Advertisement

Arbuscular Mycorrhizal Symbiosis: A Promising Approach for Imparting Abiotic Stress Tolerance in Crop Plants

  • Purnima Bhandari
  • Neera GargEmail author
Chapter

Abstract

Arbuscular mycorrhizal (AM) fungi form symbiotic association with a majority of plant species and act as a bridge between soil and plants, improving both plant health and soil fertility. In the recent decade, several studies have highlighted the potential of using such beneficial microbes in bioremediation practices where AM fungi not only improve overall soil structure and fertility but also help in the adaptation of plants in regions facing abiotic constraints including drought stress, salinity stress and heavy metal stress. AM fungi also establish effective symbiosis with legumes which are the key nitrogen fixers in the agricultural land, thereby improving legume-rhizobial symbiosis and nitrogen fixation process even in severely disturbed environments. Based on recent available literature, this chapter summarizes (1) the probable underlying mechanism(s) at biochemical and molecular level adopted by AM fungi in imparting stress resistance in plants against salinity, drought stress and HM stress and (2) major prospects to be taken in the future in the current direction.

Keywords

Arbuscular mycorrhizal (AM) fungi Drought Salinity Heavy metal (HM) toxicity Oxidative stress Antioxidants 

Notes

Acknowledgement

The authors are grateful to the Department of Biotechnology (DBT) and Department of Science and technology (DST-PURSE scheme), Government of India, for providing financial assistance for undertaking the research in the above context.

References

  1. Abbaspour H, Saeid-Sar S, Afshari H, Abdel-Wahhab MA (2012) Tolerance of mycorrhiza infected Pistachio (Pistacia vera L.) seedlings to drought stress under glasshouse conditions. J Plant Physiol 169:704–709PubMedCrossRefGoogle Scholar
  2. Abd-Alla MH, El-Enany AW, Nafady NA, Khalaf DM, Morsy FM (2014a) Synergistic interaction of Rhizobium leguminosarum bv. viciae and arbuscular mycorrhizal fungi as a plant growth promoting biofertilizers for faba bean (Vicia faba L.) in alkaline soil. Microbiol Res 169(1):49–58PubMedCrossRefGoogle Scholar
  3. Abd-Alla MH, Issa AA, Ohyama T (2014b) Impact of harsh environmental conditions on nodule formation and dinitrogen fixation of legumes. In: Ohyama T (ed) Agricultural and biological sciences, Advances in biology and ecology of nitrogen fixation. InTechOpen, Rijeka, pp 131–193Google Scholar
  4. Abd-El Baki GK, Siefritz F, Man PM, Weiner H, Kaldenhoff R, Kaiser WM (2000) Nitrate reductase in Zea mays L under salinity. Plant Cell Environ 23:515–521CrossRefGoogle Scholar
  5. Abdel Latef AA (2011) Influence of arbuscular mycorrhizal fungi and copper on growth, accumulation of osmolyte, mineral nutrition and antioxidant enzyme activity of pepper (Capsicum annuum L.) Mycorrhiza 21:495–503PubMedCrossRefGoogle Scholar
  6. Abdel Latef AA (2013) Growth and some physiological activities of pepper (Capsicum annuum L.) in response to cadmium stress and mycorrhizal symbiosis. J Agric Sci Technol 15:1437–1448Google Scholar
  7. Abdel Latef AA, Chaoxing H (2014) Does the inoculation with Glomus mosseae improve salt tolerance in pepper plants? J Plant Growth Regul 33:644–653CrossRefGoogle Scholar
  8. Abdelmoneim TS, Moussa T, Almaghrabi OA, Alzahrani HS, Abdelbagi I (2014) Increasing plant tolerance to drought stress by inoculation with arbuscular mycorrhizal fungi. Life Sci J 11:10–17Google Scholar
  9. Ahanger MA, Hashem A, Abd-Allah EF, Ahmad P (2014) Arbuscular mycorrhiza in crop improvement under environmental stress. In: Ahmad P, Rasool S (eds) Emerging technologies and management of crop stress tolerance. Elsevier, Amsterdam, pp 69–95Google Scholar
  10. Ahmad P, Abdul Latef AA, Hashem A, Abd-Allah EF, Gucel S, LSP T (2016) Nitric oxide mitigates salt stress by regulating levels of osmolytes and antioxidant enzymes in chickpea. Front Plant Sci 7:347PubMedPubMedCentralGoogle Scholar
  11. Akhzari D, Pessarakli M, Ebrahimi M (2016) Effects of arbuscular mycorrhizal fungi on seedling growth and physiological traits of Melilotus officinalis L. grown under salinity stress conditions. Commun Soil Sci Plant Anal 47(7):2261. doi: 10.1080/00103624.2016.1146897 CrossRefGoogle Scholar
  12. Alguacil MM, Kohle RJ, Caravaca F, Roldána A (2009) Differential effects of Pseudomonas mendocina and Glomus intraradices on lettuce plants physiological response and aquaporin PIP2 gene expression under elevated atmospheric CO2 and drought. Microb Ecol 58:942–95lCrossRefGoogle Scholar
  13. Al-Karaki GN (2006) Nursery inoculation of tomato with arbuscular mycorrhizal fungi and subsequent performance under irrigation with saline water. Sci Hortic 109:1–7CrossRefGoogle Scholar
  14. Al-Karaki GN, Hammad R, Rusan M (2001) Response of two tomato cultivars differing in salt tolerance to inoculation with mycorrhizal fungi under salt stress. Mycorrhiza 11:43–47CrossRefGoogle Scholar
  15. Al-Karaki G, McMichael B, Zak J (2004) Field response of wheat to arbuscular mycorrhizal fungi and drought stress. Mycorrhiza 14:263–269PubMedCrossRefGoogle Scholar
  16. Amir H, Jourand P, Cavaloc Y, Ducousso M (2014) Role of mycorrhizal fungi in the alleviation of heavy metal toxicity in plants. In: Zakaria M, Solaiman ZM, Abbott LK, Varma A (eds) Mycorrhizal fungi: use in sustainable agriculture and land restoration, soil biology, vol 41. Springer-Verlag, Berlin, pp 241–258Google Scholar
  17. Anjum NA, Hasanuzzaman M, Hossain MA, Thangavel P, Roychoudhury A, Gill SS, Rodrigo MA, Adam V, Fujita M, Kizek R, Duarte AC (2015) Jacks of metal(loid) chelation trade in plants – an overview. Front Plant Sci 6:192PubMedPubMedCentralGoogle Scholar
  18. Antolın-Llovera M, Ried MK, Binder A, Parniske M (2012) Receptor kinase signaling pathways in plant-microbe interactions. Annu Rev Phytopathol 50:451–473PubMedCrossRefGoogle Scholar
