Skip to main content

Microbes: Bioresource in Agriculture and Environmental Sustainability

  • Chapter
  • First Online:
Plant-Microbe Interactions in Agro-Ecological Perspectives

Abstract

The concept of sustainable agriculture is a response to the decline in the quality of the natural resource base associated with modern agriculture. The relationship between agriculture, the global environment, and social systems suggests that agricultural development results from the complex interaction of a multitude of factors. Dependence on chemicals for further agricultural needs will result in future loss in soil physical condition, feasibility of water pollution, and calculated burden on the fiscal system. Inaugurating an ecological friendly parallel mechanism on earth is of vital importance. The exploitation of beneficial microbes as a biofertilizer has become paramount importance in agriculture sector for their potential role in food safety and sustainable crop production. This chapter focuses on the use of microbes as bioresource in agriculture which is the backbone of economies of most of the developing nations and specifically on the use of PGP microbes. The knowledge gained from the literature appraised herein will help us to understand the physiological bases of biofertilizers toward sustainable agriculture in reducing problems associated with the use of chemical fertilizers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adhya TK, Kumar N, Reddy G, Podile AR, Bee H, Samantaray B (2015) Microbial mobilization of soil phosphorus and sustainable P management in agricultural soils. Curr Sci 108(7):1280–1287

    CAS  Google Scholar 

  • Alam S, Khalil S, Ayub N, Rashid M (2002) In vitro solubilization of inorganic phosphate by phosphate solubilizing microorganisms (PSM) from maize rhizosphere. Int J Agric Biol 4(4):454–458

    CAS  Google Scholar 

  • Altieri MA (1995) Agroecology: the science of sustainable agriculture. Intermediate Technology Publications Ltd (ITP), London

    Google Scholar 

  • Altland JE, Gilliam CH, Wehtje G (2003) Weed control in field nurseries. HortTechnology 13(1):9–14

    CAS  Google Scholar 

  • Anand R, Prasad B, Tiwary BN (2009) Relative susceptibility of Spodoptera litura pupae to selected entomopathogenic fungi. BioControl 54(1):85

    Article  Google Scholar 

  • Andreote FD, Gumiere T, Durrer A (2014) Exploring interactions of plant microbiomes. Sci Agric 71(6):528–539

    Article  Google Scholar 

  • Arnold AE, Lamit LJ, Gehring CA, Bidartondo MI, Callahan H (2010) Interwoven branches of the plant and fungal trees of life. New Phytol 185(4):874–878

    Article  CAS  PubMed  Google Scholar 

  • Azevedo JL, Maccheroni W Jr, Pereira JO, de Araújo WL (2000) Endophytic microorganisms: a review on insect control and recent advances on tropical plants. Electron J Biotechnol 3(1):15–16

    Article  Google Scholar 

  • Balach D, Raja P, Kumar K, Sundaram SP (2007) Non-rhizobial nodulation in legumes. Biotechnol Mol Biol Rev 2(2):49–57

    Google Scholar 

  • Baldani J, Caruso L, Baldani VL, Goi SR, Döbereiner J (1997) Recent advances in BNF with non-legume plants. Soil Biol Biochem 29(5):911–922

    Article  CAS  Google Scholar 

  • Bashan Y, Holguin G (1998) Proposal for the division of plant growth-promoting rhizobacteria into two classifications: biocontrol-PGPB (plant growth-promoting bacteria) and PGPB. Soil Biol Biochem 30(8):1225–1228

    Article  CAS  Google Scholar 

  • Bhattacharjee R, Dey U (2014) Biofertilizer, a way towards organic agriculture: a review. Afr J Microbiol Res 8(24):2332–2343

    Article  Google Scholar 

  • Bhattacharyya PN, Goswami MP, Bhattacharyya LH (2016) Perspective of beneficial microbes in agriculture under changing climatic scenario: a review. J Phytology 8:26–41

    Article  Google Scholar 

  • Boydston RA, Collins HP, Vaughn SF (2008) Response of weeds and ornamental plants to potting soil amended with dried distillers grains. Hortscience 43(1):191–195

