Dynamics of Rhizosphere Microbial Communities of Cover Crops Dried with Glyphosate

  • J. S. Escobar Ortega
  • I. E. García de SalamoneEmail author


The use of cover crops (CC) may be associated with other management practices recommended to achieve high yields and collaborate to use available resources more efficiently. Glyphosate is a nonselective systemic herbicide, which is commonly used for drying CC. Here we included a review of the related topics and showed the effects of drying oats and rye with glyphosate, inoculation with two plant growth-promoting rhizobacteria, and nitrogen fertilization on rhizosphere microbial communities at field conditions in the western Pampas of Argentina. Rhizosphere samples were obtained at three times: before drying the CC, a month after this, and at harvest time of soybean which was grown after each CC. Counts of viable cells and physiology of rhizosphere microbial communities were analyzed. The inclusion of CC dried with glyphosate modifies their associated rhizosphere microbial communities. Their numbers significantly decreased or increased. For some microorganisms, these changes were temporary because their amounts at soybean harvest time did not differ from those obtained when the sampling was done before drying CC with glyphosate application. Besides, our results indicate that the drying time must be chosen taking into account CC types and their phenology. This scientific information is evidence of changes on rhizosphere microbial communities due to the management of CC with glyphosate in combination with or without both inoculation and fertilization of CC. These data are agronomic and environmentally relevant because they have shown that the type of management would impact on the quality and health of the soil and therefore in agroecosystem sustainability.


Rhizosphere microorganisms Soybean Rye Oats Pseudomonas fluorescens Azospirillum 



The works reported in this chapter had been partially supported by the following grants coordinated by IEGS, PICT1864-FONCYT 2008 from the MINCyT, UBACyT projects 20020090100255 and 20020130100716 of the Universidad de Buenos Aires (UBA) in Argentina. JSEO had a scholarship of the National Council of Scientific and Technical Research.

We would like to dedicate this work in memory of Dr. Katia RS Teixeira, Brazilian researcher of the EMBRAPA, Rio de Janeiro, Brazil, who always will be in our hearts.


  1. Abdel-Maller AY, Abdel Kader MIA, Shonkeir AMA (1994) Effect of glyphosate on fungal population, respiration and the decay of some organic matters in Egyptian soil. Microbiol Res 149(1):69–73CrossRefGoogle Scholar
  2. ACSOJA (2015) La importancia Económica de la Soja. Available via: Accessed 22 Nov 2016
  3. Alef K, Nannipieri P (1995) Methods in applied soil microbiology and biochemistry. Academic, London, pp 130–132Google Scholar
  4. Altieri MA (1994) Bases agroecológicas para una producción agrícola sustentable. Agric Técnica 54(4):371–386Google Scholar
  5. Álvarez C, Barraco M, Díaz Zorita M et al (2005) Influencia de cultivos de cobertura en el aporte de residuos, balance de agua y contenido de nitratos. Boletín de divulgación técnica N° 87. Aspectos del manejo de los suelos en sistemas mixtos de las regiones semiárida y subhúmeda Pampeana. Ediciones INTA. p 31Google Scholar
  6. Álvarez C, Scianca C, Barraco, M et al (2006) Inclusión de los cultivos de cobertura en rotaciones con base soja. Aporte de carbono e Influencia sobre propiedades edáficas. Ediciones INTA. p 21–23Google Scholar
  7. Álvarez C, Scianca C, Barraco, M et al (2008) Cultivos de cobertura en un argiudol típico del Noroeste Bonaerense. EEA INTA General Villega. Memoria Técnica 2007–2008. p 15–18Google Scholar
  8. Amigone MA, Tomaso JC (2006) Principales características de especies y cultivares de verdeos invernales. Informe para Extensión. 103 ppGoogle Scholar