  19. Aroca R, Ferrante A, Vernieri P, Chrispeels MJ (2006) Drought, abscisic acid and transpiration rate effects on the regulation of PIP aquaporin gene expression and abundance in Phaseolus vulgaris plants. Ann Bot 98:1301–1310PubMedPubMedCentralCrossRefGoogle Scholar
  20. Aroca R, Porcel R, Ruiz-Lozano JM (2007) How does arbuscular mycorrhizal symbiosis regulate root hydraulic properties and plasma membrane aquaporins in Phaseolus vulgaris under drought, cold or salinity stresses? New Phytol 173:808–816PubMedCrossRefGoogle Scholar
  21. Aroca R, Vernieri P, Ruiz-Lozano JM (2008) Mycorrhizal and nonmycorrhizal Lactuca sativa plants exhibit contrasting responses to exogenous ABA during drought stress and recovery. J Exp Bot 59:2029–2041PubMedPubMedCentralCrossRefGoogle Scholar
  22. Aroca R, Porcel R, Ruiz-Lozano JM (2012) Regulation of root water uptake under abiotic stress conditions. J Exp Bot 63:43–57PubMedCrossRefGoogle Scholar
  23. Aroca R, Ruiz-Lozano JM, Zamarreño ÁM, Paz JA, García-Mina JM, Pozo MJ, López-Ráez JA (2013) Arbuscular mycorrhizal symbiosis influences strigolactone production under salinity and alleviates salt stress in lettuce plants. J Plant Physiol 170:47–55PubMedCrossRefGoogle Scholar
  24. Augé RM (2001) Water relations, drought and vesicular mycorrhizal fungi symbiosis. Mycorrhiza 11:3–42CrossRefGoogle Scholar
  25. Augé RM, Stodola AJW (1990) Apparent increase in symplastic water contributes to greater turgor in mycorrhizal roots of droughted Rosa plants. New Phytol 115:285–295CrossRefGoogle Scholar
  26. Azcón R, Medina A, Aroca R, Ruiz-Lozano JM (2013) Abiotic stress remediation by the arbuscular mycorrhizal symbiosis and rhizosphere bacteria/yeast interactions. In: Frans J. de Bruijn (ed) Molecular microbial ecology of the rhizosphere (vol. 2, 1st edn). Wiley, Hoboken, pp 991–1002Google Scholar
  27. Bagheri V, Shamshiri MH, Shirani H, Roosta H (2012) Nutrient uptake and distribution in mycorrhizal pistachio seedlings under drought stress. J Agric Sci Technol 14(Suppl):1591–1604Google Scholar
  28. Balestrini R (2016) Biological potential of arbuscular mycorrhizal fungi. In: Arora NK, Mehnaz S, Balestrini R (eds) Bioformulations: for sustainable agriculture. Springer, New Delhi, pp 127–135Google Scholar
  29. Balestrini R, Lumini E, Borriello R, Bianciotto V (2015) Plant–soil biota interactions. In: Paul EA (ed) Soil microbiology, ecology and biochemistry, 4th edn. Academic/Elsevier, London/San Diego/OxfordGoogle Scholar
  30. Barea JM, Azcón R, Azcón-Aguilar C (2005) Interactions between mycorrhizal fungi and bacteria to improve plant nutrient cycling and soil structure. In: Buscot F, Varma A (eds) Microorganisms in soils: roles in genesis and functions. Springer-Verlag, Berlin, pp 195–212CrossRefGoogle Scholar
  31. Barea JM, Pozo MJ, López-Ráez JA, Aroca R, Ruíz-Lozano JM, Ferrol N, Azcón R, Azcón-Aguilar C (2014) Arbuscular mycorrhizas and their significance in promoting soil-plant system sustainability against environmental stresses. In: Rodelas MB, González-López J (eds) Beneficial plant-microbial interactions ecology and applications. CRC Press/Taylor & Francis, London, pp 353–387Google Scholar
  32. Baslam M, Goicoechea N (2012) Water deficit improved the capacity of arbuscular mycorrhizal fungi (AMF) for inducing the accumulation of antioxidant compounds in lettuce leaves. Mycorrhiza 22:347–359PubMedCrossRefGoogle Scholar
  33. Benabdellah K, Merlos MA, Azcón-Aguilar C, Ferrol N (2009) GintGRX1, the first characterized glomeromycotan glutaredoxin, is a multifunctional enzyme that responds to oxidative stress. Fungal Genet Biol 46:94–103PubMedCrossRefGoogle Scholar
  34. Benavides MP, Gallego SM, Tomaro ML (2005) Cadmium toxicity in plants. Braz J Plant Physiol 17:21–34CrossRefGoogle Scholar
  35. Broghammer A, Krusell L, Blaise M, Sauer J, Sullivan JT, Maolanon N, Vinther M, Lorentzen A, Madsen EB, Jensen KJ, Roepstorff P, Thirup S, Ronson CW, Thygesen MB, Stougaard J (2012) Legume receptors perceive the rhizobial lipochitin oligosaccharide signal molecules by direct binding. Proc Natl Acad Sci U S A 109(34):13859–13864PubMedPubMedCentralCrossRefGoogle Scholar
  36. Bucher M, Hause B, Krajinski F, Küster H (2014) Through the doors of perception to function in arbuscular mycorrhizal symbioses. New Phytol 204:833–840PubMedCrossRefGoogle Scholar
  37. Bücking H, Kafle A (2015) Role of arbuscular mycorrhizal fungi in the nitrogen uptake of plants: current knowledge and research gaps. Agronomy 5:587–612CrossRefGoogle Scholar
  38. Calvo-Polanco M, Sánchez-Romera B, Aroca R (2013) Arbuscular mycorrhizal fungi and the tolerance of plants to drought and salinity. In: Aroca R (ed) Symbiotic endophytes, soil biology 37. Springer-Verlag, Berlin/Heidelberg, pp 271–288CrossRefGoogle Scholar
  39. Campbell B (2012) The global imperative. Drought affects us all. In perspectives: legislating change. What should governments do to enhance sustainable agriculture and mitigate droughts? Nat Outlook Agric Drought 501:s12–s14Google Scholar
  40. Cantrell IC, Linderman RG (2001) Preinoculation of lettuce and onion with VA mycorrhizal fungi reduces deleterious effects of soil salinity. Plant Soil 233:269–281CrossRefGoogle Scholar
  41. Chatzistathis T, Orfanoudakis M, Alifragis D, Therios I (2013) Colonization of Greek olive cultivars’ root system by arbuscular mycorrhiza fungus: root morphology, growth and mineral nutrition of olive plants. Sci Agric 70(3):185–194CrossRefGoogle Scholar
  42. Chitarra W, Pagliarani C, Maserti B, Lumini E, Siciliano I, Cascone P, Schubert A, Gambino G, Balestrini R, Guerrieri E (2016) Insights on the impact of arbuscular mycorrhizal symbiosis on tomato tolerance to water stress. Plant Physiol 171(2):1009–1023PubMedPubMedCentralGoogle Scholar
  43. Clark RB, Zeto SK (1996) Mineral acquisition by mycorrhizal maize grown on acid and alkaline soil. Soil Biol Biochem 28(I-II):1495–1503CrossRefGoogle Scholar
  44. Colpaert JV, Wevers JHL, Krznaric E, Adriaensen K (2011) How metal-tolerant ecotypes of ectomycorrhizal fungi protect plants from heavy metal pollution. Ann For Sci 68:17–24CrossRefGoogle Scholar
