes CV (2014) Environmental controls on fungal community composition and abundance over 3 years in native and degraded shrub lands. Microbial Ecol 68:807–817CrossRefGoogle Scholar
  43. Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C (2010) Food security: the challenge of feeding 9 billion people. Science 327:812–818PubMedCrossRefGoogle Scholar
  44. Gomes NCM, Fagbola O, Costa R, Rumjanek NG, Buchner A, MendoncaHagler L, Smalla K (2003) Dynamics of fungal communities in bulk and maize rhizosphere soil in the tropics. Appl Environ Microbiol 69:3758–3766PubMedPubMedCentralCrossRefGoogle Scholar
  45. Gosling P, Hodge A, Goodlass G, Bending GD (2006) Arbuscular mycorrhizal fungi and organic farming. Agri Ecosyst Environ 113:17–35CrossRefGoogle Scholar
  46. Götz M, Nirenberg H, Krause S, Wolters H, Draeger S, Buchner A, Lottmann J, Berg G, Smalla K (2006) Fungal endophytes in potato roots studied by traditional isolation and cultivation-independent DNA-based methods. FEMS Microbiol Ecol 58:404–413PubMedCrossRefGoogle Scholar
  47. Griffiths BS, Caul S, Thompson J, Birch ANE, Scrimgeour C, Andersen MN, Cortet J, Messean A, Sausse C, Lacroix B, Krogh PH (2005) A comparison of soil microbial community structure, protozoa and nematodes in field plots of conventional and genetically modified maize expressing the Bacillus thuringiensis CryIAb toxin. Plant Soil 275:135–146CrossRefGoogle Scholar
  48. Griffiths BS, Heckmann LH, Caul S, Thompson J, Scrimgeour C, Krogh PH (2007) Varietal effects of eight paired lines of transgenic Bt maize and near-isogenic non-Bt maize on soil microbial and nematode community structure. Plant Biotechnol 5:60–68CrossRefGoogle Scholar
  49. Griffiths BS, Caul S, Thompson J, Hackett CA, Cortet J, Pernin C, Krogh PH (2008) Soil microbial and faunal responses to herbicide tolerant maize and herbicide in two soils. Plant Soil 308:93–103CrossRefGoogle Scholar
  50. Grigera MS, Drijber RA, Wienhold BJ (2007) Redistribution of crop residues during row cultivation creates a biologically enhanced environment for soil microorganisms. Soil Till Res 94:550–554CrossRefGoogle Scholar
  51. Gschwendtner S, Esperschütz J, Buegger F, Reichmann M, Müller M, Munch JC, Schloter M (2010) Effects of genetically modified starch metabolism in potato plants on photosynthate fluxes into the rhizosphere and on microbial degraders of root exudates. FEMS Microbiol Ecol 76:564–575CrossRefGoogle Scholar
  52. Hajiboland R (2013) Role of arbuscular mycorrhiza in amelioration of salinity. In: Ahmad P, Azooz MA, MNV P (eds) Salt stress in plants: signalling, omics and adaptations. Springer Science+Business Media, New York, pp 301–354CrossRefGoogle Scholar
  53. Hannula SE, de Boer W, van Veen JA (2010) In situ dynamics of soil fungal communities under different genotypes of potato, including a genetically modified cultivar. Soil Biol Biochem 42:2211–2223CrossRefGoogle Scholar
  54. Hannula SE, de Boer W, van Veen JA (2012) A 3-year study reveals that plant growth stage, season and field site affect soil fungal communities while cultivar and GM-trait have minor effects. PLoS One 7:e33819. doi: 10.1371/journal.pone.0033819 PubMedPubMedCentralCrossRefGoogle Scholar
  55. Hannula SE, de Boer W, Baldrian P, Van Veen JA (2013) Effects of genetically modified amylopectin-accumulating potato in decomposer processes and fungal diversity in litter and soil. Soil Biol Biochem 58:88–98CrossRefGoogle Scholar
  56. Hannula SE, de Boer W, van Veen JA (2014) Do genetic modifications in crops affect soil fungi? A review. Biol Fertil Soils 50:433–446CrossRefGoogle Scholar
  57. Hart MM, Powell JR, Gulden RH, Dunfield KE, Pauls KP, Swanton CJ, Klironomos JN, Antunes PM, Koch AM, Trevors JT (2009) Separating the effect of crop from herbicide on soil microbial communities in glyphosate-resistant corn. Pedobiologia 52:253–262Google Scholar
  58. Helgason T, Daniell TJ, Husband R, Fitter AH, Young JPW (1998) Ploughing up the wood-wide web? Nature 394:431PubMedCrossRefGoogle Scholar