    Google Scholar 

  • Brennan L, Owende P (2010) Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sust Energ Rev 14(2):557–577

    Article  CAS  Google Scholar 

  • Bulgarelli D, Schlaeppi K, Spaepen S, van Themaat EV, Schulze-Lefert P (2013) Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol 64:807–838

    Article  CAS  PubMed  Google Scholar 

  • Cai X, Gu M (2016) Bioherbicides in organic horticulture. Horticulturae 2(2):3

    Article  Google Scholar 

  • Cai M, Yao J, Yang H, Wang R, Masakorala K (2013) Aerobic biodegradation process of petroleum and pathway of main compounds in water flooding well of Dagang oil field. Bioresour Technol 144:100–106

    Article  CAS  PubMed  Google Scholar 

  • Chandler D, Davidson G, Grant WP, Greaves J, Tatchell GM (2008) Microbial biopesticides for integrated crop management: an assessment of environmental and regulatory sustainability. Trends Food Sci Technol 19(5):275–283

    Article  CAS  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25(3):294–306

    Article  CAS  PubMed  Google Scholar 

  • Chowdhury S, Mishra M, Adarsh VK, Mukherjee A, Thakur AR, Chaudhuri SR (2008) Novel metal accumulator and protease secretor microbes from East Calcutta wetland. Am J Biochem Biotechnol 3:255–264

    Google Scholar 

  • Datta S (2012) Biopesticides and fertilizers: novel substitutes of their chemical alternates. J Environ Res Dev 6(3):773–778

    Google Scholar 

  • Day SD, Bassuk NLA (1994) Review of the effects of soil compaction and amelioration treatments on landscape trees. J Arboric 20(1):9–17

    Google Scholar 

  • Deepali GK, Gangwar K (2010) Biofertilizers: an ecofriendly way to replace chemical fertilizers

    Google Scholar 

  • Du Z, Li H, Gu T (2007) A state of the art review on microbial fuel cells: a promising technology for wastewater treatment and bioenergy. Biotechnol Adv 25(5):464–482

    Article  CAS  PubMed  Google Scholar 

  • El-Yazeid AA, Abou-Aly HA, Mady MA, Moussa SA (2007) Enhancing growth, productivity and quality of squash plants using phosphate dissolving microorganisms (bio phosphor) combined with boron foliar spray. Res J Agric Biol Sci 3(4):274–286

    Google Scholar 

  • Franche C, Lindström K, Elmerich C (2009) Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants. Plant Soil 321(1–2):35–59

    Article  CAS  Google Scholar 

  • Frantzen J, Paul ND, Müller-Schärer H (2001) The system management approach of biological weed control: some theoretical considerations and aspects of application. BioControl 46(2):139–155

    Article  Google Scholar 

  • Ghosh M, Singh SA (2005) Review on phytoremediation of heavy metals and utilization of it’s by products. Asian J Energy Environ 6(4):18

    Google Scholar 

  • Hartmann M, Fliessbach A, Oberholzer HR, Widmer F (2006) Ranking the magnitude of crop and farming system effects on soil microbial biomass and genetic structure of bacterial communities. FEMS Microbiol Ecol 57(3):378–388

    Article  CAS  PubMed  Google Scholar 

  • Hayat R, Ali S, Amara U, Khalid R, Ahmed I (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60(4):579–598

    Article  Google Scholar 

  • Ikeda DM, Weinert E Jr, Chang KC, McGinn JM, Miller SA, Keliihoomalu C, DuPonte MW (2013) Natural farming: lactic acid bacteria. Sustain Agric 8:3–4

    Google Scholar 

  • Kelly DP, Wood AP (2000) Reclassification of some species of Thiobacillus to the newly designated genera Acidithiobacillus gen. nov., Halothiobacillus gen. nov. and Thermithiobacillus gen. nov. Int J Syst Evol Microbiol 50(2):511–516

    Article  PubMed  Google Scholar 

  • Kloepper JW, Leong J, Teintze M, Schroth MN (1980) Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature 286:885–886