  9. Andréa MMD, Peres TB, Luchini LC et al (2003) Influence of repeated applications of glyphosate on its persistence and soil bioactivity. Pesq Agrop Brasileira 38(11):1329–1335CrossRefGoogle Scholar
  10. Andriulo A, Mary B, Guérif J (1999) Modeling soil carbon dynamics with various cropping sequences on the rolling pampas. Agronomie 19:365–377CrossRefGoogle Scholar
  11. Antoun H, Prevost D (2006) Ecology of plant growth promoting rhizobacteria. In: Siddiqui ZA (ed) PGPR: biocontrol and biofertilization. Springer, Dordrecht, pp 1–38Google Scholar
  12. Baldani JI, Baldani VL (2005) History on the biological nitrogen fixation research in graminaceous plants: special emphasis on the Brazilian experience. An Acad Bras Cienc 77(3):549–579CrossRefPubMedGoogle Scholar
  13. Bashan Y, Holguin G (1997) Azospirillum-plant relationships: environmental and physiology advances (1990–1996). Can J Microbiol 43:103–121CrossRefGoogle Scholar
  14. Bashan Y, Harrison SK, Whitmoyer RE (1990) Enhanced growth of wheat and soybean plants inoculated with Azospirillum brasilense is not necessarily due to general enhancement of mineral uptake. Appl Environ Microbiol 56:769–775PubMedPubMedCentralGoogle Scholar
  15. Bashan Y, Holguin G, de-Bashan LE (2004) Azospirillum-plant relationships: physiological, molecular, agricultural and environmental advances (1997–2003). Can J Microbiol 50:521–577CrossRefPubMedGoogle Scholar
  16. Bentley RE (1990) The shikimate pathway – a metabolic tree with many branches. Crit Rev Biochem Mol Biol Boca Raton 25(5):307–384CrossRefGoogle Scholar
  17. Bode R, Schauer F, Birnbaum D (1986) Comparative studies on the enzymological basis for growth inhibition by glyphosate in some yeast species. Biochem Physiol Pflanzer 181:39–46CrossRefGoogle Scholar
  18. Busse MD, Ratcliff AW, Shestak CJ et al (2001) Glyphosate toxicity and the effects of long-term vegetation control on soil microbial communities. Soil Biol Biochem 33:1777–1789CrossRefGoogle Scholar
  19. Caballero-Mellado J (2004) Uso de Azospirillum como alternativa tecnológica viable para cultivos de cereales. In: Monzón de Asconegui MA, García de Salamone IE, Miyazaki SS (eds) Biología del Suelo, Transformaciones de la materia orgánica, usos y biodiversidad de los organismos edáficos. Editorial FAUBA, Universidad de Buenos Aires, p 45–49. ISBN 950-29-0790-6Google Scholar
  20. Carfagno P, Eiza MJ, Michelena R (2007) Inclusión de los cultivos de cobertura bajo agricultura de secano en la región semiárida pampeana. Jornada de cultivos de cobertura. 28–29 de Septiembre. Resultados parciales de la red de ensayos de cultivos de cobertura. General Villegas y General PicoGoogle Scholar
  21. Carfagno PF, Eiza MJ, Quiroga A et al (2008) Cultivos de cobertura: Efecto sobre la dinámica del agua en el suelo. Paper presented in XXI Congreso Argentino de la Ciencia del Suelo. Salta, ArgentinaGoogle Scholar
  22. Carfagno PF, Eiza MJ, Quiroga A et al (2013) Agua disponible en monocultivo de soja con cultivos de cobertura y barbechos reducidos en la Región Semiárida y Subhúmeda Pampeana. Cienc Suelo 31(1):67–81Google Scholar
  23. Carreño L, Viglizzo E (2011) Provisión de los servicios ecológicos y gestión de los ambientes rurales en Argentina. Proyecto del área estratégica de gestión ambiental. INTA, Buenos AiresGoogle Scholar
  24. Casas R (2007) Cultivos de Cobertura: una agricultura sustentable Suplemento Campo. La Nación. 24 de febreroGoogle Scholar
  25. Casas R (2013) Nota: Se pierde un 0,1 por ciento de materia orgánica por cada centímetro de suelo degradado. Rev Investig Agropecuarias RIA 39(2):123Google Scholar
  26. Cassan FD, García de Salamone IE (eds) (2008) Azospirillum sp.: cell physiology, plant interactions and agronomic research in Argentina. Asociación Argentina de Microbiología, Buenos Aires. Google Scholar