  59. Henault C, English LC, Halpin C, Andreux F, Hopkins DW (2006) Microbial community structure in soils with decomposing residues from plants with genetic modifications to lignin biosynthesis. FEMS Microbiol Lett 263:68–75Google Scholar
  60. Hetrick BAD, Wilson GWT, Gill BS, Cox TS (1995) Chromosome location of mycorrhizal responsive genes in wheat. Can J Bot 73:891–897CrossRefGoogle Scholar
  61. Ho MW, Ryan A, Cummins J (1999) Cauliflower mosaic viral promoter – a recipe for disaster? Microb Ecol Health Dis 11:194–197CrossRefGoogle Scholar
  62. Hönemann L, Nentwig W (2009) Are survival and reproduction of Enchytraeus albidus (Annelida: Enchytraeidae) at risk by feeding on Bt-maize litter? Euro J Soil Biol 45:351–355CrossRefGoogle Scholar
  63. Hopkins DW, Gregorich EG (2003) Detection and decay of the Bt endotoxin in soil from a field trial with genetically modified maize. Eur J Soil Sci 54:793–800CrossRefGoogle Scholar
  64. Hoss S, Nguyen HT, Menzel R, Pagel-Wieder S, MiethlingGraf R, Tebbe CC, Jehle JA, Traunspurger W (2011) Assessing the risk posed to free-living soil nematodes by a genetically modified maize expressing the insecticidal Cry3Bb1 protein. Sci Total Environ 409:2674–2684PubMedCrossRefGoogle Scholar
  65. Icoz I, Stotzky G (2008) Cry3Bb1 protein from Bacillus thuringiensis in root exudates and biomass of transgenic corn does not persist in soil. Transgenic Res 17:609–620PubMedCrossRefGoogle Scholar
  66. Icoz I, Saxena D, Andow D, Zwahlen C, Stotzky G (2008) Microbial populations and enzyme activities in soil in situ under transgenic corn expressing Cry proteins from Bacillus thuringiensis. J Environ Qual 37:647–662PubMedCrossRefGoogle Scholar
  67. Isobe K, Sugimura H, Maeshima T, Ishii R (2008) Distribution of arbuscular mycorrhizal fungi in upland field soil of Japan: 2. Spore density of arbuscular mycorrhizal fungi and infection ratio in soybean and maize fields. Plant Produc Sci 11:171–177CrossRefGoogle Scholar
  68. James C (2012) Global Status of Commercialized Biotech/GM Crops: 2012. ISAAA Brief No. 44. ISAAA, Ithaca, NYGoogle Scholar
  69. James C (2013) Global status of commercialized biotech/GM crops: 2013. ISAAA Brief No. 46. ISAAA, Ithaca, NYGoogle Scholar
  70. Johnson NC, Rowland DL, Corkidi L, Egerton-Warburton LM, Allen EB (2003) Nitrogen enrichment alters mycorrhizal allocation at five mesic to semiarid grasslands. Ecology 84:1895–1908CrossRefGoogle Scholar
  71. Jung HG, Sheaffer CC (2004) Lignin concentration of whole plants and stems of Bt corn hybrids. J Animal Sci 82:250–250CrossRefGoogle Scholar
  72. Kabir Z, OHalloran IP, Fyles JW, Hamel C (1998) Dynamics of mycorrhizal symbiosis of corn (Zea mays L.): effects of host physiology, tillage practice and fertilization on spatial distribution of extra-radical mycorrhizal hyphae in the field. Agric Ecosyst Environ 68:151–163CrossRefGoogle Scholar
  73. Kaeppler SM, Parke JL, Mueller SM, Senior L, Stuber C, Tracy WF (2000) Variation among maize inbred lines and detection of quantitative trait loci for growth at low phosphorus and responsiveness to arbuscular mycorrhizal fungi. Crop Sci 40:358–364CrossRefGoogle Scholar
  74. Kaldorf M, Fladung M, Muhs HJ, Buscot F (2002) Mycorrhizal colonization of transgenic aspen in a field trial. Planta 214:653–660PubMedCrossRefGoogle Scholar
  75. Khan MQ, Abbasi MW, Zaki MJ, Khan SA (2010) Evaluation of Bacillus thuringiensis isolates against root-knot nematodes following seed application in okra and mungbean. Pak J Bot 42:2903–2910Google Scholar
  76. Klümper W, Qaim M (2014) A meta-analysis of the impacts of genetically modified crops. PLoS One 9:e111629. doi: 10.1371/journal.pone.0111629 PubMedPubMedCentralCrossRefGoogle Scholar
  77. Knox OGG, Nehl DB, Mor T, Roberts GN, Gupta VVSR (2008) Genetically modified cotton has no effect on arbuscular mycorrhizal colonisation of roots. Field Crops Res 109:57–60CrossRefGoogle Scholar
  78. Koskella J, Stotzky G (2002) Larvicidal toxins from Bacillus thuringiensis subspp. kurstaki, morrisoni (strain tenebrionis), and israelensis have no microbicidal or microbiostatic activity against selected bacteria, fungi, and algae in vitro. Can J Microbiol 48:262–267PubMedCrossRefGoogle Scholar
