Quorum Sensing in Plant Growth-Promoting Rhizobacteria and Its Impact on Plant-Microbe Interaction

  • Mohd. Musheer Altaf
  • Mohd. Sajjad Ahmad Khan
  • Hussein Hasan Abulreesh
  • Iqbal AhmadEmail author


Quorum sensing is a widespread mechanism in enormous number of bacteria for regulating various gene expression in a cell density-dependent manner through production and recognition of small molecules known as autoinducer. Diverse kinds of quorum-sensing networks are found in different bacterial species. Among various signal molecules, acyl homoserine lactone (AHL) signal molecules are the most and widely studied in bacteria. A number of simple to advanced techniques are being used to identify and characterize signal molecules. Production of signal molecules in a number of rhizospheric bacteria is documented. Rhizosphere is an active atmosphere where microbe-microbe and microbe-plant interaction is highest due to rich availability of nutrients provided in the form of root exudates. Several ecological and interdependent key characters of bacteria, like antibiotic, siderophore, or enzyme secretion, virulence factors of phytopathogens, as well as plant-microbe communications, are coordinated through quorum sensing (QS). In this chapter, we have provided brief fundamental aspects of quorum sensing and then addressed the recent trends on the significance of quorum sensing and signal molecules in microbe-microbe and microbe-plant interactions in the rhizosphere with special reference to plant growth-promoting rhizobacteria and plant health.


Quorum sensing AHLs PGPR Plant-microbe interaction Rhizosphere signaling 



We are grateful to the Chairman, Department of Agricultural Microbiology, AMU, Aligarh, India for providing support to complete this task. We are also thankful to Mr. Faizan Abul Qais, research scholar, Department of Agricultural Microbiology, AMU, Aligarh, for his cooperation in preparing Fig. 16.1 of this chapter.


  1. Ahmad I, Aqil F, Ahmad F et al (2008) Quorum sensing in bacteria: potential in plant health protection. In: Ahmad I, Hayat S, Pichtel J (eds) Plant-bacteria interactions: strategies and techniques to promote plant growth. Wiley, Germany, pp 129–153CrossRefGoogle Scholar
  2. Ahmad I, Khan MSA, Husain FM et al (2011) Bacterial quorum sensing and its interference: methods and significance. In: Ahmad I, Ahmad F, Pichtel J (eds) Microbes and microbial technology: agricultural and environmental applications. Springer, New York, pp 127–161CrossRefGoogle Scholar
  3. Alavi P, Muller H, Cardinale M et al (2013) The DSF quorum sensing system controls the positive influence of Stenotrophomonas maltophilia on plants. PLoS One 8(7):e67103PubMedPubMedCentralCrossRefGoogle Scholar
  4. Andersen JB, Heydorn A, Hentzer M (2001) gfp-based N-acyl homoserine lactone sensor systems for detection of bacterial communication. Appl Environ Microbiol 67:575–585PubMedPubMedCentralCrossRefGoogle Scholar
  5. Atkinson S, Williams P (2009) Quorum sensing and social networking in the microbial world. J R Soc Interface 6:959–978PubMedPubMedCentralCrossRefGoogle Scholar
  6. Audrain B, Farag MA, Ryu CM et al (2015) Role of bacterial volatile compounds in bacterial biology. FEMS Microbiol Rev 39:222–233PubMedCrossRefGoogle Scholar
  7. Bai X, Todd CD, Desikan R et al (2012) N-3-oxo-decanoyl-L homoserine lactone activates auxin-induced adventitious root formation via hydrogen peroxide- and nitric oxide-dependent cyclic GMP signaling in mung bean. Plant Physiol 158:725–736PubMedCrossRefGoogle Scholar
  8. Barriuso J, Solano BR, Fray RG et al (2008a) Transgenic tomato plants alter quorum sensing in plant growth-promoting rhizobacteria. Plant Biotechnol J 6:442–452PubMedCrossRefGoogle Scholar