  27. Caviglia OP, Novelli L, Gregorutti VC, et al (2013) Cultivos de cobertura invernales: una alternativa de intensificación sustentable en el centro-oeste de Entre Ríos. En: Contribuciones de los cultivos de cobertura a la sostenibilidad de los sistemas de producción. Ediciones INTA, p 148–157Google Scholar
  28. Cheng W, Jonson DW, Shenglei F (2003) Rhizosphere effects on decomposition: control of plant species, phenology and fertilization. Soil Sci Soc Am J 67:1418–1427CrossRefGoogle Scholar
  29. Cordone G, Hansen O (1986) Efecto de distintas especies invernales utilizadas como abonos verdes o cultivos de cobertura en la producción de soja. Carpeta de Producción Vegetal, Tomo VIII, serie Soja, Información N° 73. EERA INTA PergaminoGoogle Scholar
  30. Cox C (2004) Herbicide factsheet glyphosate. J Pestic Reform 24(4):10–15Google Scholar
  31. Cox C, Surgan M (2006) Ingredientes inertes no identificados en los pesticidas: implicaciones para la salud humana y del medio ambiente. Environ Health Perspect 1803–1806Google Scholar
  32. De Baets S, Poesen J, Meersmans J et al (2011) Cover crop and their erosion-reducing effects during concentrated flow erosion. Elsevier B V Catena 85:237–244Google Scholar
  33. De Freitas JR, Banerjee MR, Germida JJ (1997) Phosphate-solubilizing rhizobacteria enhance the growth and yield but not phosphorus uptake of canola (Brassica napus L.) Biol Fertil Soils 24:358–364CrossRefGoogle Scholar
  34. Di Salvo LP, García de Salamone IE (2012) Laboratory standardization of an economical and reliable technique to evaluate physiological profiles of soil-microbial communities (CLPP). Ecol Austral 22:129–136Google Scholar
  35. Dobbelaere S, Vanderleyden J, Okon Y (2003) Plant growth-promoting effects of diazotrophs in the rhizosphere. Crit Rev Plant Sci 22(2):107–149CrossRefGoogle Scholar
  36. Doran JW, Zeiss MR (2000) Soil health and sustainability: managing the biotic component of soil quality. Appl Soil Ecol 15:3–11CrossRefGoogle Scholar
  37. Dowling DN, O’Gara F (1994) Metabolites of Pseudomonas involved in the biocontrol of plant disease. Trends Biotechnol 12(4):133–141CrossRefGoogle Scholar
  38. Duke SO, Baerson SR, Rimando AM (2003) Herbicides: glyphosate. In: Plimmer JR, Gammon DW, Ragsdale NN (eds) Encyclopedia of agrochemicals. Wiley, New York. Google Scholar
  39. Espindola JA, Guerra JGM, De-Polli H et al (2005) Adubação verde com leguminosas. Embrapa Informação Tecnológica, BrasiliaGoogle Scholar
  40. FAO (1994) Organización de las naciones unidad para la agricultura y la alimentación. Departamento de Agricultura y protección del consumidor. Agricultura de la conservaciónGoogle Scholar
  41. Fernandez R, Quiroga A, Noellemeyer E (2012) Cultivos de cobertura, ¿una alternativa viable para la region semiarida pampeana? Cienc Suelo 30(2):137–150. Available in: Google Scholar
  42. Ferreras L, Toresani S, Bonel B et al (2009) Parámetros químicos y biológicos como Indicadores de la calidad del suelo en diferentes manejos. Cienc Suelo 27(1):103–114Google Scholar
  43. García F (1999) Aspectos principales de siembra directa y los cultivos de soja y maíz en Argentina. In: Conferencia Anual da Revista Plantio Direto. IV p 21–32Google Scholar
  44. García de Salamone IE (2012) Use of soil microorganisms to improve plant growth and ecosystem sustainability. 233–258. The molecular basis of plant genetic diversity. Mahmut Caliskan. 978-953-51-0157-4. open access:, INTECH, Rijeka
  45. García de Salamone IE, Monzón de Asconegui MA (2008) Ecofisiología de la respuesta a la inoculación con Azospirillum en cultivos de cereales. In: Azospirillum sp.: cell physiology, plant interactions and agronomic research in Argentina. Asociación Argentina de Microbiología, Buenos Aires 14: 209–226. ISBN: 978-987-98475-8-9.