  79. Kremer RJ, Means NE (2009) Glyphosate and glyphosate-resistant crop interactions with rhizosphere microorganisms. Eur J Agron 31:153–161CrossRefGoogle Scholar
  80. Kuramae EE, Verbruggen E, Hillekens R, de Hollander M, Roling WFM, van der Heijden MGA, Kowalchuk GA (2013) Tracking fungal community responses to maize plants by DNA- and RNA-based pyrosequencing. PloS ONE 8:e69973. doi: 10.1371/journal.pone. 0069973 PubMedPubMedCentralCrossRefGoogle Scholar
  81. Lang A, Abdel-Kader K, Arndt M, Bauchhenss J, Beck R, Benker U, Hermann A, Mautz D, Zellner M, Pommer G (2006) Monitoring the environmental impact of Bt maize: a research project of the Bavarian State Ministry for Health, Environment and Consumer Protection, and the Bavarian State Research Center for Agriculture. Mitt Biol Bundes Land Forst Berlin-Dahlem 403:136–139Google Scholar
  82. Lawhorn CN, Neher DA, Dively GP (2009) Impact of coleopteran targeting toxin (Cry3Bb1) of Bt corn on microbially mediated decomposition. Appl Soil Ecol 41:364–368CrossRefGoogle Scholar
  83. Lee S-H, Kim C-G, Kang H (2011) Temporal dynamics of bacterial and fungal communities in a genetically modified (GM) rice ecosystem. Microb Ecol 61:646–659PubMedCrossRefGoogle Scholar
  84. Lehman RM, Osborne SL, Rosentrater KA (2008) No differences in decomposition rates observed between Bacillus thuringiensis and non-Bacillus thuringiensis corn residue incubated in the field. Agron J 100:163–168Google Scholar
  85. Li SL, Zhao SJ, Zhao LZ, Li SL, Zhao SJ, Zhao LZ (1997) Variation in the responses of Alfalfa clone and cultivars of eggplant and cucumber and control of diseases. Acta Phytophylact Sin 24:117–120Google Scholar
  86. Li X, Liu B, Cui J, Liu D, Ding S, Gilna B, Luo J, Fang Z, Cao W, Han Z (2011) No evidence of persistent effects of continuously planted transgenic insect-resistant cotton on soil microorganisms. Plant Soil 339:247–257Google Scholar
  87. Liang J, Sun S, Ji J, Wu H, Meng F, Zhang M, Zheng X, Wu C, Zhang Z (2014) Comparison of the rhizosphere bacterial communities of Zigongdongdou soybean and a high-methionine transgenic line of this cultivar. PLoS One 9:e103343. doi: 10.1371/journal.pone.0103343 PubMedPubMedCentralCrossRefGoogle Scholar
  88. Liang J, Meng F, Sun S, Wu C, Wu H, Zhang M, Zhang H, Zheng X, Song X, Zhang Z (2015) Community structure of arbuscular mycorrhizal fungi in rhizospheric soil of a transgenic high-methionine soybean and a near isogenic variety. PLoS One 10:e0145001. doi: 10.1371/journal.pone.0145001
  89. Lilley AK, Bailey MJ, Cartwright C, Turner SL, Hirsch PR (2006) Life in earth: the impact of GM plants on soil ecology? Tren Biotech 24:9–14CrossRefGoogle Scholar
  90. Liu WK (2010) Do genetically modified plants impact arbuscular mycorrhizal fungi? Ecotoxicology 19:229–238PubMedCrossRefGoogle Scholar
  91. Liu B, Zeng Q, Yan FM, Xu HG, Xu CR (2005) Effects of transgenic plants on soil microorganisms. Plant Soil 271:1–13CrossRefGoogle Scholar
  92. Liu W, Hao Lu H, Wu W, Kun Wei Q, Xu Chen Y, Thies JE (2008) Transgenic Bt rice does not affect enzyme activities and microbial composition in the rhizosphere during crop development. Soil Biol Biochem 40:475–486Google Scholar
  93. Liu B, Wang L, Zeng Q, Meng J, Hu W, Li X, Zhou K, Xue K, Liu D, Zheng Y (2009) Assessing effects of transgenic Cry1Ac cotton on the earthworm Eisenia fetida. Soil Biol Biochem 41:1841–1846Google Scholar
  94. Lu H, Wu W, Chen Y, Wang H, Devare M, Thies JE (2010) Soil microbial community responses to Bt transgenic rice residue decomposition in a paddy field. J Soils Sed 10:1598–1605CrossRefGoogle Scholar
  95. Lynch JM, Benedetti A, Insam H, Nuti MP, Smalla K, Torsvik V, Nannipieri P (2004) Microbial diversity in soil: ecological theories, the contribution of molecular techniques and the impact of transgenic plants and transgenic microorganisms. Biol Fertil Soils 40:363–385CrossRefGoogle Scholar