  45. Copeman RH, Martin CA, Stutz JC (1996) Tomato growth in response to salinity and mycorrhizal fungi from saline or nonsaline soils. Hortic Sci 31:341–344Google Scholar
  46. Cornejo P, Meier S, Borie G, Rillig MC, Borie F (2008) Glomalin-related protein in a Mediterranean ecosystem affected by copper smelter and its contribution to cu and Zn sequestration. Sci Total Environ 406:154–160PubMedCrossRefGoogle Scholar
  47. Doubková P, Vlasáková E, Sudová R (2013) Arbuscular mycorrhizal symbiosis alleviates drought stress imposed on Knautia arvensis plants in serpentine soil. Plant Soil 370:149–161CrossRefGoogle Scholar
  48. Drzewiecka K, Mleczek M, Waśkiewicz A, Goliński P (2012) Oxidative stress and phytoremediation. In: Ahmad P, Prasad MNV (eds) Abiotic stress responses in plants: metabolism, productivity and sustainability. Springer Science+Business Media, LLC, Berlin, pp 425–449Google Scholar
  49. Duhamel M, Vandenkoornhuyse P (2013) Sustainable agriculture: possible trajectories from mutualistic symbiosis and plant neodomestication. Trends Plant Sci 18:597–600PubMedCrossRefGoogle Scholar
  50. Estrada B, Aroca R, Barea JM, Ruíz-Lozano JM (2013a) Native arbuscular mycorrhizal fungi isolated from a saline habitat improved maize antioxidant systems and plant tolerance to salinity. Plant Sci 201–202:42–51PubMedCrossRefGoogle Scholar
  51. Estrada B, Aroca R, Maathuis FJM, Barea JM, Ruiz-Lozano JM (2013b) Arbuscular mycorrhizal fungi native from a Mediterranean saline area enhance maize tolerance to salinity through improved ion homeostasis. Plant Cell Environ 36(10):1771–1782PubMedCrossRefGoogle Scholar
  52. Estrada B, Barea JM, Aroca R, Ruiz-Lozano JM (2013c) A native Glomus intraradices strain from a Mediterranean saline area exhibits salt tolerance and enhanced symbiotic efficiency with maize plants under salt stress conditions. Plant Soil 366:333–349CrossRefGoogle Scholar
  53. Evelin H, Kapoor R (2014) Arbuscular mycorrhizal symbiosis modulates antioxidant response in salt-stressed Trigonella foenum-graecum plants. Mycorrhiza 24(3):197–208PubMedCrossRefGoogle Scholar
  54. Evelin H, Giri B, Kapoor R (2012) Contribution of Glomus intraradices inoculation to nutrient acquisition and mitigation of ionic imbalance in NaCl-stressed Trigonella foenum-graecum. Mycorrhiza 22(3):203–217Google Scholar
  55. Evelin H, Kapoor R, Giri B (2009) Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Ann Bot 104:1263–1280PubMedPubMedCentralCrossRefGoogle Scholar
  56. Evelin H, Giri B, Kapoor R (2013) Ultrastructural evidence for AMF mediated salt stress mitigation in Trigonella foenum-graecum. Mycorrhiza 23:71–86PubMedCrossRefGoogle Scholar
  57. Fellbaum CR, Mensah JA, Cloos AJ, Strahan GE, Pfeffer PE, Kiers ET, Bucking H (2014) Fungal nutrient allocation in common mycorrhizal networks is regulated by the carbon source strength of individual host plants. New Phytol 203:646–656PubMedCrossRefGoogle Scholar
  58. Ferrol N, Gonzalez-Guerrero M, Valderas A, Benabdallah K, Azcon-Aguilar C (2009) Survival strategies of arbuscular mycorrhizal fungi in Cu-polluted environments. Phytochem Rev 8:551–559CrossRefGoogle Scholar
  59. Folli-Pereira MS, Meira-Haddad LSA, Houghton CMNSVC, Kasuya MCM (2013) Plant-Microorganism Interactions: Effects on the Tolerance of Plants to Biotic and Abiotic Stresses. In: Hakeem KR, Ahmad P, Ozturk M (eds) Crop Improvement, Springer Science+Business Media, Berlin, pp 209–238Google Scholar
  60. Fusconi A, Berta G (2012) Environmental stress and role of arbuscular mycorrhizal symbiosis. In: Ahmad P, Prasad MNV (eds) Abiotic stress responses in plants. Springer, New York, pp 197–214CrossRefGoogle Scholar
  61. Gadkar V, Rillig MC (2006) The arbuscular mycorrhizal fungal protein glomalin is a putative homolog of heat shock protein 60. FEMS Microbiol Lett 263:93–101PubMedCrossRefGoogle Scholar
  62. Gamalero E, Lingua G, Berta G, Glick BR (2009) Beneficial role of plant growth promoting bacteria and arbuscular mycorrhizal fungi on plant responses to heavy metal stress. Can J Microbiol 55:501–514PubMedCrossRefGoogle Scholar
  63. Garg N, Aggarwal N (2011) Effects of interactions between cadmium and lead on growth, nitrogen fixation, phytochelatin and glutathione production in mycorrhizal Cajanus cajan (L.) Millsp. J Plant Growth Regul 30:286–300CrossRefGoogle Scholar
  64. Garg N, Aggarwal N (2012) Effect of mycorrhizal inoculations on heavy metal uptake and stress alleviation of Cajanus cajan (L.) Millsp. Genotypes grown in cadmium and lead contaminated soils. Plant Growth Regul 66:9–26CrossRefGoogle Scholar
  65. Garg N, Baher N (2013) Role of arbuscular mycorrhizal symbiosis in proline biosynthesis and metabolism of Cicer arietinum L. (chickpea) genotypes under salt stress. J Plant Growth Regul 32:767–778CrossRefGoogle Scholar
  66. Garg N, Bhandari P (2012) Influence of cadmium stress and arbuscular mycorrhizal fungi on nodule senescence in Cajanus cajan (L.) Millsp. Int J Phytoremediation 14:62–74PubMedCrossRefGoogle Scholar
  67. Garg N, Bhandari P (2014) Cadmium toxicity in crop plants and its alleviation by arbuscular mycorrhizal (AM) fungi: an overview. Plant Biosyst 148:609–621CrossRefGoogle Scholar
  68. Garg N, Bhandari P (2016a) Interactive effects of silicon and arbuscular mycorrhiza in modulating ascorbate-glutathione cycle and antioxidant scavenging capacity in differentially salt-tolerant Cicer arietinum L. genotypes subjected to long-term salinity. Protoplasma. doi: 10.1007/s00709-015-0892-4
  69. Garg N, Bhandari P (2016b) Silicon nutrition and mycorrhizal inoculations improve growth, nutrient status, K+/Na+ ratio and yield of Cicer arietinum L. genotypes under salinity stress. Plant Growth Regul 78:371–387CrossRefGoogle Scholar
  70. Garg N, Chandel S (2010) Arbuscular mycorrhizal networks: process and functions. Rev Agron Sustain Dev 30:581–599CrossRefGoogle Scholar
  71. Garg N, Chandel S (2011a) The effects of salinity on nitrogen fixation and trehalose metabolism in mycorrhizal Cajanus cajan (L.) Millsp. plants. J Plant Growth Regul 30:490–503CrossRefGoogle Scholar