  9. Barriuso J, Solano BR, Lucas JA et al (2008b) Ecology, genetic diversity and screening strategies of plant growth promoting rhizobacteria. (PGPR). In: Ahmad I, Pichtel J, Hayat S (eds) Plant-bacteria interaction, strategies and techniques to promote plant growth. Wiley, Germany, pp 1–13Google Scholar
  10. Bassler BL (2002) Small talk. Cell-to-cell communication in bacteria. Cell 109:421–424PubMedCrossRefGoogle Scholar
  11. Bitas V, Kim HS, Bennet JW et al (2013) Sniffing on microbes: diverse roles of microbial volatile organic compounds in plant health. Mol Plant-Microbe Interact 26:835–843PubMedCrossRefGoogle Scholar
  12. Braeken K, Daniels R, Ndayizeye M et al (2008) Quorum sensing in bacteria-plant interactions. In: Nautiyal C, Dion P (eds) Molecular mechanisms of plant and microbe coexistence. Springer, Berlin, pp 265–289CrossRefGoogle Scholar
  13. Brameyer S, Bode HB, Heermann R (2015) Languages and dialects: bacterial communication beyond homoserine lactones. Trends Microbiol 23:521–523PubMedCrossRefGoogle Scholar
  14. Burdman S, Dulguerova G, Okon Y et al (2001) Purification of the major outer membrane protein of Azospirillum brasilense, its affinity to plant roots, and its involvement in cell aggregation. Mol Plant-Microbe Interact 14:555–558PubMedCrossRefGoogle Scholar
  15. Cameron DD, Neal AL, van Wees SC et al (2013) Mycorrhiza-induced resistance: more than the sum of its parts? Trends Plant Sci 18:539–545PubMedPubMedCentralCrossRefGoogle Scholar
  16. Chapalain A, Vial L, Laprade N (2013) Identification of quorum sensing-controlled genes in Burkholderia ambifaria. Microbiol Open 2:226–242CrossRefGoogle Scholar
  17. Charlton TS, De Nys R, Netting A et al (2000) A novel and sensitive method for the quantification of N-acyl 3-oxohomoserine lactones using gas chromatography-mass spectrometry: application to a model bacterial biofilm. Environ Microbiol 2:530–541PubMedCrossRefGoogle Scholar
  18. Chen X, Schauder S, Potier N et al (2002) Structural identification of a bacterial quorum-sensing signal containing boron. Nature 415:545–549PubMedCrossRefGoogle Scholar
  19. Chen X, Buddrus-Schiemann K, Rothballer M et al (2010a) Detection of quorum sensing molecules in Burkholderia cepacia culture supernatants with enzyme-linked immunosorbent assays. Anal Bioanal Chem 398:2669–2676PubMedCrossRefGoogle Scholar
  20. Chen X, Kremmer E, Gouzy MF et al (2010b) Development and characterization of rat monoclonal antibodies for N-acylated homoserine lactones. Anal Bioanal Chem 398:2655–2667PubMedCrossRefGoogle Scholar
  21. Compant S, Clément C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo- and endosphere of plants. Their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678CrossRefGoogle Scholar
  22. Daniels R, De Vos DE, Desair J et al (2002) Quorum sensing in Rhizobium etli CNPAF512 affects growth and symbiotic nitrogen fixation. J Biol Chem 277:462–468PubMedCrossRefGoogle Scholar
  23. De Weger LA, Bakker PAHM, Schippers B et al (1989) Pseudomonas spp with mutational changes in the O-antigenic side chain of their lipopolysaccharides are affected in their ability to colonize potato roots. In: Lugtenberg BJJ (ed) Signal molecules in plant-microbe interactions. Springer, Berlin, pp 197–202CrossRefGoogle Scholar
  24. Dekkers LC, Phoelich CC, van der Fits L et al (1998a) A site specific recombinase is required for competitive root colonization by Pseudomonas fluorescens WCS365. PNAS 95:7051–7056PubMedPubMedCentralCrossRefGoogle Scholar
  25. Dekkers LC, van der Bij AJ, Mulders IHM et al (1998b) Role of the O-antigen of lipopolysaccharide, and possible roles of growth rate and of NADH, ubiquinone oxidoreductase (nuo) in competitive tomato root-tip colonization by Pseudomonas fluorescens WCS365. Mol Plant-Microbe Interact 11:763–771PubMedCrossRefGoogle Scholar