  96. Manachini B, Landi S, Fiore MC, Festa M, Arpaia S (2004) First investigations on the effects of Bt-transgenic Brassica napus L. on the trophic structure of the nematofauna. IOBC/WPRS Bull 27:103–108Google Scholar
  97. Mansouri H, Petit A, Oger P, Dessaux Y (2002) Engineered rhizosphere: the trophic bias generated by opine-producing plants is independent of the opine type, the soil origin, and the plant species. Appl Environ Microbiol 68:2562–2566PubMedPubMedCentralCrossRefGoogle Scholar
  98. Masoero F, Moschini M, Rossi F, Prandini A, Pietri A (1999) Nutritive value, mycotoxin contamination and in vitro rumen fermentation of normal and genetically modified corn (Cry1A9b) grown in northern Italy. Maydica 44:205–209Google Scholar
  99. Medina MJH, Gagnon H, Piche Y, Ocampo JA, Garrido JMG, Vierheilig H (2003) Root colonization by arbuscular mycorrhizal fungi is affected by the salicylic acid content of the plant. Plant Sci 164:993–998CrossRefGoogle Scholar
  100. Mercer KL, Wainwright JD (2008) Gene flow from transgenic maize to landraces in Mexico: an analysis. Agri Ecosyst Environ 123:109–115CrossRefGoogle Scholar
  101. Meyer JB, Song-Wilson Y, Foetzki A, Luginbühl C, Winzeler M, Kneubühler Y, Matasci C, Mascher-Frutschi F, Kalinina O, Boller T, Keel C, Maurhöfer M (2013) Does wheat genetically modified for disease resistance affect root-colonizing pseudomonads and arbuscular mycorrhizal fungi? PLoS One 8:e53825. doi: 10.1371/journal.pone.0053825 PubMedPubMedCentralCrossRefGoogle Scholar
  102. Montagnac JA, Davis CR, Tanumihardjo SA (2009) Nutritional value of vassava for use as a staple food and recent advances for improvement. Compr Rev Food Sci Food Saf 8:181–194Google Scholar
  103. Motavalli PP, Kremer RJ, Fang M, Means NE (2004) Impact of genetically modified crops and their management on soil microbially mediated plant nutrient transformations. J Environ Qual 33:816–824PubMedCrossRefGoogle Scholar
  104. Muchaonyerwa P, Waladde S, Nyamugafata P, Mpepereki S, Ristori GG (2004) Persistence and impact on microorganisms of Bacillus thuringiensis proteins in some Zimbabwean soils. Plant Soil 266:41–46CrossRefGoogle Scholar
  105. Mungai NW, Motavalli PP, Nelson KA, Kremer RJ (2005) Differences in yields, residue composition and N mineralization dynamics of Bt- and non-Bt-maize. Nutri Cycl Agroecosys 73:101–109CrossRefGoogle Scholar
  106. Naef A, Defago G (2006) Population structure of plant-pathogenic Fusarium species in overwintered stalk residues from Bt-transformed and non-transformed maize crops. Eur J Plant Pathol 116:129–143Google Scholar
  107. Naef A, Zesiger T, Defago G (2006) Impact of transgenic Bt maize residues on the mycotoxigenic plant pathogen Fusarium graminearum and the biocontrol agent Trichoderma atroviride. J Environ Qual 35:1001–1009PubMedCrossRefGoogle Scholar
  108. Newhouse AE, Schrodt F, Liang HY, Maynard CA, Powell WA (2007) Transgenic American elm shows reduced Dutch elm disease symptoms and normal mycorrhizal colonization. Plant Cell Rep 26:977–987PubMedCrossRefGoogle Scholar
  109. Nguyen Thu H (2004) Sicherheitsforschung und Monitoringmethoden zum Anbau von Bt Mais: Expression, Nachweis und Wirkung von rekombinantem Cry1Ab in heterologen Expressions systemen, Thesis, Georg-August-Universität, Göttingen, GermanyGoogle Scholar
  110. Nottingham S (2002) Genescapes: the ecology of genetic engineering. Zed Books, LondonGoogle Scholar
  111. O’Callaghan M, Glare TR, Burgess EPJ, Malone LA (2005) Effects of plants genetically modified for insect resistance on nontarget organisms. Annu Rev Entomol 50:271–292PubMedCrossRefGoogle Scholar
  112. Oehl F, Sieverding E, Ineichen K, Ris EA, Boller T, Wiemken A (2005) Community structure of arbuscular mycorrhizal fungi at different soil depths in extensively and intensively managed agroecosystems. New Phytol 165:273–283PubMedCrossRefGoogle Scholar
  113. Oliveira AP, Pampulha ME, Bennett JP (2008) A two-year field study with transgenic Bacillus thuringiensis maize: effects on soil microorganisms. Sci Tot Environ 405:351–357CrossRefGoogle Scholar