  72. Garg N, Chandel S (2011b) Effect of mycorrhizal inoculation on growth, nitrogen fixation, and nutrient uptake in Cicer arietinum (L.) under salt stress. Turk J Agric For 35:205–214Google Scholar
  73. Garg N, Chandel S (2015) Role of arbuscular mycorrhiza in arresting reactive oxygen species (ROS) and strengthening antioxidant defense in Cajanus cajan (L.) Millsp. nodules under salinity (NaCl) and cadmium (Cd) stress. Plant Growth Regul 75(2):521–534CrossRefGoogle Scholar
  74. Garg N, Kaur H (2012) Influence of zinc on cadmium-induced toxicity in nodules of pigeonpea (Cajanus cajan L. Millsp.) inoculated with arbuscular mycorrhizal (AM) fungi. Acta Physiol Plant 34(4):1363–1380CrossRefGoogle Scholar
  75. Garg N, Kaur H (2013a) Response of antioxidant enzymes, phytochelatins and glutathione production towards Cd and Zn stresses in Cajanus cajan (L.) Millsp. genotypes colonized by arbuscular mycorrhizal fungi. J Agron Crop Sci 199(2):118–133CrossRefGoogle Scholar
  76. Garg N, Kaur H (2013b) Impact of cadmium-zinc interactions on metal uptake, translocation and yield in pigeonpea genotypes colonized by arbuscular mycorrhizal fungi. J Plant Nutr 36(1):67–90CrossRefGoogle Scholar
  77. Garg N, Manchanda G (2008) Effect of Arbuscular mycorrhizal inoculation of salt-induced nodule senescence in Cajanus cajan (pigeon pea). J Plant Growth Regul 27:115–124CrossRefGoogle Scholar
  78. Garg N, Manchanda G (2009a) ROS generation in plants: boon or bane? Plant Biosyst 143(1):81–96CrossRefGoogle Scholar
  79. Garg N, Manchanda G (2009b) Role of arbuscular mycorrhizae in the alleviation of ionic, osmotic and oxidative stresses induced by salinity in Cajanus cajan (L.) Millsp. (Pigeonpea). J Agron Crop Sci 195:110–123CrossRefGoogle Scholar
  80. Garg N, Pandey R (2015) Effectiveness of native and exotic arbuscular mycorrhizal fungi on nutrient uptake and ion homeostasis in salt-stressed Cajanus cajan L. (Millsp.) genotypes. Mycorrhiza 25(3):165–180PubMedCrossRefGoogle Scholar
  81. Garg N, Pandey R (2016) High effectiveness of exotic arbuscular mycorrhizal fungi is reflected in improved rhizobial symbiosis and trehalose turnover in Cajanus cajan genotypes grown under salinity stress. Fungal Ecol 21:57–67CrossRefGoogle Scholar
  82. Garg N, Singla P (2012) The role of Glomus mosseae on key physiological and biochemical parameters of pea plants grown in arsenic contaminated soil. Sci Hortic 143:92–101CrossRefGoogle Scholar
  83. Garg N, Singla P (2015) Naringenin-and Funneliformis mosseae-mediated alterations in redox state synchronize antioxidant network to alleviate oxidative stress in Cicer arietinum L. genotypes under salt stress. J Plant Growth Regul 34(3):595–610CrossRefGoogle Scholar
  84. Garg N, Singla P (2016) Stimulation of nitrogen fixation and trehalose biosynthesis by naringenin (Nar) and arbuscular mycorrhiza (AM) in chickpea under salinity stress. Plant Growth Regul. doi: 10.1007/s10725-016-0146-2
  85. Gaur A, Adholeya A (2004) Prospects of arbuscular mycorrhizal fungi in phytoremediation of heavy metal contaminated soils. Curr Sci 86:528–534Google Scholar
  86. Genre A (2012) Signalling and the re-structuring of plant cell architecture in am symbiosis. In: Perotto S, Baluška F (eds) Signaling and communication in plant symbiosis Vol 11 of the series – signaling and communication in plants. Springer-Verlag, Berlin, pp 51–71CrossRefGoogle Scholar
  87. Genre A, Bonfante P (2010) The making of symbiotic cells in arbuscular mycorrhizal roots. In: Koltai H, Kapulnik Y (eds) Arbuscular mycorrhizas: physiology and function. Springer, Dordrecht, pp 57–71CrossRefGoogle Scholar
  88. Gholamhoseini M, Ghalavand A, Dolatabadian A, Jamshidi E, Khodaei-Joghan A (2013) Effects of arbuscular mycorrhizal inoculation on growth, yield, nutrient uptake and irrigation water productivity of sunflowers grown under drought stress. Agric Water Manag 117:106–114CrossRefGoogle Scholar
  89. Gianinazzi S, Gianinazzi-Pearson V, Franken P, Dumas-Gaudot E, van Tuinen D, Samra A, Martin-Laurent F, Dassi B (1995) Molecules and genes involved in mycorrhizal functioning. In: Stoechi V, Bonfante P, Nuti M (eds) Biotechnologies of ectomycorrhizae. Springer, New York, pp 67–76CrossRefGoogle Scholar
  90. Giri B, Kapoor R, Mukerji KG (2007) Improved tolerance of Acacia nilotica to salt stress by arbuscular mycorrhiza, Glomus fasciculatum may be partly related to elevated K/Na ratios in root and shoot tissues. Microb Ecol 54:753–760PubMedCrossRefGoogle Scholar
  91. Gohre V, Paszkowski U (2006) Contribution of the arbuscular mycorrhiza symbiosis to heavy metal phytoremediation. Planta 223:1115–1122PubMedCrossRefGoogle Scholar
  92. Gomez-Roldan V, Roux C, Girard D, Bécard G, Puech V (2007) Strigolactones: promising plant signals. Plant Signal Behav 2:163–164PubMedPubMedCentralCrossRefGoogle Scholar
  93. Goncalves JF, Becker AG, Cargnelutti D, Tabaldi LA, Pereira LB, Battisti V, Spanevello RM, Morsch VM, Nicoloso FT, Schetinger MRC (2007) Cadmium toxicity causes oxidative stress and induces response of the antioxidant system in cucumber seedlings. Braz J Plant Physiol 19:223–232CrossRefGoogle Scholar
  94. González-Chávez MC, Carrillo-González R, Wright SF, Nichols KA (2004) The role of glomalin, a protein produced by arbuscular mycorrhizal fungi, in sequestering potentially toxic elements. Environ Pollut 130:317–323PubMedCrossRefGoogle Scholar
  95. González-Guerrero M, Azcón-Aguilar C, Mooney M, Valderas A, MacDiarmid CW, Eide DJ, Ferrol N (2005) Characterization of a Glomus intraradices gene encoding a putative Zn transporter of the cation diffusion facilitator family. Fungal Oenet Biol 42:130–140CrossRefGoogle Scholar
  96. Gonzalez-Guerrero M, Cano C, Azcon-Aguilar C, Ferrol N (2007) GintMT1 encodes a functional metallothionein in Glomus intraradices that responds to oxidative stress. Mycorrhiza 17:327–335PubMedCrossRefGoogle Scholar
  97. Gonzalez-Guerrero M, Melville LH, Ferrol N, Lott JNA, Azcon-Aguilar C, Peterson RL (2008) Ultrastructural localization of heavy metals in the extraradical mycelium and spores of the arbuscular mycorrhizal fungus Glomus intraradices. Can J Microbiol 54:103–110PubMedCrossRefGoogle Scholar