  46. García de Salamone IE, Dobereiner J, Urquiaga S et al (1996) Biological nitrogen fixation in Azospirillum strain-maize genotype associations as evaluated by the 15N isotope dilution technique. Biol Fertil Soils 23:249–256CrossRefGoogle Scholar
  47. García de Salamone IE, Hynes RK, Nelson LM (2001) Cytokinin production by plant growth promoting rhizobacteria and selected mutants. Can J Microbiol 47:404–411CrossRefPubMedGoogle Scholar
  48. García de Salamone IE, Hynes RK, Nelson LM (2006) Role of cytokinins in plant growth promotion by rhizosphere bacteria. In: Siddiqui ZA (ed) PGPR: biocontrol and biofertilization. Springer, Dordrecht, pp 173–195Google Scholar
  49. García de Salamone IE, Di Salvo LP, Escobar Ortega JS et al (2010) Field response of rice paddy crop to inoculation with Azospirillum: physiology of rhizosphere bacterial communities and the genetic diversity of endophytic bacteria in different parts of the plants. Plant Soil 336:351–362CrossRefGoogle Scholar
  50. García de Salamone IE, Funes JM, Di Salvo LP et al (2012) Inoculation of paddy rice with Azospirillum brasilense and Pseudomonas fluorescens: impact of plant genotypes on the rhizosphere microbial communities and field crop production. Appl Soil Ecol 61:196–204CrossRefGoogle Scholar
  51. Garza HN, Pérez Olvera MA, Castillo González F (2007) Evaluación de cinco especies vegetales como cultivos de cobertura en valles altos de México. Rev Fitotec Mex 30(2):151–157. ISSN: 0187-7380. Disponible en: Google Scholar
  52. Gianfreda L, Sannino F, Violanea A (1995) Pesticidal effects on the activity of free, inmobilized and soil invertase. Soil Biol Biochem 27:1201–1208CrossRefGoogle Scholar
  53. Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117CrossRefGoogle Scholar
  54. Gómez E, Ferreras L, Lovotti L (2008) Impact of glyphosate application on microbial biomass and metabolic activity in a Vertic Argiudoll from Argentina. Eur J Soil Biol 45:163–167CrossRefGoogle Scholar
  55. Halda-Alija L (2003) Identification of indole-3-acetic acid producing freshwater wetland rhizosphere bacteria associated with Juncus effusus L. Can J Microbiol 49(12):781–787CrossRefPubMedGoogle Scholar
  56. Haney RL, Senseman SA, Hons FM (2000) Effect of glyphosate on soil microbial activity and biomass. Weed Sci 48:89–93CrossRefGoogle Scholar
  57. Infoagro (2015) Cereales. Available in:
  58. Jaworski EG (1972) Mode of action of N-phosphonomethylglycine: inhibition of aromatic amino acid biosynthesis. J Agric Food Chem 20:1195–1198CrossRefGoogle Scholar
  59. Johal GS, Huber DM (2009) Glyphosate effects on diseases of plants. Eur J Agron 31:144–152CrossRefGoogle Scholar
  60. Lara Mantilla C, Oviendo L, Betancur C (2011) Bacterias nativas con potencial en la producción de ácido indolacético para mejorar los pastos. Zootec Trop 29(2):187–194Google Scholar
  61. León JD, Díez MC, Castellanos J et al (2008) Grupos funcionales de microorganismos en suelos degradados por minería de aluvión plantados con Acacia mangium. Suelos Ecuatoriales 38:75–80Google Scholar
  62. Levesque CA, Rahe JE (1992) Herbicide interactions with fungal root pathogens, with special reference to glyphosate. Annu Rev Phytopathol 30:579–602CrossRefPubMedGoogle Scholar
  63. Lévesque CA, Rahe JE, Eaves DM (1993) Fungal colonization of glyphosate-treated seedlings using a new root plating technique. Mycol Res 97:299–306CrossRefGoogle Scholar
  64. Liebman M, Davis AS (2000) Integration of soil, crop, and weed management in low-external-input farning systems. Weed Res 40:27–47CrossRefGoogle Scholar