  114. Parniske M (2008) Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat Rev Microbiol 6:763–775PubMedCrossRefGoogle Scholar
  115. Plenchette C, Clermont-Dauphin C, Meynard JM, Fortin JA (2005) Managing arbuscular mycorrhizal fungi in cropping systems. Can J Plant Sci 85:31–40Google Scholar
  116. Poerschmann J, Gathmann A, Augustin J, Langer U, Górecki T (2005) Molecular composition of leaves and stems of genetically modified Bt and near-isogenic non-Bt maize—characterization of lignin patterns. J Environ Qual 34:1508–1518PubMedCrossRefGoogle Scholar
  117. Powell JR, Gulden RH, Hart MM, Campbell RG, Levy-Booth DJ, Dunfield KE, Pauls KP, Swanton CJ, Trevors JT, Klironomos JN (2007) Mycorrhizal and rhizobial colonization of genetically modified and conventional soybeans. Appl Environ Microbiol 73:4365–4367PubMedPubMedCentralCrossRefGoogle Scholar
  118. Powell JR, Levy-Booth DJ, Robert HG, Wendy LA, Rachel GC, Kari ED, Allan SH, Miranda MH, Sylvain L, Robert EN, Pauls KP, Peter HS, Clarence JS, Jack TT, John NK (2009) Effects of genetically modified, herbicide-tolerant crops and their management on soil food web properties and crop litter decomposition. J Appl Ecol 46:388–396CrossRefGoogle Scholar
  119. Prakash D, Verma S, Bhatia R, Tiwary BN (2011) Risks and precautions of genetically modified organisms. ISRN Ecol 369573:13. doi: 10.5402/2011/369573 Google Scholar
  120. Pu C, Liang J, Gao J, Wu C, Zhang M, Zhang Z, Cui Z, Cao H (2012) Effects of high producing methionine soybean transferred cystathionine γ-synthase gene on community structure of bacteria in soil. J Nanjing Agric Univ 35:8–14Google Scholar
  121. Raubuch M, Roose K, Warnstorff K, Wichern F, Joergensen RG (2007) Respiration pattern and microbial use of field-grown transgenic Bt-maize residues. Soil Biol Biochem 39:2380–2389CrossRefGoogle Scholar
  122. Ren X (2006) Effect of Bt transgenic rice (KMD) on soil bacterial community and rhizosphere AM fungi. Dissertation, Zhejiang University. Hang Zhou, ChinaGoogle Scholar
  123. Roessner U, Wagner C, Kopka J, Trethewey RN, Willmitzer L (2000) Simultaneous analysis of metabolites in potato tuber by gas chromatography–mass spectrometry. Plant J 23:131–142PubMedCrossRefGoogle Scholar
  124. Rui YK, Yi GX, Zhao J, Wang BM, Li ZH, Zhai ZX, He ZP, Li QX (2005) Changes of Bt toxin in the rhizosphere of transgenic Bt cotton and its influence on soil functional bacteria. World J Microbiol Biotech 21:1279–1284CrossRefGoogle Scholar
  125. Sawers RJ, Gutjahr C, Paszkowski U (2008) Cereal mycorrhiza: an ancient symbiosis in modern agriculture. Trends Plant Sci 13:93–97PubMedCrossRefGoogle Scholar
  126. Saxena D, Stotzky G (2000) Insecticidal toxin from Bacillus thuringiensis is released from roots of transgenic Bt corn in vitro and in situ. FEMS Microbiol Ecol 33:35–39PubMedCrossRefGoogle Scholar
  127. Saxena D, Stotzky G (2001a) Bt toxin uptake from soil by plants. Nat Biotechnol 19:199PubMedCrossRefGoogle Scholar
  128. Saxena D, Stotzky G (2001b) Bt corn has higher lignin content than non-Bt corn. Amer J Bot 88:1704–1706CrossRefGoogle Scholar
  129. Saxena D, Stotzky G (2003) Fate and effects in soil of insecticidal toxins from Bacillus thuringiensis in transgenic plants. In: Collection of biosafety reviews. pp 7–83. International Centre for Genetic Engineering and Biotechnology, Trieste, ItalyGoogle Scholar
  130. Saxena D, Flores S, Stotzky G (1999) Insecticidal toxin in root exudates from Bt corn. Nature 402:480PubMedGoogle Scholar
  131. Saxena D, Flores S, Stotzky G (2002) Bt toxin is released in root exudates from 12 transgenic corn hybrids representing three transformation events. Soil Biol Biochem 34:133–137CrossRefGoogle Scholar
  132. Saxena RK, Saxena KB, Varshney RK (2010) Application of SSR markers for molecular characterization of hybrid parents and purity assessment of ICPH 2438 hybrid of pigeon pea Cajanus cajan (L.) Millsp. Mol Breed 26:371–380CrossRefGoogle Scholar