  98. González-Guerrero M, Benabdellah K, Valderas A, Azcón-Aguilar C, Ferrol N (2010) GintABC1 encodes a putative ABC transporter of the MRP subfamily induced by Cu, Cd, and oxidative stress in Glomus intraradices. Mycorrhiza 20:137–146PubMedCrossRefGoogle Scholar
  99. Gutjahr C, Parniske M (2013) Cell and developmental biology of the arbuscular mycorrhiza symbiosis. Annu Rev Cell Dev Biol 29:593–617PubMedCrossRefGoogle Scholar
  100. Hajiboland R (2013) Role of arbuscular mycorrhiza in amelioration of salinity. In: Ahmad P, Azooz M, Prasad M (eds) Salt stress in plants. Springer, New York, pp 301–354CrossRefGoogle Scholar
  101. Hajiboland R, Aliasgharzadeh N, Laiegh SF, Poschenrieder C (2010) Colonization with arbuscular mycorrhizal fungi improves salinity tolerance of tomato (Solanum lycopersicum L.) plants. Plant Soil 331:313–327CrossRefGoogle Scholar
  102. Hameed A, Dilfuza E, Abd-Allah EF, Hashem A, Kumar A, Ahmad P (2014) Salinity stress and arbuscular mycorrhizal symbiosis in plants. In: Miransari M (ed) Use of microbes for the alleviation of soil stresses, vol 1. Springer Science+Business Media, New York, pp 139–159CrossRefGoogle Scholar
  103. Hasanuzzaman M, Gill SS, Fujita M (2013) Physiological role of nitric oxide in plants grown under adverse environmental conditions. In: Tuteja N, Gill SS (eds) Plant acclimation to environmental stress. Springer Science+Business Media, New York, pp 269–322CrossRefGoogle Scholar
  104. Hashem A, Abd-Allah EF, Alqarawi AA, El-Didamony G, Alwhibi M, Egamberdieva D, Ahmad P (2014) Alleviation of adverse impact of salinity on faba bean (Vicia faba L.) by arbuscular mycorrhizal fungi. Pak J Bot 46:2003–2013Google Scholar
  105. Hatzig S, Kumar A, Neubert A, Schubert S (2010) PEP-carboxylase activity: a comparison of its role in a C4 and a C3 species under salt stress. J Agron Crop Sci 196:185–192CrossRefGoogle Scholar
  106. Herrera-Medina MJ, Steinkellner S, Vierheilig H, Bote JAO, Garrido JMG (2007) Abscisic acid determines arbuscule development and functionality in the tomato arbuscular mycorrhiza. New Phytol 175:554–564PubMedCrossRefGoogle Scholar
  107. Hildebrandt U, Regvar M, Bothe H (2007) Arbuscular mycorrhiza and heavy metal tolerance. Phytochemistry 68:139–146PubMedCrossRefGoogle Scholar
  108. Hoekstra FA, Golovina EA, Buitink J (2001) Mechanisms of plant desiccation tolerance. Trends Plant Sci 6:431–438PubMedCrossRefGoogle Scholar
  109. Jahromi F, Aroca R, Porcel R, Ruiz-Lozano JM (2008) Influence of salinity on the in vitro development of Glomus intraradices and on the in vivo physiological and molecular responses of mycorrhizal lettuce plants. Microb Ecol 55:45–53PubMedCrossRefGoogle Scholar
  110. Johansson I, Karlsson M, Shukla VK, Chrispeels MJ, Larsson C, Kjellbom P (1998) Water transport activity of the plasma membrane aquaporin PM28A is regulated by phosphorylation. Plant Cell 10:451–459PubMedPubMedCentralCrossRefGoogle Scholar
  111. Joner EJ, Leyval C (1997) Uptake of 109Cd by roots and hyphae of a Glomus mosseae/Trifolium subterraneum mycorrhiza from soil amended with high and low concentrations of cadmium. New Phytol 135:353–360CrossRefGoogle Scholar
  112. Joner EJ, Briones R, Leyval C (2000) Metal-binding capacity of arbuscular mycorrhizal mycelium. Plant Soil 226:227–234CrossRefGoogle Scholar
  113. Juniper S, Abbott LK (2006) Soil salinity delays germination and limits growth of hyphae from propagules of arbuscular mycorrhizal fungi. Mycorrhiza 16:371–379PubMedCrossRefGoogle Scholar
  114. Kaldenhoff R, Fischer M (2006) Aquaporins in plants. Acta Physiol 187:169–176CrossRefGoogle Scholar
  115. Kaldorf M, Kuhn AJ, Schroder WH, Hildebrandt U, Bothe H (1999) Selective element deposits in maize colonized by a heavy metal tolerance conferring arbuscular mycorrhizal fungus. J Plant Physiol 154:718–728CrossRefGoogle Scholar
  116. Kapoor R, Sharma D, Bhatnagar AK (2008) Arbuscular mycorrhizae in micropropagation systems and their potential applications. Sci Hortic 116:227–239CrossRefGoogle Scholar
  117. Kapoor R, Evelin H, Mathur P, Giri B (2013) Arbuscular mycorrhiza: approaches for abiotic stress tolerance in crop plants for sustainable agriculture. In: Tuteja N, Gill SS (eds) Plant acclimation to environmental stress. Springer Science+Business Media, LLC, Berlin, pp 359–401Google Scholar
  118. Karthikeyan B, Abitha B, Henry AJ, Sa T, Joe MM (2016) Interaction of rhizobacteria with arbuscular mycorrhizal fungi (AMF) and their role in stress abetment in agriculture. In: Pagano MC (ed) Recent advances on mycorrhizal fungi, fungal biology. Springer International Publishing, Basel, pp 117–142CrossRefGoogle Scholar
  119. Kaya C, Ashraf M, Sonmez O, Aydemir S, Tuna AL, Cullu MA (2009) The influence of arbuscular mycorrhizal colonisation on key growth parameters and fruit yield of pepper plants grown at high salinity. Sci Hortic 121:1–6CrossRefGoogle Scholar
  120. Khalil HA, Eissa AM, El-Shazly SM, Aboul-Nasr AM (2011) Improved growth of salinity-stressed citrus after inoculation with mycorrhizal fungi. Sci Hortic 130:624–632CrossRefGoogle Scholar
  121. Khanday M, Bhat RA, Haq S, Dervash MA, Bhatti AA, Nissa M, Mir MR (2016) Arbuscular mycorrhizal fungi boon for plant nutrition and soil health. In: Hakeem KR, Akhtar J, Sabir M (eds) Soil science: agricultural and environmental Prospectives. Springer International Publishing, Basel, pp 317–332CrossRefGoogle Scholar
  122. Klauberg-Filho O, Siqueira JO, Moreira FMS, Soares CRFS, Silva S (2005) Ecologia, funçãoe potencial de aplicação de FMAs em condições de excesso de metais pesados. Tópicos em ciência do solo. Soc Bras Cienc Solo 4:85–144 (in Portuguese)Google Scholar
  123. Koltai H, Kapulnik Y (2009) Effect of arbuscular mycorrhizal symbiosis on enhancement of tolerance to abiotic stresses. In: White JF, Torres MS (eds) Defensive mutualism in microbial symbiosis. CRC Press/Taylor & Francis, Boca Raton, pp 217–234Google Scholar