  65. Lucy M, Reed E, Glick BR (2004) Applications of free living plant growth-promoting rhizobacteria. Anton Leeuw 86:1–25CrossRefGoogle Scholar
  66. Martínez JP, Barbieri PA, Sainz Rozas HR et al (2013) Incorporación de cultivos de cobertura previos a soja en el sudeste bonaerense. In: Informaciones Agronómicas de Hispanoamérica. p 21–25. Available in:$FILE/IAH%2010%20-%20JUN%202013.pdf
  67. Melo FB, Cardoso MJ, Italiano EC et al (1993) Manejo do solo com cobertura verde em sistemas isolado e consorciado como o milho. 1. Encontro Latino Americano sobre Plantio Direto na Pequena Propriedade Ponta Grossa (Brasil). 22–26 Nov. Anais., Ponta Grossa (Brasil). Instituto Agronômico do Paraná. p 123–129Google Scholar
  68. Mesnage R, Clair E, Séralini GE (2010) Roundup en modificados genéticamentencultivos: Regulación y toxicidad en los mamíferos. Theor Ökol 16:31–33Google Scholar
  69. MinAgri (2016) Informe diario del mercado de granos. Ministerio de Agricultura, Ganadería y Pesca. Presidencia de la Nación. p 1–7. Available in:
  70. Monosson E (2005) Mezclas químicas: Teniendo en cuenta la evolución de la toxicología y la evaluación química. Environ Health Perspect 113:383–390CrossRefPubMedGoogle Scholar
  71. Mueller TC, Massey JH, Hayes RM et al (2003) Shikimate accumulates in both glyphosate-sensitive and glyphosate-resistant horseweed (Conyza canadensis L. Cronq.) J Agric Food Chem 51:680–684CrossRefPubMedGoogle Scholar
  72. Naiman AD, Latronico AE, García de Salamone IE (2009) Inoculation of wheat with Azospirillum brasilense and Pseudomonas fluorescens: impact on the production and rhizospheric microflora. Eur J Soil Biol 45:44–51CrossRefGoogle Scholar
  73. Nivia E (2001) Las fumigaciones aéreas sobre cultivos ilícitos si son peligrosas – Algunas aproximaciones. en: Conferencia “Las Guerras en Colombia: Drogas, Armas y Petróleo” “The Wars in Colombia: Drugs, Guns and Oil” Instituto Hemisférico de las Américas. Universidad de California, Davis, p 17–19Google Scholar
  74. Okon Y (1994) Azospirillum/plant association. CRC Press, Boca Ratón. Florida USAGoogle Scholar
  75. Papa JC (2009) Problemas actuales de malezas que pueden afectar al cultivo de soja. En: Para mejorar la producción. Ediciones INTA, EEA Oliveros 42: 97–105Google Scholar
  76. Papa JC, Tuesca D (2014) Los problemas actuales de malezas en la región sojera núcleo argentina: origen y alternativas de manejo. En: Para mejorar la producción. Ediciones INTA EEA Oliveros 52: 151–165Google Scholar
  77. Papa JC, Tuesca D, Ponsa JC et al (2012) Confirmación de la Resistencia a Glifosato en un Biotipo de Raigrás Anual (Lolium multiflorum Lam.) del Noreste de la Provincia de Buenos Aires. XIV Jornadas Fitosanitarias Argentinas. En: Red de conocimiento en malezas resistentes (REM). Disponible en:
  78. Park M, Chungwoo K, Yanga J et al (2005) Isolation and characterization of diazotrophic growth promoting bacteria from rhizosphere of agricultural crops of Korea. Microbiol Res 160:127–133CrossRefPubMedGoogle Scholar
  79. Parkin TB, Kaspar TC, Singer JW (2006) Cover crop effects on the fate of N following soil application of swine manure. Plant Soil 289:141–152CrossRefGoogle Scholar
  80. Paul EA, Clark FE (1996) Soil microbiology and biochemistry. Academic, San Diego, p 273Google Scholar
  81. Pedraza RO, Teixeira KRS, Scavino AF et al (2010) Microorganismos que mejoran el crecimiento de las plantas y la calidad de los suelos. Rev Corpoica Cienc Tecnología Agropecuaria 11(2):155–164. ColombiaCrossRefGoogle Scholar
  82. Pengue W (2009) El desarrollo rural sostenible y los procesos de agriculturización, ganaderización y pampeanización en la llanura Chaco-Pampeana. En: Morello J, Rodríguez A (eds) El Chaco sin Bosques: La pampa o el desierto del futuro. p 111–146Google Scholar