  133. Schaarschmidt S, Gonzalez M-C, Roitsch T, Strack D, Sonnewald U, Hause B (2007) Regulation of arbuscular mycorrhization by carbon. The symbiotic interaction cannot be improved by increased carbon availability accomplished by root-specifically enhanced invertase activity. Plant Physiol 143:1827–1840PubMedPubMedCentralCrossRefGoogle Scholar
  134. Schultz PA, Miller RM, Jastrow JD, Rivetta CV, Bever JD (2001) Evidence of a mycorrhizal mechanism for the adaptation of Andropogon gerardii (Poaceae) to high- and low-nutrient prairies. Am J Bot 88:1650–1656PubMedCrossRefGoogle Scholar
  135. Seifert EK, Bever JD, Maron JL (2009) Evidence for the evolution of reduced mycorrhizal dependence during plant invasion. Ecology 90:1055–1062PubMedCrossRefGoogle Scholar
  136. Selosse MA, Baudoin E, Vandenkoornhuyse P (2004) Symbiotic microorganisms, a key for ecological success and protection of plants. Comptes Rendus Biol 327:639–648CrossRefGoogle Scholar
  137. Seppänen S-K, Pasonen H-L, Vauramo S, Vahala J, Toikka M, Kilpeläinen I, Setälä H, Teeri TH, Timonen S, Pappinen A (2007) Decomposition of the leaf litter and mycorrhiza forming ability of silver birch with a genetically modified lignin biosynthesis pathway. Appl Soil Ecol 36:100–106CrossRefGoogle Scholar
  138. Seres A, Nagy KP, Saly P, Darvas B, Bakonyi G (2014) Arbuscular mycorrhizal fungi colonisation of Cry3 toxin-producing Bt maize and near isogenic maize. Plant Soil Environ 60:569–573Google Scholar
  139. Shelton AM, Zhao JZ, Roush RT (2002) Economic, ecological, food safety, and social consequences of the deployment of Bt transgenic plants. Annu Rev Entomol 47:845–881PubMedCrossRefGoogle Scholar
  140. Shrawat AK, Carroll RT, De Paw M, Taylor GJ, Good AG (2008) Genetic engineering of improved nitrogen use efficiency in rice by tissue-specific expression of alanine aminotransferase. Plant Biotech J 6:722–732CrossRefGoogle Scholar
  141. Siciliano SD, Germida JJ (1999) Taxonomic diversity of bacteria associated with the roots of field-grown transgenic Brassica napus cv. Quest, compared to the non-transgenic B. napus cv. Excel and B. rapa cv. Parkland. FEMS Microbiol Ecol 29:263–272CrossRefGoogle Scholar
  142. Smith TF (1978) A note on the effect of soil tillage on the frequency and vertical distribution of spores of vesicular-arbuscular endophytes. Aust J Soil Res 16:359–361CrossRefGoogle Scholar
  143. Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Academic, Cambridge, UKGoogle Scholar
  144. Steinkellner S, Hage-Ahmed K, Garcia-Garrido JM, Illana A, Ocampo JA, Vierheilig H (2012) A comparison of wild-type, old and modern tomato cultivars in the interaction with the arbuscular mycorrhizal fungus Glomus mosseae and the tomato pathogen Fusarium oxysporum f. sp. lycopersici. Mycorrhiza 22:189–194PubMedCrossRefGoogle Scholar
  145. Stotzky G (2004) Persistence and biological activity in soil of the insecticidal proteins from Bacillus thuringiensis, especially from transgenic plants. Plant Soil 266:77–89CrossRefGoogle Scholar
  146. Tabashnik BE (1994) Evolution of resistance to Bacillus thuringiensis. Annu Rev Entomol 39:47–79CrossRefGoogle Scholar
  147. Tahiri-Alaoui A, Grison R, Gianinazzi-Pearson VT, Gianinazzi AS (1994) The impact of the constitutive expression of chitinases in roots of transgenic tobacco on arbuscular mycorrhizal fungi. In: Abstract 406 of the 7th international symposium on molecular plant–microbe interactions, Edinburgh, 26 June–1 July, 1994Google Scholar
  148. Tan FX, Wang JW, Feng YJ, Chi GL, Kong HL, Qiu HF, Wei SL (2010) Bt corn plants and their straw have no apparent impact on soil microbial communities. Plant Soil 329:349–364CrossRefGoogle Scholar
  149. Tan F, Wang J, Chen Z, Feng Y, Chi G, Rehman SU (2011) Assessment of the arbuscular mycorrhizal fungal community in roots and rhizosphere soils of Bt corn and their non-Bt isolines. Soil Biol Biochem 43:2473–2479CrossRefGoogle Scholar
  150. Tarkalson DD, Kachman SD, Knops KMN, Thies JE, Wortmann CS (2008) Decomposition of Bt and non-Bt corn hybrid residues in the field. Nutri Cycl Agroecosys 80:211–222CrossRefGoogle Scholar