    Article  CAS  Google Scholar 

  • Lang X, Dalai AK, Bakhshi NN, Reaney MJ, Hertz PB (2001) Preparation and characterization of bio-diesels from various bio-oils. Bioresour Technol 80(1):53–62

    Article  CAS  PubMed  Google Scholar 

  • Lee JY, Yoo C, Jun SY, Ahn CY, Oh HM (2010) Comparison of several methods for effective lipid extraction from microalgae. Bioresour Technol 101(1):S75–S77

    Article  CAS  PubMed  Google Scholar 

  • Lundgren DG, Silver M (1980) Ore leaching by bacteria. Ann Rev Microbiol 34(1):263–283

    Article  CAS  Google Scholar 

  • Masson-Boivin C, Giraud E, Perret X, Batut J (2009) Establishing nitrogen-fixing symbiosis with legumes: how many rhizobium recipes? Trends Microbiol 17(10):458–466

    Article  CAS  PubMed  Google Scholar 

  • Mazid M, Khan TA, Mohammad F (2011) Role of secondary metabolites in defense mechanisms of plants. Biology and. Medicine 3(2):232–249

    CAS  Google Scholar 

  • Mishra D, Kim DJ, Ahn JG, Rhee YH (2005) Bioleaching: a microbial process of metal recovery; a review. Met Mater Int 11(3):249–256

    Article  CAS  Google Scholar 

  • Mishra DJ, Rajvir S, Mishra UK, Kumar SS (2013) Role of bio-fertilizer in organic agriculture: a review. Res J Recent Sci 2:39–41

    CAS  Google Scholar 

  • Mutanda T, Ramesh D, Karthikeyan S, Kumari S, Anandraj A, Bux F (2011) Bioprospecting for hyper-lipid producing microalgal strains for sustainable biofuel production. Bioresour Technol 102(1):57–70

    Article  CAS  PubMed  Google Scholar 

  • Noble AD, Ruaysoongnern S (2010) The nature of sustainable agriculture. In: Soil microbiology and sustainable crop production. Springer, New York, pp 1–25

    Google Scholar 

  • Odame H (1997) Biofertilizer in Kenya: research, production and extension dilemmas. Biotechnol Dev Monitor 30:20–23

    Google Scholar 

  • Onduru DD, De Jager A, Wouters B, Muchera FN, Gachimbi L, Gachini GN (2006) Improving soil fertility and farm productivity under intensive crop-dairy smallholdings: experiences from farmer field schools in the highlands of Kiambu district, central Kenya. Middle-East J Sci Res 1(1):31–49

    Google Scholar 

  • Onen H, Ozer Z, Telci I (2002) Bioherbicidal effects of some plant essential oils on different weed species. Zeitschrift Fur Pflanzenkrankheiten Und Pflanzenschutz-Sonderheft 18:597–606

    Google Scholar 

  • Owens K, Feldman J, Kepner J (2010) Wide range of diseases linked to pesticides. Pesticides and You 30(2):13–21

    Google Scholar 

  • Peigné J, Ball BC, Roger-Estrade J, David C (2007) Is conservation tillage suitable for organic farming? A review. Soil Use Manag 23(2):129–144

    Article  Google Scholar 

  • Pindi PK (2012) Diversity of fungi at various depths of marine water. Res Biotechnol 3(4)

    Google Scholar 

  • Rawat I, Kumar RR, Mutanda T, Bux F (2013) Biodiesel from microalgae: a critical evaluation from laboratory to large scale production. Appl Energy 103:444–467

    Article  CAS  Google Scholar 

  • Rohwerder T, Gehrke T, Kinzler K, Sand W (2003) Bioleaching review part a. Appl Microbiol Biotechnol 63(3):239–248

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg JN, Oyler GA, Wilkinson L, Betenbaugh MJ (2008) A green light for engineered algae: redirecting metabolism to fuel a biotechnology revolution. Curr Opin Biotechnol 19(5):430–436

    Article  CAS  PubMed  Google Scholar 

  • Roychowdhury DE, PauL MA, Banerjee SKA (2014) Review on the effects of biofertilizers and biopesticides on rice and tea cultivation and productivity. Int J Eng Sci Technol 2(8):96–106