  26. Dong H, Gusti AR, Zhang Q et al (2002) Identification of quorum-quenching N-acyl homoserine lactonases from Bacillus species. Appl Environ Microbiol 68:1754–1759PubMedPubMedCentralCrossRefGoogle Scholar
  27. Dourado MN, Bogas AC, Pomini AM et al (2013) Methylobacterium-plant interaction genes regulated by plant exudate and quorum sensing molecules. Braz J Microbiol 44:1331–1339PubMedCrossRefGoogle Scholar
  28. Downie JA (2010) The roles of extracellular proteins, polysaccharides and signals in the interactions of rhizobia with legume roots. FEMS Microbiol Rev 34:150–170PubMedCrossRefGoogle Scholar
  29. Duanis-Assaf D, Steinberg D, Chai Y et al (2016) The luxs based quorum sensing governs lactose induced biofilm formation by Bacillus subtilis. Front Microbiol 6:1517PubMedPubMedCentralCrossRefGoogle Scholar
  30. Eberhard A (1972) Inhibition and activation of bacterial luciferase synthesis. J Bacteriol 109:1101–1108PubMedPubMedCentralGoogle Scholar
  31. Effmert U, Kalderas J, Warnke R et al (2012) Volatile mediated interactions between bacteria and fungi in the soil. J Chem Ecol 38:665–703PubMedCrossRefGoogle Scholar
  32. Elasri M, Delorme S, Lemanceau P et al (2001) Acylhomoserine lactone production is more common among plant associated Pseudomonas spp than among soil borne Pseudomonas spp. Appl Environ Microbiol 67:1198–1209PubMedPubMedCentralCrossRefGoogle Scholar
  33. Fatima Q, Zahin M, Khan MSA et al (2010) Modulation of quorum sensing controlled behaviour of bacteria by growing seedling, seed and seedling extracts of leguminous plants. Indian J Microbiol 50:238–242PubMedPubMedCentralCrossRefGoogle Scholar
  34. Fekete A, Rothballer M, Frommberger M et al (2007) Identification of bacterial N-acyl homoserine lactones (AHLs) with a combination of ultra-performance liquid chromatography (UPLC), ultra-high-resolution mass spectrometry, and in-situ biosensors. Anal Bioanal Chem 387:455–467PubMedCrossRefGoogle Scholar
  35. Fekete A, Rothballer M, Hartmann A et al (2010) Identification of bacterial autoinducers. In: Kraemer R, Jung K (eds) Bacterial signaling. Wiley, Germany, pp 95–111Google Scholar
  36. Ferluga S, Steindler L, Venturi V (2008) N-acyl homoserine lactone quorum sensing in Gram-negative rhizobacteria. In: Karlovsky P (ed) Secondary metabolites in soil ecology. Springer, Berlin, pp 69–90CrossRefGoogle Scholar
  37. Flavier AB, Clough SJ, Schell MA et al (1997) Identification of 3-hydroxypalmitic acid methyl ester as a novel autoregulator controlling virulence in Ralstonia solanacearum. Mol Microbiol 26:251–259PubMedCrossRefGoogle Scholar
  38. Folcher M, Gaillard H, Nguyen LT et al (2001) Pleiotropic functions of a Streptomyces pristinaespiralis autoregulator receptor in development, antibiotic biosynthesis, and expression of a superoxide dismutase. J Biol Chem 276:44297–44306PubMedCrossRefGoogle Scholar
  39. Fray RG (2002) Altering plant–microbe interaction through artificially manipulating bacterial quorum sensing. Ann Bot 89:245–253PubMedPubMedCentralCrossRefGoogle Scholar
  40. Frommberger M, Schmitt-Kopplin P, Ping G et al (2004) A simple and robust set-up for on-column sample preconcentration-nano-liquid chromatography-electrospray ionization mass spectrometry for the analysis of N-homoserine lactones. Anal Bioanal Chem 378:1014–1020PubMedCrossRefGoogle Scholar
  41. Galloway WR, Hodgkinson JT, Bowden SD et al (2011) Quorum sensing in Gram-negative bacteria: small-molecule modulation of AHL and Al-2 quorum sensing pathways. Chem Rev 111:28–67PubMedCrossRefGoogle Scholar
  42. Gantner S, Schmid M, Durr C et al (2006) In situ quantitation of the spatial scale of calling distances and population density-independent N-acylhomoserine lactone-mediated communication by rhizobacteria colonized on plant roots. FEMS Microbiol Ecol 56:188–194PubMedCrossRefGoogle Scholar