  151. Thevissen K, Osborn R, Acland D, Broekaert WF (2000) Specific binding site for an antifungal plant defensin from Dahlia (Dahlia merckii) are required for antifungal activity. Mol Plant Microb Interact 13:54–61CrossRefGoogle Scholar
  152. Thevissen K, Francois IEJA, Takemoto JY, Ferket KKA, Meert EMK, Cammue BPA (2003) DmAMP1, an antifungal plant defensin from dahlia (Dahlia merckii), interacts with sphingolipids from Saccharomyces cerevisiae. FEMS Microb Lett 226:169–173CrossRefGoogle Scholar
  153. Tilston EL, Halpin C, Hopkins DW (2013) Simultaneous down regulation of enzymes in the phenylpropanoid pathway of plants has aggregated effects on rhizosphere microbial communities. Biol Fertil Soils 50:455–463CrossRefGoogle Scholar
  154. Turrini A, Sbrana C, Nuti MP, Pietrangeli BM, Giovannetti M (2004a) Development of a model system to assess the impact of genetically modified plants and aubergine plants on arbuscular mycorrhizal fungi. Plant Soil 266:69–75CrossRefGoogle Scholar
  155. Turrini A, Sbrana C, Pitto L, Castiglione MR, Giorgetti L, Briganti R, Bracci T, Evangelista M, Nuti MP, Giovannetti M (2004b) The antifungal Dm-AMP1 protein from Dahlia merckii Lehm. expressed in Solanum melongena is released in root exudates and differentially affects pathogenic fungi and mycorrhizal symbiosis. New Phytol 163:393–403CrossRefGoogle Scholar
  156. Turrini A, Sbrana C, Giovannetti M (2015) Belowground environmental effects of transgenic crops: a soil microbial perspective. Res Microbiol 166:121–131PubMedCrossRefGoogle Scholar
  157. Vafadar F, Amooaghaie R, Otroshy M (2014) Effects of plant-growth-promoting rhizobacteria and arbuscular mycorrhizal fungus on plant growth, stevioside, NPK, and chlorophyll content of Stevia rebaudiana. J Plant Interact 9:128–136Google Scholar
  158. van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69–72CrossRefGoogle Scholar
  159. Verbruggen E, Kuramae EE, Hillekens R, de Hollander M, Kiers ET, Röling WF, Kowalchuk GA, van der Heijden MG (2012) Testing potential effects of maize expressing the Bacillus thuringiensis Cry1Ab endotoxin (Bt maize) on mycorrhizal fungal communities via DNA- and RNA-based pyrosequencing and molecular fingerprinting. Appl Environ Microbiol 78:7384–7392PubMedPubMedCentralCrossRefGoogle Scholar
  160. Vierheilig H, Alt M, Neuhaus JM, Boller T, Wiemken A (1993) Colonization of transgenic Nicotiana sylvestris plants, expressing different forms of Nicotiana tabacum chitinase, by the root pathogen Rhizoctonia solani and by the mycorrhizal symbiont Glomus mosseae. Mol Plant-Microbe Interact 6:261–264CrossRefGoogle Scholar
  161. Vierheilig H, Alt M, Lange J, Gut-Rella M, Wiemken A, Boller T (1995) Colonization of transgenic tobacco constitutively expressing pathogenesis-related proteins by vesicular–arbuscular mycorrhizal fungus Glomus mosseae. Appl Environ Microbiol 61:3031–3034PubMedPubMedCentralGoogle Scholar
  162. Volpin H, Elkind Y, Okon Y, Kapulnik Y (1994) A vesicular arbuscular mycorrhizal fungus (Glomus intraradix) induces a defense response in alfalfa roots. Plant Physiol 104:683–689PubMedPubMedCentralCrossRefGoogle Scholar
  163. Wang B, Qiu YL (2006) Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16:299–363PubMedCrossRefGoogle Scholar
  164. Watanabe T, Broadley MR, Jansen S, White PJ, Takada J, Satake K, Takamatsu T, Tuah SJ, Osaki M (2007) Evolutionary control of leaf element composition in plants. New Phytol 174:516–523PubMedCrossRefGoogle Scholar
  165. Weaver MA, Krutz LJ, Zablotowicz RM, Reddy KN (2007) Effects of glyphosate on soil microbial communities and its mineralization in a Mississippi soil. Pest Manag Sci 63:388–393PubMedCrossRefGoogle Scholar
  166. Wei XD, Zou HL, Chu LM, Liao B, Ye CM, Lan CY (2006) Field released transgenic papaya affects microbial communities and enzyme activities in soil. Plant Soil 285:347–358CrossRefGoogle Scholar
  167. Weinert N, Meincke R, Gottwald C, Heuer H, Gomes NCM, Schloter M, Berg G, Smalla K (2009) Rhizosphere communities of genetically modified zeaxanthin-accumulating potato plants and their parent cultivar differ less than those of different potato cultivars. Appl Environ Microbiol 75:3859–3865PubMedPubMedCentralCrossRefGoogle Scholar