    Google Scholar 

  • Russo A, Carrozza GP, Vettori L, Felici C, Cinelli F, Toffanin A (2012) Plant beneficial microbes and their application in plant biotechnology. In: Innovations in biotechnology. Intech

    Google Scholar 

  • Rutkowska M, Krasowska K, Heimowska A, Steinka I (2002) PT 02/04/262 Transl. Serial no. 14810-Effect of modification of poly (E-caprolactone) on its biodegradation in natural environments. Int Polym Sci Technol 29(11):77–84

    Google Scholar 

  • Sahu D, Priyadarshani I, Rath B (2012) Cyanobacteria-as potential biofertilizer. CIB Tech J Microbiol ISSN: 2319-3867

    Google Scholar 

  • Sangale MK, Shahnawaz M, Ade ABA (2012) Review on biodegradation of polythene: the microbial approach. J Bioremed Biodegr 3(10):1–9

    Article  Google Scholar 

  • Sengupta A, Gunri SK (2015) Microbial intervention in agriculture: an overview. Afr J Microbiol Res 9(18):1215–1226

    Article  Google Scholar 

  • Sheehan J, Dunahay T, Benemann J, Roessler PA (1998) Look back at the US Department of Energy’s aquatic species program: biodiesel from algae. National Renewable Energy Laboratory; 328

    Google Scholar 

  • Sivanandhan G, Mariashibu TS, Arun M, Rajesh M, Kasthurirengan S, Selvaraj N, Ganapathi A (2011) The effect of polyamines on the efficiency of multiplication and rooting of Withania Somnifera (L.) Dunal and content of some withanolides in obtained plants. Acta Physiol Plant 33(6):2279

    Article  CAS  Google Scholar 

  • Smith WM (1964) Manufacture of plastics, vol. 1. Technology and Engineering, Reinhold Pub. Corp, USA

    Google Scholar 

  • Stine MA, Weil RR (2002) The relationship between soil quality and crop productivity across three tillage systems in south central Honduras. Am J Altern Agric 17(1):2–8

    Google Scholar 

  • Torma AE (1977) The role of Thiobacillus ferrooxidans in hydrometallurgical processes. In: Advances in biochemical engineering, vol 6. Springer, Berlin/Heidelberg, pp 1–37

    Google Scholar 

  • Tweib SA, Rahman RA, Khalil MS (2011) Composting of solid waste from wet market of Bandar Baru Bangi Malaysia. Aust J Basic Appl Sci 5(5):975–983

    CAS  Google Scholar 

  • Vance CP (1998) Legume symbiotic nitrogen fixation: agronomic aspects. In: The Rhizobiaceae. Springer, Dordrecht, pp 509–530

    Chapter  Google Scholar 

  • Varsha YM, Naga Deepthi CH, Chenna S (2011) An emphasis on xenobiotic degradation in environmental clean up. J Bioremed Biodegr 11:1–0

    Google Scholar 

  • Youssef MM, Eissa MF (2014) Biofertilizers and their role in management of plant parasitic nematodes. A review. E3 J Biotechnol Pharm Res 5(1):1–6

    Google Scholar 

  • Zeyer J, Ranganathan LS, Chandra TS (2004) Pressmud as biofertilizer for improving soil fertility and pulse crop productivity. ISCB–Indo–Swis collaboration in Biotech. A report Portfolia first phase (1999–2004)

    Google Scholar 

Download references

Acknowledgment

PB thanks DST-SERB: SB/YS/LS-213/2013 for the financial support. The authors acknowledge Vivek Kumar for designing the figures and proofreadings of the above manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reeta Goel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Bhargava, P., Singh, A.K., Goel, R. (2017). Microbes: Bioresource in Agriculture and Environmental Sustainability. In: Singh, D., Singh, H., Prabha, R. (eds) Plant-Microbe Interactions in Agro-Ecological Perspectives. Springer, Singapore. https://doi.org/10.1007/978-981-10-5813-4_18

Download citation

Publish with us

Policies and ethics