  83. Pérez M, Scianca C (2009) Efecto de los cultivos de cobertura sobre las poblaciones de male-zas en un hapludol thapto árgico del N.O. Bonaerense. Memoria Técnica 2008–2009 p 22–24Google Scholar
  84. Pessagno RC, dos Santos Afonso MT (2006) Estudio comparativo del impacto ambiental de tres herbicidas de uso común en cultivos de soja y trigo. En: Gallardo Lancho JF (ed) Medio ambiente en Iberoamérica. Visión desde la Física y la Química en los albores del siglo XXI. Tomo III. p 345–352Google Scholar
  85. Piccolo A, Celano G, Arienzo M, Mirabella A (1994) Adsorption and desortion of glyphosate in some Eupean soils. J. of Environ Sc. Health. Part B Pesticides, Food Contaminants and Agricultural Wastes. 29: 6. 1105–1115. En: Cox, C. 1995. Glyphosate Part 2: Human exposure and ecological effects. Journal of Pesticide ReformGoogle Scholar
  86. Pound B (1998) Cultivos de Cobertura para la Agricultura Sostenible en América. Conferencia electrónica de la FAO sobre agroforestería para la producción animal en Latinoamérica. p 24Google Scholar
  87. Powell JR, Campbell RG, Dunfield KE et al (2009) Effect of glyphosate on the tripartite symbiosis formed by Glomus intraradices, Bradyrhizobium japonicum, and genetically modified soybean. Appl Soil Ecol 41:128–136CrossRefGoogle Scholar
  88. Restovich SB, Andriulo AE, Portela SI (2012) Introduction of cover crops in a maize-soybean rotation of the humid Pampas: effect on nitrogen and water dynamics. Field Crop Res 128:62–70CrossRefGoogle Scholar
  89. Rodriguez H, Fraga R, Gonzalez T et al (2006) Genetics of phosphate solubilization and its potential applications for improving plant growth-promoting bacteria. Plant Soil 287:15–21CrossRefGoogle Scholar
  90. Roslycky EB (1982) Glyphosate and the response of the soil microbiota. Soil Biol Biochem 14:87–92CrossRefGoogle Scholar
  91. Ruffo M, Parsons A (2003) Cultivos de cobertura en sistemas agrícolas. INPOFOS. Inf Agronómicos 21:13–20Google Scholar
  92. Ruffo M, Parsons A (2004) Cultivos de cobertura en sistemas agrícolas. Informaciones Agronómicas Cono Sur 21:13–16Google Scholar
  93. Salsal MC (2012) Factores condicionantes de La evolución estructural de suelos limosos bajo siembra directa. Efecto sobre el balance de agua. Tesis doctoral, Universidad de Buenos AiresGoogle Scholar
  94. Salsal MC (2013) Nota: La sustentabilidad de sistemas bajo SD depende de la secuencia de cultivos implementada. Rev Investig Agropecuarias RIA 39(2):120–121Google Scholar
  95. Sasal MC, Andriulo AE, Taboada MA (2006) Soil porosity characteristics and water movement under zero tillage in silty soils in Argentinean Pampas. Soil Tillage Res 87:9–18CrossRefGoogle Scholar
  96. Satorre E (2003) Las posibilidades ambientales y tecnológicas de la pradera pampeana para la producción de granos. Las Ciento y Una Hacia los 100 millones de toneladas de granos y la exportación de 1 millón de toneladas de carne. Bolsa de Cereales de Buenos Aires, p 37–38Google Scholar
  97. Schlesinger WH (1997) Biogeochemistry: an analysis of global change. Academic, Nueva York, EEUU. Geol Mag 135(6):819–842Google Scholar
  98. Scianca C, Barraco M, Álvarez C (2009) Estrategias de manejo de centeno utilizado como cultivo de cobertura en un argiudol típico del noroeste bonaerense. Memoria técnica 2008–2009. Ediciones INTA EEA General Villegas. p 22. ISSN 1850-6038Google Scholar
  99. Scianca C, Perez M, Barraco M, et al (2011) Cultivos de cobertura en sistemas de producción Orgánica. Producción de materia seca e impacto sobre algunas propiedades edaficas y poblaciones de malezas. En memoria técnica. Ediciones INTA EEA General Villegas. p 38–45Google Scholar