  43. Gonzalez JE, Keshavan ND (2006) Messing with bacterial quorum sensing. Microbiol Mol Biol Rev 70:859–875PubMedPubMedCentralCrossRefGoogle Scholar
  44. Gonzalez JF, Venturi V (2013) A novel widespread interkingdom signaling circuit. Trends Plant Sci 18:167–174PubMedCrossRefGoogle Scholar
  45. Götz C, Fekete A, Gebefuegi I et al (2007) Uptake, degradation and chiral discrimination of N-acyl-D/L-homoserine lactones by barley (Hordeum vulgare) and yam bean (Pachyrhizus erosus) plants. Anal Bioanal Chem 389:1447–1457PubMedCrossRefGoogle Scholar
  46. Götz-Rösch C, Sieper T, Fekete A et al (2015) Influence of bacterial N-acyl-homoserine lactones on growth parameters, pigments, antioxidative capacities and the xenobiotic phase II detoxification enzymes in barley and yam bean. Front Plant Sci 6:205PubMedPubMedCentralCrossRefGoogle Scholar
  47. Guan LL, Kamino K (2001) Bacterial response to siderophore and quorum sensing chemical signals in the seawater microbial community. BMC Microbiol 1:27PubMedPubMedCentralCrossRefGoogle Scholar
  48. Hartmann A, Schikora A (2012) Quorum sensing of bacteria and trans-kingdom interactions of N-acyl homoserine lactones with eukaryotes. J Chem Ecol 38:704–713PubMedCrossRefGoogle Scholar
  49. Hartmann A, Rothballer M, Hense BA et al (2014) Bacterial quorum sensing compounds are important modulators of microbe-plant interactions. Front Plant Sci 5:131PubMedPubMedCentralCrossRefGoogle Scholar
  50. Hernández-Reyes C, Schenk ST, Neumann C et al (2014) N-acyl homoserine lactones-producing bacteria protect plants against plant and human pathogens. Microb Biotechnol 7:580–588PubMedPubMedCentralCrossRefGoogle Scholar
  51. Holden MT, Ram Chhabra S, de Nys R et al (1999) Quorum-sensing cross-talk: isolation and chemical characterization of cyclic dipeptides from Pseudomonas aeruginosa and other Gram-negative bacteria. Mol Microbiol 33:1254–1266PubMedCrossRefGoogle Scholar
  52. Hosni T, Moretti C, Devescovi G et al (2011) Sharing of quorum-sensing signals and role of interspecies communities in a bacterial plant disease. ISME J 5:1857–1870PubMedPubMedCentralCrossRefGoogle Scholar
  53. Imran A, Saadalla MJA, Khan SU et al (2014) Ochrobactrum sp. Pv2Z2 exhibits multiple traits of plant growth promotion, biodegradation and N-acyl-homoserine-lactone quorum sensing. Ann Microbiol 64:1797–1806CrossRefGoogle Scholar
  54. Jiang J, Wu S, Wang J et al (2015) AHL-type quorum sensing and its regulation on symplasmata formation in Pantoea agglomerans YS19. J Basic Microbiol 55:607–616PubMedCrossRefGoogle Scholar
  55. Jimenez PN, Koch G, Thompson JA et al (2012) The multiple signaling systems regulating virulence in Pseudomonas aeruginosa. Microbiol Mol Biol Rev 76:46–65PubMedCrossRefGoogle Scholar
  56. Johnson KL, Walcott RR (2013) Quorum sensing contributes to seed-to-seedling transmission of Acidovorax citrulli on watermelon. J Phytopathol 161:562–573CrossRefGoogle Scholar
  57. Kakkar A, Nizampatnam NR, Kondreddy A (2015) Xanthomonas campestris cell–cell signaling molecule DSF (diffusible signal factor) elicits innate immunity in plants and is suppressed by the exopolysaccharide xanthan. J Exp Bot 66:6697–6714PubMedPubMedCentralCrossRefGoogle Scholar
  58. Kalia VC (ed) (2015) Quorum sensing vs. quorum quenching: a battle with no end in sight. Springer, IndiaGoogle Scholar
  59. Kaplan HB, Greenberg EP (1985) Diffusion of autoinducer is involved in regulation of the Vibrio fischeri luminescence system. J Bacteriol 163:1210–1214PubMedPubMedCentralGoogle Scholar
  60. Kaufmann GF, Sartorio R, Lee SH et al (2006) Antibody interference with N-acyl homoserine lactone-mediated bacterial quorum sensing. J Am Chem Soc 128:2802–2803PubMedPubMedCentralCrossRefGoogle Scholar