  168. Whipps JM (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52:487–511PubMedCrossRefGoogle Scholar
  169. Wieland G, Neumann R, Backhaus H (2001) Variation of microbial communities in soil, rhizosphere, and rhizoplane in response to crop species, soil type, and crop development. Appl Environ Microbiol 67:5849–5854PubMedPubMedCentralCrossRefGoogle Scholar
  170. Willis A, Rodrigues BF, Harris PJC (2013) The ecology of arbuscular mycorrhizal fungi. Crit Rev Plant Sci 32:1–20CrossRefGoogle Scholar
  171. Wohlfender-Bühler D, Feusthuber E, Wäger R, Mann S, Aubry SJ (2016) Genetically modified crops in Switzerland: implications for agrosystem sustainability evidenced by multi-criteria model. Agron Sustain Dev 36:1–16CrossRefGoogle Scholar
  172. Wróbel-Kwiatkowska M, Turnau K, Góralska K, Anielska T, Szopa J (2012) Effects of genetic modifications to flax (Linum usitatissimum) on arbuscular mycorrhiza and plant performance. Mycorrhiza 22:493–499PubMedPubMedCentralCrossRefGoogle Scholar
  173. Wu WX, Ye QF, Min H, Duan XJ, Jin WM (2004) Bt transgenic rice straw affects the culturable microbiota and dehydrogenase and phosphatase activities in a flooded paddy soil. Soil Biol Biochem 36:289–295CrossRefGoogle Scholar
  174. Wu WX, Liu W, Lu HH, Chen YX, Devare M, Thies J (2009) Use of C-13 labeling to assess carbon partitioning in transgenic and nontransgenic (parental) rice and their rhizosphere soil microbial communities. FEMS Microbiol Ecol 67:93–102PubMedCrossRefGoogle Scholar
  175. Xue K, Luo HF, Qi HY, Zhang HX (2005) Changes in soil microbial community structure associated with two types of genetically engineered plants analyzing by PLFA. J Environ Sci-China 17:130–134PubMedGoogle Scholar
  176. Xue K, Serohijos RC, Devare M, Thies JE (2011) Decomposition rates and residue-colonizing microbial communities of Bacillus thuringiensis insecticidal protein Cry3Bb-expressing (Bt) and non-Bt corn hybrids in the field. Appl Environ Microbiol 77:839–846PubMedCrossRefGoogle Scholar
  177. Yang YF, Yuan HX, Liu YL, Xu XP, Li BJ (2002) Research on root microorganism community of “RCH” transgenic rice. Chin J Agric Econ-China 10:29–31Google Scholar
  178. Ye X, Al-Babili S, Klöti A, Zhang J, Lucca P, Beyer P, Potrykus I (2000) Engineering the provitamin A (beta-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287:303–305PubMedCrossRefGoogle Scholar
  179. Yocum DH, Larsen HJ, Boosalis MG (1985) The effects of tillage treatments and a fallow season on VA mycorrhizae in winter wheat. In: Molina R (ed) Proc. 6th North Am Conf on Mycorrhizae, Oregon State University, CorvallisGoogle Scholar
  180. Zeng H, Tan F, Zhang Y, Feng Y, Shu Y, Wang JW (2014) Effects of cultivation and return of Bacillus thuringiensis (Bt) maize on the diversity of the arbuscular mycorrhizal community in soils and roots of subsequently cultivated conventional maize. Soil Biol Biochem 75:254–263CrossRefGoogle Scholar
  181. Zeng H, Tan F, Shu Y, Zhang Y, Feng Y, Wang J (2015) The Cry1Ab protein has minor effects on the arbuscular mycorrhizal fungal communities after five seasons of continuous Bt maize cultivation. PLoS One 10:e0146041. doi: 10.1371/journal.pone.0146041 PubMedPubMedCentralCrossRefGoogle Scholar
  182. Zhang C, Wohlhueter R, Zhang H (2016) Genetically modified foods: a critical review of their promise and problems. Food Sci Human Wellness 5:116–123CrossRefGoogle Scholar
  183. Zhu C, Naqvi S, Gomez-Galera S, Pelacho AM, Capell T, Christou P (2007) Transgenic strategies for the nutritional enhancement of plants. Trends Plant Sci 12:548–555PubMedCrossRefGoogle Scholar
  184. Zwahlen C, Hilbeck A, Gugerli P, Nentwig W (2003) Degradation of the Cry1Ab protein within transgenic Bacillus thuringiensis corn tissue in the field. Mol Ecol 12:765–775Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Root and Soil Biology Laboratory, Department of BotanyBharathiar UniversityCoimbatoreIndia

Personalised recommendations