  100. Shushkova T, Ermakova I, Leontievsky A (2009) Glyphosate bioavailability in soil. Biodegradation 21:403–410CrossRefPubMedGoogle Scholar
  101. Siddiqui ZA (2006) PGPR: biocontrol and biofertilization, Springer, Dordrecht 318. 1402040024Google Scholar
  102. Steinrücken HC, Amrhein N (1980) The herbicide glyphosate is a potent inhibitor of 5-enolpyruvyl-shikimic acid-3-phosphate synthase. Biochem Biophys Res Commun 94:1207–1212CrossRefPubMedGoogle Scholar
  103. Studdert GA, Echeverría HE (2000) Crop rotations and nitrogen fertilization to manage soil organic carbon dynamics. Soil Sci Soc Am J 64:1496–1503CrossRefGoogle Scholar
  104. Teasdale JR (1996) Contribution of cover crops to weed management in sustainable agricultural systems. J Prod Agric 9:475–479CrossRefGoogle Scholar
  105. Teasdale JR, Brandsaeter LO, Calegari A, et al (2007) Cover crop and weed managment. In: Upadhyaya MK, Blackshaw RE. p 49–64Google Scholar
  106. Tejada M (2009) Evolution of soil biological properties after addition of glyphosate, difluenican and glyphosate more difluenican herbicides. Chemosphere 76:365–373CrossRefPubMedGoogle Scholar
  107. Urquiaga S, Jantalia CP, Alves BJR et al (2004) Importancia de la FBN en el secuestro de carbono en el suelo y en la sustentabilidad agrícola. En: Monzón de Asconegui MA, García de Salamone IE, Miyazaki SS (eds) Biología del Suelo. Transformación de la materia orgánica. Usos y biodiversidad de los organismos edáficos. Editoral FAUBA, Universidad de Buenos Aires, p 1–6Google Scholar
  108. Villalba A (2009) Resistencia a herbicidas. Glifosato. En: Ciencia, docencia y tecnología 39: 169–186Google Scholar
  109. Wan MT, Rahe JE, Watts RGA (1998) New technique for determining the sublethal toxicity of pesticides to the vesicular-arbuscular mycorrhizal fungus glomus intraradices. Environ Toxicol Chem. Pensacola 17(7):1421–1428Google Scholar
  110. Wardle D (2002) Communities and ecosystems: linking the aboveground and belowground components. Princeton Univ. Press, PrincetonGoogle Scholar
  111. Zabaloy MC, Gómez MA (2005) Diversity of rhizobia isolated from an agricultural soil in Argentina based on carbon utilization and effects of herbicides on growth. Biol Fertil Soils 42:83–88CrossRefGoogle Scholar
  112. Zabaloy MC, Garland JL, Gomez MA (2008) An integrated approach to evaluate the impacts of the herbicides glyphosate, 2,4-D and metsulfuron-methyl on soil microbial communities in the Pampas region. Argent Appl Soil Ecol 40:1–12CrossRefGoogle Scholar
  113. Zablotowicz RM, Reddy KN (2004) Impact of glyphosate on the Bradyrhizobium japonicum simbiosis with glyphosate-resistant transgenic soybean: a mini review. J Environ Qual 33:825–831CrossRefPubMedGoogle Scholar
  114. Zotarelli L, Torres E, Boddey RM, et al (2002) Role of legumes in the N economy of cereal production in crop rotation under conventional and no-tillage. In: World congress of soil science. Proceeding of the 17PthP World Congress of Soil Science. BangkokGoogle Scholar
  115. Zucchi M, Angiolini L, Borin L et al (2003) Response of bacterial community during bioremediation of an oil-polluted soil. J Appl Microbiol 94:248–257CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • J. S. Escobar Ortega
    • 1
  • I. E. García de Salamone
    • 1
    Email author
  1. 1.Unit of Agricultural and Environmental Microbiology, Department of Applied Biology and Foods, Faculty of AgronomyUniversity of Buenos AiresBuenos AiresArgentina

Personalised recommendations