  61. Kaufmann GF, Park J, Mee JM et al (2008) The quorum quenching antibody RS2-1G9 protects macrophages from the cytotoxic effects of Pseudomonas aeruginosa quorum sensing signaling molecule N-3-oxo dodecanoylhomoserine lactone. Mol Immunol 45:2710–2714PubMedPubMedCentralCrossRefGoogle Scholar
  62. Kay E, Dubuis C, Haas D (2005) Three small RNAs jointly ensure secondary metabolism and biocontrol in Pseudomonas fluorescens CHA0. Proc Natl Acad Sci U S A 102:17136–17141PubMedPubMedCentralCrossRefGoogle Scholar
  63. Kendall MM, Sperandio V (2007) Quorum sensing by enteric pathogens. Curr Opin Gastroenterol 23:10–15PubMedCrossRefGoogle Scholar
  64. Khan SR, Mavrodi DV, Jog GJ et al (2005) Activation of the phz operon of Pseudomonas fluorescens 2-79 requires the LuxR homolog PhzR, N-(3-OHHexanoyl)-l-homoserine lactone produced by the LuxI homolog PhzI, and a cis-acting phz box. J Bacteriol 187:6517–6527PubMedPubMedCentralCrossRefGoogle Scholar
  65. Lee J, Zhang L (2015) The hierarchy quorum sensing network in Pseudomonas aeruginosa. Protein Cell 6:26–41PubMedCrossRefGoogle Scholar
  66. Lee SJ, Park SY, Lee JJ et al (2002) Genes encoding the N-acyl homoserine lactone-degrading enzyme are widespread in many subspecies of Bacillus thuringiensis. Appl Environ Microbiol 68:3919–3924PubMedPubMedCentralCrossRefGoogle Scholar
  67. Li X, Fekete A, Englmann M et al (2006) Development of a solid phase extraction-ultra pressure liquid chromatography method for the determination of N-acyl homoserine lactones from bacterial supernatants. J Chromatogr A 1134:186–193PubMedCrossRefGoogle Scholar
  68. Liu X, Jia J, Popat R et al (2011) Characterisation of two quorum sensing systems in the endophytic Serratia plymuthica strain G3: differential control of motility and biofilm formation according to life-style. BMC Microbiol 11:26PubMedPubMedCentralCrossRefGoogle Scholar
  69. Liu F, Bian Z, Jia Z et al (2012) The GCR1 and GPA1 participate in promotion of Arabidopsis primary root elongation induced by N-acyl-homoserine lactones, the bacterial quorum sensing system. Mol Plant-Microbe Interact 25:677–683PubMedCrossRefGoogle Scholar
  70. López-Ráez JA, Bouwmeester H, Pozo MJ (2012) Communication in the rhizosphere, a target for pest management. In: Lichtfouse E (ed) Agroecology and strategies for climate change, sustainable agriculture reviews. Springer, Netherlands, pp 109–133CrossRefGoogle Scholar
  71. Lugtenberg BJ, Kamilova F (2009) Plant growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556PubMedCrossRefGoogle Scholar
  72. Lyon GJ, Novick C (2004) Peptide signaling in Staphylococcus aureus and other Gram-positive bacteria. Peptides 25:1389–1403PubMedCrossRefGoogle Scholar
  73. Malik AK, Fekete A, Gebefuegi I et al (2009) Single drop microextraction of homoserine lactones based quorum sensing signal molecules, and the separation of their enantiomers using gas chromatography mass spectrometry in the presence of biological matrices. Microchim Acta 166:101–107CrossRefGoogle Scholar
  74. Mathesius U, Mulders S, Gao M et al (2003) Extensive and specific responses of a eukaryote to bacterial quorum-sensing signals. PNAS 100:1444–1449PubMedPubMedCentralCrossRefGoogle Scholar
  75. McClean KH, Winson MK, Fish L (1997) Quorum sensing and Chromobacterium violaceum: exploitation of the violacein production and inhibition for the detection of N-acyl homoserine lactonase. Microbiology 143:3703–3711PubMedCrossRefGoogle Scholar
  76. Mcknight SL, Iglewski BH, Pesci EC (2000) The Pseudomonas quinolone signal regulates rhl virulence factor production and biofilm formation in Pseudomonas aeruginosa. J Bacteriol 182:2702–2708PubMedPubMedCentralCrossRefGoogle Scholar