  124. Kothari SK, Marschner H, Romheld V (1990) Direct and indirect effects of VA mycorrhizal fungi and rhizosphere microorganisms on acquisition of mineral nutrients by maize (Zea mays L.) in a calcareous soil. New Phytol 116:637–645CrossRefGoogle Scholar
  125. Lanfranco L, Bolchi A, Ros EC, Ottonello S, Bonfante P (2002) Differential expression of a metallothionein gene during the presymbiotic versus the symbiotic phase of an arbuscular mycorrhizal fungus. Plant Physiol 130:58–67PubMedPubMedCentralCrossRefGoogle Scholar
  126. Latef AAHA, Hashem A, Rasool S, Abd-Allah EF, Alqarawi AA, Egamberdieva D, Jan S, Anjum NA, Ahmad P (2016) Arbuscular mycorrhizal Symbiosis and abiotic stress in plants: a review. J Plant Biol 59:407CrossRefGoogle Scholar
  127. Leake JR, Johnson D, Donnelly DP, Muckle GE, Boddy L, Read DJ (2004) Networks of power and influence: the role of mycorrhizal mycelium in controlling plant communities and agroecosystem functioning. Can J Bot 82:1016–1045CrossRefGoogle Scholar
  128. Lee BR, Muneer S, Avice JC, Jin Jung W, Kim TH (2012) Mycorrhizal colonisation and P-supplement effects on N uptake and N assimilation in perennial ryegrass under well-watered and drought-stressed conditions. Mycorrhiza 22:525–534PubMedCrossRefGoogle Scholar
  129. Leyval C, Singh BR, Joner EJ (1995) Occurrence and infectivity of arbuscular mycorrhizal fungi in some Norwegian soils influenced by heavy metals and soil properties. Water Air Soil Pollut 84:203–216CrossRefGoogle Scholar
  130. Li T, Hu Y, Hao Z, Li H, Wang Y, Chen B (2013) First cloning and characterization of two functional aquaporin genes from an Arbuscular mycorrhizal fungus Glomus intraradices. New Phytol 197:617–630PubMedCrossRefGoogle Scholar
  131. López-Ráez JA (2016) How drought and salinity affect arbuscular mycorrhizal symbiosis and strigolactone biosynthesis? Planta 243(6):1375–1385PubMedCrossRefGoogle Scholar
  132. Lopez-Ráez JA, Charnikhova T, Gomez-Roldan V, Matusova R, Kohlen W, De Vos R, Verstappen F, Puech-Pages V, Bécard G, Mulder P, Bouwmeester H (2008) Tomato strigolactones are derived from carotenoids and their biosynthesis is promoted by phosphate starvation. New Phytol 178:863–874PubMedCrossRefGoogle Scholar
  133. López-Ráez JA, Bouwmeester H, Pozo MJ (2012) Communication in the rhizosphere, a target for pest management. Lichtfouse E Sustainable agriculture reviews, 8; Agroecology and strategies for climate change, sustainable agriculture reviews, Springer, Dordrecht, 109–133Google Scholar
  134. Ludwig-Müller J (2000) Hormonal balance in plants during colonization by mycorrhizal fungi. In: Kapulnik Y, Douds D (eds) Arbuscular mycorrhizas: physiology and function. Springer, Dordrecht, pp 263–285CrossRefGoogle Scholar
  135. Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444:139–158PubMedCrossRefGoogle Scholar
  136. Manoharan PT, Shanmugaiah V, Balasubramanian N, Gomathinayagam S, Sharma MP, Muthuchelian K (2010) Influence of AM fungi on the growth and physiological status of Erythrina variegata Linn. grown under different water stress conditions. Eur J Soil Biol 46:151–156CrossRefGoogle Scholar
  137. Martín-Rodríguez JA, Leon-Morcillo R, Vierheilig H, Ocampo JA, Ludwig-Muller J, García-Garrido JM (2011) Ethylene-dependent/ethylene-independent ABA regulation of tomato plants colonized by arbuscular mycorrhiza fungi. New Phytol 190:193–205PubMedCrossRefGoogle Scholar
  138. Matusova R, Rani K, Verstappen AWF, Franssen FWA, Beale MH, Bouwmeester HJ (2005) The strigolactone germination stimulants of the plant-parasitic Striga and Orobanche spp. are derived from the carotenoid pathway. Plant Physiol 139:920–934PubMedPubMedCentralCrossRefGoogle Scholar
  139. Maurel C, Boursiac Y, Luu DT, Santoni V, Shahzad Z, Verdoucq L (2015) Aquaporins in plants. Physiol Rev 95:1321–1358PubMedCrossRefGoogle Scholar
  140. Meharg AA (2003) The mechanistic basis of interactions between mycorrhizal associations and toxic metal cations. Mycol Res 107:1253–1265PubMedCrossRefGoogle Scholar
  141. Miransari M (2010) Contribution of arbuscular mycorrhizal symbiosis to plant growth under different types of soil stress. Review. Plant Biol 12:563–569PubMedGoogle Scholar
  142. Miransari M (2016) Stress and mycorrhizal plant. In: Pagano MC (ed) Recent advances on mycorrhizal fungi, fungal biology. Springer International Publishing, Basel, pp 63–79CrossRefGoogle Scholar
  143. Morley GF, Gadd GM (1995) Sorption of toxic metals by fungi and clay minerals. Mycol Res 99:1429–1438CrossRefGoogle Scholar
  144. Muleta D, Woyessa D (2012) Importance of arbuscular mycorrhizal fungi in legume production under heavy metal-contaminated soils. In: Zaidi A, Wani PA, Khan MS (eds) Toxicity of heavy metals to legumes and bioremediation. Springer, London, pp 219–241CrossRefGoogle Scholar
  145. Nadeem SM, Ahmad M, Zahir ZA, Javid A, Ashraf M (2014) The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Research review paper. Biotechnol Adv 32:429–448PubMedCrossRefGoogle Scholar
  146. Nasim G (2010) The role of arbuscular mycorrhizae in inducing resistance to drought and salinity stress in crops. In: Ashraf M, Ozturk M, Ahmad MSA (eds) Plant adaptation and phytoremediation. Springer, Dordrecht, pp 119–141CrossRefGoogle Scholar
  147. Nogueira MA, Cardoso E, Hampp R (2002) Manganese toxicity and callose deposition in leaves are attenuated in mycorrhizal soybean. Plant Soil 246:1–10CrossRefGoogle Scholar
  148. Ocón A, Hampp R, Requena N (2007) Trehalose turnover during abiotic stress in arbuscular mycorrhizal fungi. New Phytol 174:879–891PubMedCrossRefGoogle Scholar
  149. Oldroyd GED (2013) Speak, friend, and enter: Signalling systems that promote beneficial symbiotic associations in plants. Nat Rev Microbiol 11:252–263PubMedCrossRefGoogle Scholar
  150. Orlowska E, Mesjasz-Przybylowicz J, Przybylowicz W, Turnau K (2008) Nuclear macroprobe studies of elemental distribution in mycorrhizal and non-mycorrhizal roots of Ni-hyperaccumulator Berkheya coddii. X-Ray Spectrom 37:129–132CrossRefGoogle Scholar