  77. Miller MB, Bassler BL (2001) Quorum sensing in bacteria. Annu Rev Microbiol 55:165–199PubMedCrossRefGoogle Scholar
  78. Monnet V, Juillard V, Gardan R (2016) Peptide conversations in Gram-positive bacteria. Crit Rev Microbiol 42:339–351PubMedGoogle Scholar
  79. Morin D, Grasland B, Vallee-Rehel K et al (2003) On-line high performance liquid chromatography-mass spectrometry detection and quantification of N-acyl homoserine lactone quorum sensing signal molecules, in the presence of biological matrices. J Chromatogr A 1002:79–92PubMedCrossRefGoogle Scholar
  80. Müller J, Kuttler C, Hense BA (2006) Cell-cell communication by quorum sensing and dimension-reduction. J Math Biol 53:672–702PubMedCrossRefGoogle Scholar
  81. Newton JA, Fray RG (2004) Integration of environmental and host-derived signals with quorum sensing during plant-microbe interactions. Cell Microbiol 6:213–224PubMedCrossRefGoogle Scholar
  82. Nieto-Penalver CG, Bertini EV, de Figueroa LIC (2012) Identification of N-acyl homoserine lactones produced by Gluconacetobacter diazotrophicus PAL5 cultured in complex and synthetic media. Arch Microbiol 194:615–622PubMedCrossRefGoogle Scholar
  83. Oldroyd GE (2013) Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants. Nat Rev Microbiol 11:252–263PubMedCrossRefGoogle Scholar
  84. Oslizlo A, Stefanic P, Vatovec S et al (2015) Exploring ComQXPA quorum sensing diversity and biocontrol potential of Bacillus spp. isolates from tomato rhizoplane. Microb Biotechnol 8:527–540PubMedPubMedCentralCrossRefGoogle Scholar
  85. Pang Y, Liu X, Ma Y et al (2009) Induction of systemic resistance, root colonisation and biocontrol activities of the rhizospheric strain of Serratia plymuthica are dependent on N-acyl homoserine lactones. Eur J Plant Pathol 124:261–268CrossRefGoogle Scholar
  86. Papenfort K, Bassler BL (2016) Quorum sensing signal-response systems in Gram-negative bacteria. Nat Rev Microbiol 14:576–588PubMedPubMedCentralCrossRefGoogle Scholar
  87. Park J, Jagasia R, Kaufmann GF et al (2007) Infection control by antibody disruption of bacterial quorum sensing signaling. Chem Biol 14:1119–1127PubMedPubMedCentralCrossRefGoogle Scholar
  88. Paungfoo-Lonhienne C, Lonhienne TGA, Yeoh YK et al (2016) Crosstalk between sugarcane and a plant-growth promoting Burkholderia species. Sci Rep 6:37389PubMedPubMedCentralCrossRefGoogle Scholar
  89. Pereira CS, Thompson JA, Xavier KB (2013) AI-2-mediated signalling in bacteria. FEMS Microbiol Rev 37:156–181PubMedCrossRefGoogle Scholar
  90. Perez-Montano F, Jimenez-Guerrero I, Sanchez-Matamoros C et al (2013) Rice and bean AHL-mimic quorum-sensing signals specifically interfere with the capacity to form biofilms by plant-associated bacteria. Res Microbiol 164:749–760PubMedCrossRefGoogle Scholar
  91. Pérez-Montaño F, Jiménez-Guerrero I, Del Cerro P et al (2014) The symbiotic biofilm of Sinorhizobium fredii SMH12, necessary for successful colonization and symbiosis of Glycine max cv Osumi, is regulated by quorum sensing systems and inducing flavonoids via NodD1. PLoS One 9(8):e105901PubMedPubMedCentralCrossRefGoogle Scholar
  92. Persello-Cartieaux F, Nussaume L, Robaglia C (2003) Tales from the underground: molecular plant-rhizobacteria interactions. Plant Cell Environ 26:189–199CrossRefGoogle Scholar
  93. Pieterse CM, Zamioudis C, Berendsen RL et al (2014) Induced systemic resistance by beneficial microbes. Annu Rev Phytopathol 52:347–375PubMedCrossRefGoogle Scholar
  94. Podile AR, Vukanti RVNR, Sravani A et al (2014) Root colonization and quorum sensing are the driving forces of plant growth promoting rhizobacteria (PGPR) for growth promotion. Proc Natl Acad Sci India Sect B Biol 80:407–413CrossRefGoogle Scholar
  95. Rumbaugh KP (ed) (2011) Quorum sensing: methods and protocols. Methods in molecular biology. Springer, New YorkGoogle Scholar
  96. Rutherford ST, Bassler BL (2012) Bacterial quorum sensing: its role in virulence and possibilities for its control. Cold Spring Harb Perspect Med 2:a012427PubMedPubMedCentralCrossRefGoogle Scholar
  97. Ryan RP, An SQ, Allan JH et al (2015) The DSF family of cell–cell signals: an expanding class of bacterial virulence regulators. PLoS Pathog 11:e1004986PubMedPubMedCentralCrossRefGoogle Scholar
  98. Sanchez-Contreras M, Bauer WD, Gao MS et al (2007) Quorum-sensing regulation in rhizobia and its role in symbiotic interactions with legumes. Philos Trans R Soc B 362:1149–1163CrossRefGoogle Scholar
  99. Schenk ST, Schikora A (2015) AHL-priming functions via oxylipin and salicylic acid. Front Plant Sci 5:784PubMedPubMedCentralCrossRefGoogle Scholar
  100. Schenk ST, Stein E, Kogel KH et al (2012) Arabidopsis growth and defense are modulated by bacterial quorum sensing molecules. Plant Signal Behav 7:178–181PubMedPubMedCentralCrossRefGoogle Scholar
  101. Schikora A, Schenk ST, Hartmann A (2016) Beneficial effects of bacteria-plant communication based on quorum sensing molecules of the N-acyl homoserine lactone group. Plant Mol Biol 90:605–612PubMedCrossRefGoogle Scholar
  102. Schmid N, Pessi G, Deng Y et al (2012) The ahl- and bdsf-dependent quorum sensing systems control specific and overlapping sets of genes in Burkholderia cenocepacia H111. PLoS One 7(11):e49966PubMedPubMedCentralCrossRefGoogle Scholar
  103. Sessitsch A, Coenye T, Sturz AV et al (2005) Burkholderia phytofirmans sp. nov., a novel plant-associated bacterium with plant-beneficial properties. Int J Syst Evol Microbiol 55:1187–1192PubMedCrossRefGoogle Scholar
  104. Shoresh M, Harman GE, Mastouri F et al (2010) Induced systemic resistance and plant responses to fungal biocontrol agents. Annu Rev Phytopathol 48:21–43PubMedCrossRefGoogle Scholar
  105. Simons M, van der Bij AJ, de Weger LA (1996) Gnotobiotic system for studying rhizosphere colonization by plant growth-promoting Pseudomonas bacteria. Mol Plant-Microbe Interact 9:600–607PubMedCrossRefGoogle Scholar
  106. Singh BN, Singh HB, Singh A et al (2012) Lagerstroemia speciosa fruit extract modulates quorum sensing-controlled virulence factor production and biofilm formation in Pseudomonas aeruginosa. Microbiology 158:529–538PubMedCrossRefGoogle Scholar
  107. Steidle A, Sigl K, Schuhegger R et al (2001) Visualization of Nacylhomoserine lactone-mediated cell-cell communication between bacteria colonizing the tomato rhizosphere. Appl Environ Microbiol 67:5761–5770PubMedPubMedCentralCrossRefGoogle Scholar
  108. Suppiger A, Schmid N, Aguilar C (2013) Two quorum sensing systems control biofilm formation and virulence in members of the Burkholderia cepacia complex. Virulence 4:400–409PubMedPubMedCentralCrossRefGoogle Scholar
  109. Teplitski M, Robinson JB, Bauer WD (2000) Plants secrete substances that mimic bacterial N-acyl homoserine lactone signal activities and affect population density-dependent behaviors in associated bacteria. Mol Plant-Microbe Interact 13:637–648PubMedCrossRefGoogle Scholar
  110. Teplitski M, Mathesius U, Rumbaugh KP (2011) Perception and degradation of N-acyl homoserine lactone quorum sensing signals by mammalian and plant cells. Chem Rev 111:100–116PubMedCrossRefGoogle Scholar
  111. Thomson NR, Crow MA, Mcgowan SJ et al (2000) Biosynthesis of carbapenem antibiotic and prodigiosin pigment in Serratia is under quorum sensing control. Mol Microbiol 36:539–556PubMedCrossRefGoogle Scholar
  112. Veliz-Vallejos DF, van Noorden GE, Yuan M et al (2014) A Sinorhizobium meliloti-specific N-acyl homoserine lactone quorum-sensing signal increases nodule numbers in Medicago truncatula independent of autoregulation. Front Plant Sci 5:551PubMedPubMedCentralCrossRefGoogle Scholar