  151. Ouziad F, Hildlebrandt U, Schmelzer E, Bothe H (2005) Differential gene expressions in arbuscular mycorrhizal-colonized tomato grown under heavy metal stress. J Plant Physiol 162:634–649PubMedCrossRefGoogle Scholar
  152. Pagano MC (2014) Drought stress and mycorrhizal plants. In: Miransari M (ed) Use of microbes for the alleviation of soil stresses. Springer Science+Business Media, New York, pp 97–110CrossRefGoogle Scholar
  153. Parida SK, Das AB (2005) Salt tolerance and salinity effects on plants. Ecotoxicol Environ Saf 60:324–349PubMedCrossRefGoogle Scholar
  154. Parniske M (2008) Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat Rev Microbiol 6:763–775PubMedCrossRefGoogle Scholar
  155. Patakas A (2012) Abiotic stress-induced morphological and anatomical changes in plants. In: Ahmad P, Prasad MNV (eds) Abiotic stress responses in plants: metabolism, productivity and sustainability. Springer Science+Business Media, LLC, Berlin, pp 21–39Google Scholar
  156. Peñuelas J, Munné-Bosch S (2005) Isoprenoids: an evolutionary pool for photoprotection. Trends Plant Sci 10:166–169PubMedCrossRefGoogle Scholar
  157. Porcel R, Azcón R, Ruiz-Lozano JM (2004) Evaluation of the role of genes encoding for D1-pyrroline-5-carboxylate synthetase (P5CS) during drought stress in arbuscular mycorrhizal Glycine max and Lactuca sativa plants. Physiol Mol Plant Pathol 65:211–221CrossRefGoogle Scholar
  158. Porcel R, Azcón R, Ruiz-Lozano JM (2005) Evaluation of the role of genes encoding for dehydrin proteins (LEA D-11) during drought stress in arbuscular mycorrhizal Glycine max and Lactuca sativa plants. J Exp Bot 56:1933–1942PubMedCrossRefGoogle Scholar
  159. Porcel R, Aroca R, Azcón R, Ruiz-Lozano JM (2006) PIP aquaporin gene expression in arbuscular mycorrhizal Glycine max and Lactuca sativa plants in relation to drought stress tolerance. Plant Mol Biol 2006:389–404CrossRefGoogle Scholar
  160. Porcel R, Aroca R, Ruiz-Lozano JM (2012) Salinity stress alleviation using arbuscular mycorrhizal fungi – a review. Agron Sustain Dev 32:181–200CrossRefGoogle Scholar
  161. Porcel R, Redondo-Gómez S, Mateos-Naranjo E, Aroca R, Garcia R, Ruiz-Lozano JM (2015) Arbuscular mycorrhizal symbiosis ameliorates the optimum quantum yield of photosystem II and reduces non-photochemical quenching in rice plants subjected to salt stress. J Plant Physiol 185:75–83PubMedCrossRefGoogle Scholar
  162. Pozo MJ, López-Ráez JA, Azcón C, García-Garrido JM (2015) Phytohormones as integrators of environmental signals in the regulation of mycorrhizal symbioses. New Phytol 205:1431–1436PubMedCrossRefGoogle Scholar
  163. Rabie GH (2005) Contribution of arbuscular mycorrhizal fungus to red kidney and wheat plants tolerance grown in heavy metal-polluted soil. Afr J Biotechnol 4(4):332–345Google Scholar
  164. Rabie GH, Almadini AM (2005) Role of bioinoculants in development of salt-tolerance of Vicia faba plants under salinity stress. Afr J Biotechnol 4:210–222Google Scholar
  165. Rapparini F, Peñuelas J (2014) Mycorrhizal fungi to alleviate drought stress on plant growth. In: Miransari M (ed) Use of microbes for the alleviation of soil stresses, vol 1. Springer, New York, pp 21−42Google Scholar
  166. Rapparini F, Llusià J, Peñuelas J (2008) Effect of arbuscular mycorrhizal (AM) colonization on terpene emission and content of Artemisia annua. Plant Biol 10:108–122PubMedCrossRefGoogle Scholar
  167. Raziuddin F, Hassan G, Akmal M, Shah SS, Mohammed F, Shafi M, Bakht J, Zhou W (2011) Effects of cadmium and salinity on growth and photosynthesis parameters of Brassica species. Pak J Bot 43:333–340Google Scholar
  168. Redecker D, Kodner R, Graham LE (2000) Glomalean fungi from the Ordovician. Science 289:1920–1921PubMedCrossRefGoogle Scholar
  169. Rillig MC (2004) Arbuscular mycorrhizae, glomalin and soil quality. Can J Soil Sci 84:355–363CrossRefGoogle Scholar
  170. Ruiz-Lozano JM, Aroca R (2010) Host response to osmotic stresses: stomatal behaviour and water use efficiency of arbuscular mycorrhizal plants. In: Koltai H, Kapulnik Y (eds) Arbuscular mycorrhizas: physiology and function, 2nd edn. Springer Science +Business Media B.V, Dordrecht, pp 239–256CrossRefGoogle Scholar
  171. Ruiz-Lozano JM, Porcel R, Aroca R (2006) Does the enhanced tolerance of arbuscular mycorrhizal plants to water deficit involve modulation of drought-induced plant genes. New Phytol 171:693–698PubMedCrossRefGoogle Scholar
  172. Ruiz-Lozano JM, Alguacil MM, Bárzana G, Vernieri P, Aroca R (2009) Exogenous ABA accentuates the differences in root hydraulic properties between mycorrhizal and non mycorrhizal maize plants through regulation of PIP aquaporins. Plant Mol Biol 70:565–579PubMedCrossRefGoogle Scholar
  173. Ruiz-Lozano JM, Porcel R, Azcón C, Aroca R (2012a) Regulation by Arbuscular mycorrhizae of the integrated physiological response to salinity in plants: new challenges in physiological and molecular studies. J Exp Bot 63(11):4033–4044PubMedCrossRefGoogle Scholar
  174. Ruiz-Lozano JM, Porcel R, Bárzana G, Azcón R, Aroca R (2012b) Contribution of arbuscular mycorrhizal symbiosis to plant drought tolerance: state of the art. Plant responses to drought stress. Springer, Heidelberg, pp 335–362Google Scholar
  175. Ruíz-Sánchez M, Aroca R, Muñoz Y, Armada E, Polón R, Ruiz-Lozano JM (2010) The arbuscular mycorrhizal symbiosis enhances the photosynthetic efficiency and the antioxidative response of rice plants subjected to drought stress. J Plant Physiol 167:862–869PubMedCrossRefGoogle Scholar
  176. Ruth B, Khalvati M, Schmidhalter U (2011) Quantification of mycorrhizal water uptake via high-resolution on-line water content sensors. Plant Soil 342:459–468CrossRefGoogle Scholar
  177. Schüβler A (2014) Glomeromycota: species list. [WWW document] URL http: // schuessler.userweb.mwn.de/amphylo. Accessed 1 Aug 2016
  178. Schüßler A, Walker C (2011) Evolution of the ‘plant-symbiotic’ fungal phylum, Glomeromycota. In: Pöggeler S, Wöstemeyer J (eds) Evolution of fungi and fungal like organisms. Springer-Verlag, Berlin/Heidelberg, pp 163–185CrossRefGoogle Scholar
  179. Schüβler A, Schwarzott D, Walker C (2001) A new fungal phylum, the glomeromycota: phylogeny and evolution. Mycol Res 105:1413–1421CrossRefGoogle Scholar
  180. Shalabyl AM (2003) Responses of arbuscular mycorrhizal fungal spores isolated from heavy metal-polluted and unpolluted soil to Zn, Cd, Pb and their interactions in vitro. Pak J Biol Sci 6:1416–1422CrossRefGoogle Scholar
  181. Sheng M, Tang M, Chen H, Yang B, Zhang F, Huang Y (2008) Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress. Mycorrhiza 18:287–296PubMedCrossRefGoogle Scholar
  182. Sheng M, Tang M, Zhang F, Huang Y (2011) Influence of arbuscular mycorrhiza on organic solutes in maize leaves under salt stress. Mycorrhiza 21:423–430PubMedCrossRefGoogle Scholar
  183. Singh BR, Singh A, Mishra S, Naqvi AH, Singh HB (2016) Remediation of heavy metal- contaminated agricultural soils using microbes. In: Singh DP, Singh HB, Prabha R (eds) Microbial inoculants in sustainable agricultural productivity. Springer, New Delhi, pp 115–132CrossRefGoogle Scholar
  184. Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Academic Press, San DiegoGoogle Scholar
  185. Smith SE, Facelli E, Pope S, Smith FA (2010) Plant performance in stressful environments: interpreting new and established knowledge of the roles of arbuscular mycorrhizas. Plant Soil 326:3–20CrossRefGoogle Scholar
  186. Stommel M, Mann P, Franken P (2001) EST-library construction using spore RNA of the arbuscular mycorrhizal fungus Gigaspora rosea. Mycorrrhiza 10:281–285CrossRefGoogle Scholar
  187. Sudová R, Doubkova P, Vosatka M (2008) Mycorrhizal association of Agrostis capillaris and Glomus intraradices under heavy metal stress: combination of plant clones and fungal isolates from contaminated and uncontaminated substrates. Appl Soil Ecol 40:19–29CrossRefGoogle Scholar
  188. Talaat NB, Shawky BT (2014) Protective effects of arbuscular mycorrhizal fungi on wheat (Triticum aestivum L.) plants exposed to salinity. Environ Exp Bot 98:20–31CrossRefGoogle Scholar
  189. Talke IN, Blaudez D, Maathuis FJM, Sanders D (2003) CNGCs: prime targets of plant cyclic nucleotide signalling? Trends Plant Sci 8:286–293PubMedCrossRefGoogle Scholar
  190. Turnau K, Kottke I, Oberwinkler F (1993) Element localization in mycorrhizal roots of Pteridium aquilinum L. Kuhn collected from experimental plots treated with cadmium dust. New Phytol 123:313–324CrossRefGoogle Scholar
  191. Uehlein N, Fileschi K, Eckert M, Bienert GP, Bertl A, Kaldenhoff R (2007) Arbuscular mycorrhizal symbiosis and plant aquaporin expression. Phytochemistry 68:122–129PubMedCrossRefGoogle Scholar
  192. Upadhyaya H, Panda SK, Bhattacharjee MK, Dutta S (2010) Role of arbuscular mycorrhizal in heavy metal tolerance in plants: prospects for phytoremediation. J Phytol 2:16–27Google Scholar
  193. Valentine AJ, Mortimer PE, Kleinert A, Kang Y, Benedito VA (2013) Carbon metabolism and costs of arbuscular mycorrhizal associations to host roots. In: Aroca R (ed) Symbiotic endophytes, soil biology, vol 37. Springer-Verlag, Berlin, pp 233–252CrossRefGoogle Scholar
  194. Verma S, Dubey R (2003) Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant Sci 164:645–655CrossRefGoogle Scholar
  195. Vickers CE, Gershenzon J, Lerdau MT, Loreto F (2009) A unified mechanism of action for volatile isoprenoids in plant abiotic stress. Nature Chem Ecol 5:283–291CrossRefGoogle Scholar
  196. Walter MH, Strack D (2011) Carotenoids and their cleavage products: biosynthesis and functions. Nat Prod Rep 28:663–692PubMedCrossRefGoogle Scholar
  197. Wang J, Chen C (2006) Biosorption of heavy metals by Saccharomyces cerevisiae: a review. Biotechnol Adv 24:427–451PubMedCrossRefGoogle Scholar
  198. Wu QS, Zou YN (2010) Beneficial roles of arbuscular mycorrhizas in citrus seedlings at temperature stress. Sci Hortic 125:289–293CrossRefGoogle Scholar
  199. Wu QS, Zou YN, He XH (2013) Mycorrhizal symbiosis enhances tolerance to NaCl stress through selective absorption but not selective transport of K+ over Na+ in trifoliate orange. Sci Hortic 160:366–374CrossRefGoogle Scholar
  200. Yang X, Liang Z, Wen X, Lu C (2008) Genetic engineering of the biosynthesis of glycine betaine leads to increased tolerance of photosynthesis to salt stress in transgenic tobacco plants. Plant Mol Biol 66:73–86PubMedCrossRefGoogle Scholar
  201. Yang Y, Liang Y, Han X, Chiu T-Y, Ghosh A, Chen H, Tang M (2016) The roles of arbuscular mycorrhizal fungi (AMF) in phytoremediation and tree-herb interactions in Pb contaminated soil. Sci Rep 6:20469. doi: 10.1038/srep20469 PubMedPubMedCentralCrossRefGoogle Scholar
  202. Yooyongwech S, Phaukinsang N, Cha-Um S, Supaibulwatana K (2013) Arbuscular mycorrhiza improved growth performance in Macadamia tetraphylla L. grown under water deficit stress involves soluble sugar and proline accumulation. Plant Growth Regul 69:285–293CrossRefGoogle Scholar
  203. Zarea MJ, Goltapeh EM, Karimi N, Varma A (2013) Sustainable agriculture in saline-arid and semiarid by use potential of AM fungi on mitigates NaCl effects. In: Goltapeh EM, Danesh YR, Varma A (eds) Fungi as bioremediators, soil biology 32. Springer-Verlag, Berlin, pp 347–369CrossRefGoogle Scholar
  204. Zhang HH, Tang M, Chen H, Zheng C, Niu Z (2010) Effect of inoculation with AM fungi on lead uptake, translocation and stress alleviation of Zea mays L., seedlings planting in soil with increasing lead concentrations. Eur J Soil Biol 46:306–311CrossRefGoogle Scholar
  205. Zou YN, Wu QS, Huang YM, Ni QD, He XH (2013) Mycorrhizal-mediated lower proline accumulation in Poncirus trifoliata under water deficit derives from the integration of inhibition of proline synthesis with increase of proline degradation. PLoS One 8:1–8Google Scholar
  206. Zuccarini P, Okurowska P (2008) Effects of mycorrhizal colonization and fertilization on growth and photosynthesis of sweet basil under salt stress. J Plant Nutr 31(3):497–513CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Department of BotanyPanjab UniversityChandigarhIndia

Personalised recommendations