  113. Venturi V, Fuqua C (2013) Chemical signaling between plants and plant-pathogenic bacteria. Annu Rev Phytopathol 51:17–37PubMedCrossRefGoogle Scholar
  114. Venturi V, Keel C (2016) Signaling in the Rhizosphere. Trends Plant Sci 21:187–198PubMedCrossRefGoogle Scholar
  115. Verma SC, Miyashiro T (2013) Quorum sensing in the squid-vibrio symbiosis. Int J Mol Sci 14:16386–16401PubMedPubMedCentralCrossRefGoogle Scholar
  116. von Bodman SB, Bauer WD, Coplin DL (2003) Quorum sensing in plant-pathogenic bacteria. Annu Rev Phytopathol 41:455–482CrossRefGoogle Scholar
  117. von Rad U, Klein I, Dobrev PI et al (2008) The response of Arabidopsis thaliana to N -hexanoyl DL-homoserine-lactone, a bacterial quorum sensing molecule produced in the rhizosphere. Planta 229:73–85CrossRefGoogle Scholar
  118. Wang LH, He Y, Gao Y et al (2004a) A bacterial cell-cell communication signal with cross-kingdom structural analogues. Mol Microbiol 51:903–912PubMedCrossRefGoogle Scholar
  119. Wang H, Zhong Z, Cai T et al (2004b) Heterologous overexpression of quorum-sensing regulators to study cell-density-dependent phenotypes in a symbiotic plant bacterium Mesorhizobium huakuii. Arch Microbiol 182:520–525PubMedCrossRefGoogle Scholar
  120. Waters CM, Bassler BL (2005) Quorum sensing, cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol 21:319–346PubMedCrossRefGoogle Scholar
  121. Williams P (2007) Quorum sensing, communication and cross-kingdom signaling in the bacterial world. Microbiology 153:3923–3938PubMedCrossRefGoogle Scholar
  122. Williams P, Câmara M (2009) Quorum sensing and environmental adaptation in Pseudomonas aeruginosa: a tale of regulatory networks and multifunctional signal molecules. Curr Opin Microbiol 12:182–191PubMedCrossRefGoogle Scholar
  123. Winzer K, Hardie KR, Williams P (2002) Bacterial cell-to-cell communication: sorry, can’t talk now-gone for lunch! Curr Opin Microbiol 5:216–222PubMedCrossRefGoogle Scholar
  124. Wynendaele E, Bronselaer A, Nielandt J et al (2013) Quorumpeps database: chemical space, microbial origin and functionality of quorum sensing peptides. Nucleic Acids Res 41:D655–D659PubMedCrossRefGoogle Scholar
  125. Yamada Y, Nihira T (1998) Microbial hormones and microbial chemical ecology. In: Barton DHR, Nakanishi K (eds) Comprehensive natural products chemistry. Elsevier Sciences, Amsterdam, pp 377–413Google Scholar
  126. Zamioudis C, Pieterse CM (2012) Modulation of host immunity by beneficial microbes. Mol Plant-Microbe Interact 25:139–150PubMedCrossRefGoogle Scholar
  127. Zarkani AA, Stein E, Rohrich CR et al (2013) Homoserine lactones influence the reaction of plants to rhizobia. Int J Mol Sci 14:17122–17146PubMedPubMedCentralCrossRefGoogle Scholar
  128. Zhang Y, Ruyter-Spira C, Bouwmeester HJ (2015) Engineering the plant rhizosphere. Curr Opin Biotechnol 32:136–142PubMedCrossRefGoogle Scholar
  129. Zúñiga A, Poupin MJ, Donoso R (2013) Quorum sensing and indole-3-acetic acid degradation play a role in colonization and plant growth promotion of Arabidopsis thaliana by Burkholderia phytofirmans PsJN. Mol Plant-Microbe Interact 26:546–553PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • Mohd. Musheer Altaf
    • 1
  • Mohd. Sajjad Ahmad Khan
    • 2
  • Hussein Hasan Abulreesh
    • 3
  • Iqbal Ahmad
    • 1
    Email author
  1. 1.Department of Agricultural MicrobiologyAligarh Muslim UniversityAligarhIndia
  2. 2.Department of Biology, College of MedicineImam Abdulrahman Bin-Faisal UniversityDammamKingdom of Saudi Arabia
  3. 3.Department of Biology, Faculty of SciencesUmm Al-Qura UniversityMakkahKingdom of Saudi Arabia

Personalised recommendations